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Abstract: Time series prediction has been studied for decades due to its potential in a wide range
of applications. As one of the most popular technical indicators, moving average summarizes
the overall changing patterns over a past period and is frequently used to predict the future trend
of time series. However, traditional moving average indicators are calculated by averaging the time
series data with equal or predefined weights, and ignore the subtle difference in the importance
of different time steps. Moreover, unchanged data weights will be applied across different time
series, regardless of the differences in their inherent characteristics. In addition, the interaction
between different dimensions of different indicators is ignored when using the moving averages
of different scales to predict future trends. In this paper, we propose a learning-based moving average
indicator, called the self-attentive moving average (SAMA). After encoding the input signals of time
series based on recurrent neural networks, we introduce the self-attention mechanism to adaptively
determine the data weights at different time steps for calculating the moving average. Furthermore,
we use multiple self-attention heads to model the SAMA indicators of different scales, and finally
combine them through a bilinear fusion network for time series prediction. Extensive experiments
on two real-world datasets demonstrate the effectiveness of our approach. The data and codes of our
work have been released.

Keywords: time series prediction; self-attention mechanism; moving average; multi-scale indicator
bilinear fusion

1. Introduction

Time series analysis has been applied in a wide range of practical problems such
as financial market prediction [1], electric utility load forecasting [2], as well as weather
and environmental state prediction [3–6]. As it is rather difficult to estimate the exact
values of time series, recent studies have mostly paid attention to judging the trend of time
series in the future. Typically, time series prediction can be cast as a classification problem
in which the goal is to predict the future movement direction of time series, e.g., the rising,
falling, and steady trends.

As one of the most popular technical indicators in time series analysis, moving average
indicators can summarize the overall changing patterns of time series over a past period
in a simple and quick way [7]. Although widely used in different applications, traditional
moving average indicators are calculated by averaging the data from different time steps
with equal or predefined weights. However, the equal weighting scheme cannot reflect
the difference in the importance of different time steps, while manually determining
the weights requires a considerable amount of domain knowledge and engineering skills.
In addition, unchanged data weights will be applied across different time series, regardless
of the differences in their inherent characteristics.

Generally, we can perform time series prediction by comparing the moving averages
at different scales. For example, in the stock market, the short-term moving average
crosses upward or falls below the long-term moving average, which are usually regarded

Appl. Sci. 2022, 12, 3602. https://doi.org/10.3390/app12073602 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073602
https://doi.org/10.3390/app12073602
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12073602
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073602?type=check_update&version=2


Appl. Sci. 2022, 12, 3602 2 of 12

as rising and falling signals, respectively, [8]. However, such strategies are still heuristic
rules, ignoring the influence of the interaction between the moving average dimensions
of different scales, and how to make better use of multi-scale moving averages for time
series prediction remains an open question.

To address the above problems, in this paper, we propose a learning-based moving
average indicator, called the self-attentive moving average (SAMA). Specifically, after
encoding the input signals of time series based on recurrent neural networks (RNNs), we
introduce the self-attention mechanism [9] to adaptively determine the data weight at each
time step for calculating moving averages. In addition, we use multiple self-attention
heads to model the moving average indicators of different scales. The bilinear model
considers the interaction between the moving average dimensions of different scales and
provides a richer representation than the linear model. Numerous studies [10–12] have
proved its effectiveness in different fields, and we designed a bilinear fusion sub-network
to integrate them for effective time series prediction in an end-to-end manner. Extensive
experiments on two real-world datasets validate the rationality of combining multi-scale
SAMA indicators, and show that our method significantly outperforms traditional moving
average indicators as well as the modern sequential modeling methods for time series
prediction. The data and codes of our work are accessible at https://github.com/YY-
Susan/SAMA (accessed on 28 February 2022).

In summary, the main contributions of our work are:

• We present a novel learning-based moving average indicator that introduces the self-
attention mechanism to adaptively determine the data weight at each time step.

• We use multiple self-attention heads to model the moving average indicators of dif-
ferent scales and use bilinear models to effectively combine them for time series
prediction in an end-to-end manner.

• We conduct the experimental evaluation on two real-world datasets and the results
demonstrate the effectiveness of our approach.

The remainder of the paper is organized as follows. Section 2 reviews the related work.
Section 3 introduces some methodological background regarding moving average indica-
tors. Section 4 details the proposed framework for time series prediction. Experimental
setups are described in Section 5. Section 6 concludes our work.

2. Related Work

Previously, statistical models such as autoregressive model (AR) [13], moving average
model (MA) [14], and autoregressive moving average [15] and its variant ARIMA [16] have been
widely used for time series prediction. However, these models cannot describe the nonlinear
changes in time series. In order to solve this problem, researchers have resorted to some
nonlinear models such as the kernel method [17], Gaussian process [18] and hidden Markov
model [19], support vector machines [20], and least squares support vector machine [21] which
have the ability to adapt to complex time series. Experiments show that they achieve good
efficiency and prediction accuracy in short-term prediction.

With the rapid development of deep learning, CNN [22], RNN [23,24] and its variants,
including long short-term memory (LSTM) [4] and gate recurrent unit (GRU) [25], have
attracted significant attention and become popular methods for time series modeling. For
example, Qin et al. [26] proposed a dual-stage attention-based recurrent neural network
(DA-RNN), which contains an encoder and a decoder. The former with an input attention
mechanism adaptively extracts the input features of each time step, and the latter with
a temporal attention mechanism selects the relevant hidden states of the encoder among
all the time steps in different stages. In recent years, the transformer architecture [27] has
achieved great success in time series prediction. It completely relies on the self-attention
mechanism for time series modeling, and has been reported to achieve promising results.

The self-attention mechanism has been widely used in time series prediction. For example,
the continuous failure of high-voltage transmission lines increases the instability of the lines
and presents various degrees of hidden security risks, which increase the load of the lines
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and the cost of repairing the lines. In response to the above problems, Fahim et al. [28]
proposed a self-attention convolutional neural network model (SAT-CNN) which is based
on time series imaging for feature extraction and combined self-attention mechanism with CNN
to make the model more accurately identify specific types of failures for precise classification.
Finally, the effectiveness of the proposed SAT-CNN model is tested with the number of com-
bined input voltage, current, and voltage–current signals at different sampling frequencies.
Jin et al. [29] applied the self-attention mechanism to the agricultural field and proposed a bidi-
rectional self-attention encoder–decoder framework (BEDA). Firstly, the wavelet threshold filter
and preprocessing are used to denoise the time series, and then the bidirectional long short-term
memory network is used to extract the features of the time series. Then the multi-attentional
mechanism is introduced into the encoder–decoder framework. Finally, the indoor environ-
mental factors (temperature, humidity, and CO2) are accurately predicted to provide good
conditions for crop planting and growth. Experiments show that the framework has good
robustness and generalization ability. With the development of modern intelligent transporta-
tion systems (ITSs), effectively obtaining the potential spatial pattern and time dynamic traffic
flow prediction has become an urgent problem to be solved. Kang et al. [30] proposed a novel
spatial-temporal graph self-attentive model (STGSA). The model learns the spatial embedding
of the graph through a graph self-attention layer with Gumbel-Softmax technique, and obtains
the temporal embedding using an RNN combined with a gated recurrent unit. The effectiveness
of the method was demonstrated by experiments on the traffic flow dataset in Langfang, China,
in 2014. Wu et al. [31] carried out an in-depth study on the time series prediction of adver-
sarial attack and proposed an adversarial sample generation algorithm based on perturbation.
Specifically, the performance of a time series prediction model can be reduced by adding
malicious disturbance to time series. Experiments with several time series prediction models
on real-world datasets have shown that the proposed method not only deepens the researchers’
understanding of time series anti-attack, but also greatly improves the robustness of time series
prediction technology. Zheng et al. [32] proposed a temporal change information learning
method, in which the mean absolute error (MAE) and mean squared error (MSE) losses are
contained in the objective function and use the second-order difference technology in the cor-
relation terms of the objective function. As such, different amplitude errors can be evaluated,
and the effects of mutation information and slow change information on the time series can be
adaptively obtained. The historical and current moment estimation information is adaptively
memorized without introducing redundant hyperparameters. Ding et al. [33] conducted an in-
depth study on the fluctuation of time series and proposed a spatial attention fuzzy cognitive
map with high-order structure. Firstly, the extended polar fuzzy information granules are used
to transform time series into granular sequences with interpretable fluctuation characteristics
and then fuzzy cognitive maps are constructed. The attention mechanism is then introduced
to make full use of the spatial features and obtain key fluctuation patterns. Finally, a higher-order
structure is added to capture the temporal information in the pattern sequence. The effectiveness
of the proposed method is verified by a large number of experiments in financial time series.

On the other hand, moving average indicators are important tools for time series
analysis and widely used in many research fields, such as natural gas price prediction [34],
oil price [35] and foreign exchange prediction [36]. To resolve the deficiencies of traditional
moving average indicators, Seng Hansun et al. [37] proposed a new double exponen-
tial smoothing method called H-WEMA. Brown’s weighted exponential moving average
(B-WEMA) [38] has been successfully applied to forex data transaction prediction.
In [39], the authors modified and combined the weighting factors of WMA and EMA
to form a new weighting scheme for time series prediction. Nakano et al. [40] proposed
a stochastic volatility model based on EMA to predict asset returns. The experiment proves
that a simple investment strategy with the method is superior to that based on standard
EMA. Table 1 briefly summarizes related papers.
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Table 1. A brief summary of related work.

Method Related Work

Statistical model [13–16,37–40]
Traditional machine learning model [17–21]

Deep RNN model [4,23–26,31–33]
Deep self-attention model [27–30]

3. Methodological Background

In order to better express our problem, we declare some symbols in advance.
In particular, we use bold capital letters (e.g., X), bold lowercase letters (e.g., x), low-
ercase (e.g., x), and Greek letters (e.g., α) to denote matrices, vectors, scalar, and model
hyperparameters, respectively. Denote by X = [x1, x2, x3, · · · , xu]> ∈ Ru×d an input time
series, where u is the length of the time series, and xt is a d-dimensional feature vector
at the t-th time step. In this paper, the objective was to forecast the movement direction
of time series at the next time step u + 1.

In time series analysis, moving average indicators are one of the most favored tools
to measure the overall changing patterns of time series. Typically, there are three traditional
moving average indicators frequently used in real scenarios, including simple moving av-
erage (SMA) [41], exponential moving average (EMA) [42], and weighted moving average
(WMA) [43].

The SMA indicator calculates an average of time series data during a past period.
Specifically, the SMA indicator at the t-th time step with a lookback window size of l can
be calculated as

SMAt
l =

∑l
i=1 pt−i+1

l
, (1)

where pi is the data of the i-th time step. Intuitively, the SMA indicator is an effective means
to eliminate the strong fluctuations of time series. However, it equally treats the data at
each time step and ignores the subtle differences of their importance.

As a step further, the EMA indicator adopts an exponential decline manner to weigh
the time series data. Particularly, it gives greater weights to recent data than past ones, and
can be recursively computed as

EMAt
l = α× (pt − EMAt−1

l ) + EMAt−1
l , (2)

where α = 2
t+1 ∈ (0, 1) represents a degree of weight reduction.

The WMA indicator works in a similar way to EMA but uses the predefined data
weights, meaning that:

WMAt
l =

∑l
i=1 pt−i+1wi

∑l
i=1 wi

, (3)

where wi denotes the predefined weight. For notational simplicity, we shall omit the super-
script t in the following.

In time series analysis, it is widely believed that the intersection of moving average
indicators at different scales suggests a certain trend signal [44]. For example, when a short-
term moving average crosses a long-term moving average from bottom to top, it means
that an upward signal of a time series can be generated. On the contrary, if a short-term
moving average crosses a long-term moving average from top to bottom, a downward
time series trend may be predicted. However, such a strategy is mainly formed on humans’
subjective experience, and may not be applicable to different time series.
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4. Method

In this paper, we propose an end-to-end method. Firstly, we demonstrate the process
of dynamically modeling time series and details in self-attentive moving average (SAMA).
Then, different scales’ SAMA indicators are integrated through a bilinear fusion sub-
network for time series prediction. The overall framework is shown in Figure 1.

Figure 1. The overall framework. In part (a), the input signal of a time series is encoded through
a recurrent neural network, and then a self-attention mechanism is introduced to adaptively determine
the weight of the data at each time step to calculate the SAMA indicators. Multiple self-attention
heads are used to model multiple moving average indicators of different scales. In part (b), the bilinear
fusion method is used to fuse information between the dimensions of any two indicators.

4.1. Time Series Encoding

As we all know, the historical data of time series plays a pivotal role in predicting
its future trends. In this paper, we use the LSTM [45] model to encode the historical data
of time series. Compared with the vanilla RNN, the LSTM model has a long-term memory
function, which could alleviate the problems of gradient vanishing and exploding for long-
term sequence modeling. At the t-th time step, we input the feature vector xt into the LSTM
model. Formally, the LSTM model performs the calculations as follows:

ft = σ(W f [ht−1, xt] + b f )

it = σ(Wi[ht−1, xt] + bi)

ot = σ(Wo[ht−1, xt] + bo)

c̃t = tanh(Wc[ht−1, xt] + bc)

ct = ft � ct−1 + it � c̃t

ht = ot � tanh(ct)

. (4)

Here, ht−1 is a hidden state containing all the information up to the (t− 1)-th time
step. ht−1 and xt are concatenated and converted into a forget gate ft, an input gate it,
and an output gate ot, respectively. In addition, ht−1 and xt are also used to generate
a candidate cell state c̃t which represents the new information to be added. Then, ct−1 and
c̃t are combined to form ct, and ft and it serve as the balance factors in this procedure.
Finally, ot is multiplied by ct to output the current hidden state ht. In Equation (4), W f , Wi,
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Wo, and Wc are the parameters to be learned, � represents the Hadamard product, and
σ(·) and tanh(·) are the sigmoid and tanh activation functions, respectively.

4.2. Self-Attentive Moving Average

As described above, a core issue in calculating moving average indicators is to choose
the appropriate data weights at different time steps. In this paper, we propose a new
type of moving average indicator, called self-attentive moving average (SAMA), which
introduces the self-attention mechanism [9] to adaptively determine the data weights.
Specifically, the input signals of time series are encoded through the LSTM model and
the hidden state of each time step is obtained. When computing the SAMA indicator
at the t-th time step, the data weight wi is measured by examining the extent to which
the hidden state ht−i+1 is compatible with a query reference. Based on the recent bias
hypothesis [46] that the future trend of the time series has a strong correlation with its
recent volatility, we select the hidden state ht of the current time step as the query reference,
and wi is thus defined as

wi =
exp(s(ht, ht−i+1))

∑l
j=1 exp

(
s
(
ht, ht−j+1

)) , (5)

where:

s(ht, ht−i+1) =
(Qht)

>(Kht−i+1)√
d

(6)

is a compatibility function that transforms ht and ht−i+1 into a latent space with the param-
eter matrices Q and K, and d is the dimension of the latent space.

Finally, SAMAl can be computed as the weighted sum of the transformed hidden
state at each time step, meaning that:

SAMAl =
l

∑
i=1

wiVht−i+1, (7)

where V is a transformation matrix to be learned.

4.3. Multi-Scale SAMA Bilinear Fusion

In this study, we use multiple self-attention heads [9] to compute the SAMA indicators
of different scales, and further combine them to forecast the future trend of time series.
Specifically, the 5-step, 20-step, and 60-step moving averages are simultaneously modeled,
i.e., SAMA5, SAMA20, and SAMA60 indicators, which capture the past weekly, monthly,
and seasonal dynamic patterns of day-frequency time series, respectively.

Generally speaking, we predict the moving direction of time series by comparing
different scales’ moving average indicators. For example, in the stock market, the short-
term moving average crosses upward or falls below the long-term moving average, which
are usually regarded as rising and falling signals, respectively. However, such heuristic
strategies are highly subjective and do not make full use of the characteristics of different
scales’ moving average indicators. In this paper, we resort to the bilinear fusion [10]
to make the different dimensions of different scales’ indicators interact with each other and
obtain richer representations. To be specific, we input the three moving averages SAMA5,
SAMA20, and SAMA60 into the linear transformation layer, and perform dimensional
expansion operations on them, respectively, to obtain vectors a5, a20, and a60. Then, we
send them to the bilinear fusion layer and the indicators of different scales are aggregated
to a matrix through the outer product. As such, the interaction and fusion between each
pair of indicators ai and aj are carried out, and the bilinear vector z{i,j} is finally obtained:

z{i,j} = f lat(ai ⊗ aj), (8)
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where ⊗ and f lat denote the outer product and flattening operation, respectively.
i, j ∈ {5, 20, 60} and i 6= j. Finally, we adopt the idea of ensemble learning to make
time series prediction. We input the obtained bilinear fusion vectors into three weak learn-
ers to adaptively learn the corresponding weight of the bilinear fusion vectors. Then, we
send them to a strong learner with a fully connected layer for future trend prediction:

ŷ = WFC[W1z{5,20}, W2z{5,60}, W3z{20,60}], (9)

where W1, W2, W3, and WFC are the weight matrices to be learned.
We consider three movement directions of time series, namely the rising, falling, and

steady trends. We use cross entropy as the loss function to penalize the deviation of the pre-
diction from the ground-truth. The ŷ donates the predicted probability distribution over
different trends at the next time step, and y is a one-hot vector indicating the true trend label.
The cross entropy loss can be computed as

l(ŷ, y) = ∑
i

yi log ŷi, (10)

where i is the dimension index. The optimal SAMA indicator can be determined by
minimizing the loss over all time series.

5. Experiments
5.1. Data Collection

In this paper, we conducted experimental evaluations on a publicly available stock
dataset [47] and air quality dataset (https://download.csdn.net/download/godspeedch/
10627195$?$utm$_$source=iteye$_$new, accessed on 28 February 2022), respectively. For
both datasets, we take each day as a time step. Specifically, the stock dataset contains
1026 stocks collected from the NASDAQ market, with trading records consisting of the open-
ing price, closing price, highest price, lowest price, and trading volume of each day between
2 January 2013 and 12 August 2017. The air quality dataset contains the statistics of PM2.5,
PM10, SO2, CO, NO2, O3, and AQI per day from 2 December 2013 to 31 October 2018.
During data preprocessing, Min-Max normalization is used to normalize time series data
to the interval of [0,1]. We divide the data into the training set and testing set in chronologi-
cal order by the ratio of 4:1.

5.2. Evaluation Methodology

A time series prediction problem can be solved as a classification problem or a regres-
sion problem. The change pattern of time series is often unstable and irregular, so it is
difficult to accurately predict the value at a specific time step. In previous studies [26,48,49],
researchers have mainly focused on predicting the future trend of time series, transform-
ing time series prediction into a classification problem to solve. In our study, the trend
of the next time step is defined as one of the directions of rising (+1), falling (−1), and
steady (0). The ground-truth label is determined based on the change ratio of the closing
price and AQI for the stock and air quality datasets, respectively, meaning that:

y =


+ 1, if

vt+1 − vt

vt
≥ α;

− 1, if
vt+1 − vt

vt
≤ −α;

0, otherwise,

(11)

where vt and vt+1 are the values of closing prices or AQI at the t-th and (t + 1)-th time
step, respectively. α is a threshold and set to be 0.50% in line with the previous work [48].
We use the accuracy, precision, recall, and F1 score as metrics to evaluate the performance
of different algorithms. To further analyze the results, we performed paired a t-test to compare
the difference between our method and the other existing methods, and found that the im-

https://download.csdn.net/download/godspeedch/10627195$?$utm$_$source=iteye$_$new
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provement of our method is statistically significant at the significance level of 0.05 [50]. For
each method compared in our experiments, we repeat the training and testing procedures
five times, and report the average performance to alleviate the fluctuations caused by random
initializations.

5.3. Baseline

We compared the SAMA indicators with different time series’ prediction algorithms.
Specifically, we first compare the results of single SAMA indicators and different scales’
fusion to prove the effectiveness of multi-scale bilinear fusion:

• SAMAl : the single-scale SAMA indicator is used for time series prediction.
• SAMAl | SAMAl′ : any two scales SAMA indicators are simply spliced to make time

series prediction.
• SAMA5| SAMA20| SAMA60: the SAMA indicators of three different scales are spliced

to make time series predictions.

We then compare the model with three traditional technical indicators and make
further comparison with the depth sequence model:

• SMA [41]: the SMA indicator calculates the average value of the time series data
during a period of time.

• EMA [42]: the EMA indicator is calculated based on the principle that the weight of
the time series data decreases exponentially.

• WMA [43]: the WMA indicator gives predefined weights to different time series data.
• TCN [51]: the model combines CNN and RNN structure. The input sequence of arbitrary

length is modeled by causal convolution, expansion convolution and residual joining.
• DA-RNN [26]: the model is based on a recurrent neural network of dual-stage at-

tention. The encoder with an input attention mechanism and the decoder with time
attention are used to adaptively extract the input features and select the encoding-
related hidden states at all time steps.

• Transformer [9]: the transformer completely relies on the self-attention mechanism
to calculate the input and output representations, and obtains the weight of each value
by calculating the similarity between the query and the corresponding key.

• LSTM [52]: LSTM models time series through recurrent neural networks and predicts
future trends.

5.4. Effectiveness of Multi-Scale SAMA Bilinear Fusion

In our study, we propose combining multiple SAMA indicators of different scales
for time series prediction. Tables 2 and 3 report the comparison results between each
individual SAMA indicator and the fusion of multi-scale ones in different ways, from which
we can make the following observations:

• Overall, combining multi-scale SAMA indicators offers better performance than uti-
lizing one of them alone, leading to, for example, at least 3.19% and 2.85% relative
improvements in terms of F1 score on the stock and air quality datasets, respectively.
The results suggest the necessity of simultaneously exploiting the SAMA indicators
of different scales for enhancing time series prediction. In addition, the performance
of time series trend prediction by combining the three indicators SAMA5, SAMA20,
and SAMA60 deteriorates, which may be caused by the following two reasons.
The SAMA20 indicator is between the SAMA5 and SAMA60 indicators, which can
reflect the fluctuations of time series in the past month. Since the SAMA20 indicator is
not sensitive to the short-term fluctuation of the time series and cannot adequately
reflect the long-term trend change, some redundant information is introduced when
the three indicators are combined for trend prediction, which reduces the accuracy
of the prediction. On the other hand, we simply splice the three indicators to obtain
a unified representation through the fully connected layer as an excessively simple
combination method may lead to performance deterioration.
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• It can be seen that the bilinear fusion of SAMA5, SAMA20, and SAMA60 achieves
the best result among all multi-scale competitors. This may be because SAMA5 could
reflect the recent short-term fluctuations of time series: on the contrary, SAMA20 and
SAMA60 capture the overall mid-term and long-term dynamics of the past period. In
the process of fusion, we interact with the three different indicators and comprehen-
sively consider the dimensions of different scale indicators to better predict the future
trend of the time series.

Table 2. Performance of multi-scale SAMA indicator fusion (stock dataset).

Method
Stock Dataset

Accuracy Precision Recall F1

SAMA5 42.13% 41.44% 41.08% 39.58%
SAMA20 42.63% 41.98% 41.56% 40.10%
SAMA60 42.68% 41.89% 41.50% 39.81%

SAMA5| SAMA20 42.71% 42.17% 41.59% 39.90%
SAMA5| SAMA60 42.76% 42.20% 41.65% 40.27%

SAMA20 | SAMA60 42.71% 42.00% 41.63% 40.39%
SAMA5| SAMA20| SAMA60 42.75% 42.13% 41.61% 40.12%

(SAMA5, SAMA20, SAMA60)mix 42.82% 42.41% 41.98% 41.38%
The best result is indicated in bold and the second best result is underlined. This convention is also adopted
in the following table. Furthermore, | denotes the combination of different scales.

Table 3. Performance of multi-scale SAMA indicator fusion (air quality dataset).

Method
Air Quality Dataset

Accuracy Precision Recall F1

SAMA5 69.66% 46.22% 46.35% 46.26%
SAMA20 67.86% 45.03% 45.39% 45.20%
SAMA60 69.40% 45.88% 45.73% 45.74%

SAMA5| SAMA20 68.83% 45.65% 45.78% 45.69%
SAMA5| SAMA60 70.15% 46.55% 46.94% 46.67%

SAMA20 | SAMA60 69.78% 46.19% 45.81% 45.86%
SAMA5| SAMA20| SAMA60 69.40% 45.88% 46.01% 45.94%

(SAMA5, SAMA20, SAMA60)mix 71.64% 47.45% 47.75% 47.58%

5.5. Performance Comparison

We compare our approach with the traditional moving average indicators, i.e., SMA,
EMA, and WMA, as well as the modern sequential modeling methods including LSTM and
transformer, in terms of time series prediction. Table 4 lists the performance comparison
of different methods. From the results, we can see that:

• In most cases, traditional moving average indicators fall considerably behind the deep
model-based methods. This highlights the merit of deep learning techniques for time
series prediction.

• Among deep sequence models, transformer and our approach are both superior
to TCN, DA-RNN, and LSTM. This underlines the benefit of introducing the self-
attention mechanism to capture the dynamics of time series. On the other hand,
our approach obtains the best results on both datasets. More precisely, it exceeds
the transformer by an average of nearly 1.67%, 1.21%, 1.15%, and 1.49% in terms
of accuracy, precision, recall, and F1 score, respectively. The results clearly demonstrate
the effectiveness of our approach for time series prediction.



Appl. Sci. 2022, 12, 3602 10 of 12

Table 4. Performance comparison between different methods.

Method
Stock Dataset Air Quality Dataset

Accuracy Precision Recall F1 Accuracy Precision Recall F1

SMA 39.23% 35.83% 37.12% 29.89% 67.92% 45.98% 44.27% 44.00%
EMA 39.26% 37.25% 37.09% 29.51% 67.91% 44.91% 44.43% 44.46%
WMA 39.98% 38.02% 37.92% 30.11% 69.03% 45.64% 45.37% 45.40%

TCN 40.90% 38.89% 39.24% 33.91% 66.42% 44.05% 44.40% 44.15%
DA-RNN 40.82% 39.62% 39.17% 34.21% 67.16% 44.84% 43.28% 43.17%
LSTM 41.93% 40.58% 40.43% 37.46% 68.73% 45.59% 45.70% 45.61%

Transformer 41.97% 41.53% 41.12% 39.89% 69.16% 45.92% 46.32% 46.10%
Ours 42.82% 42.41% 41.98% 41.38% 71.64% 47.45% 47.75% 47.58%

6. Conclusions

In this paper, we propose a new learning-based moving average indicator SAMA.
After dynamically encoding the input signals of time series, we introduced the self-attention
mechanism to adaptively determine the data weights of each time step for the moving
average calculation. We generated the SAMA indicators of different scales with multiple
self-attention heads and combined them through a bilinear fusion network for time series
prediction in an end-to-end manner. The experimental results on real-world datasets
demonstrate the effectiveness of our framework.

In the future, we plan to explore more complicated network architectures to integrate
moving average indicators of different scales. Many researchers [53–57] have explored
the opportunities and challenges of big data. Boulesteix et al. [58] explained why statistical
models should be evaluated using large datasets, thus we will also verify our approach
on large-scale datasets and adapt it to other tasks in the field of time series analysis. In
addition, the Bert model can be used to analyze the sentiment of text information to obtain
sentiment embedding. At the same time, the method proposed in this paper can be used
to calculate the SAMA indicators and fuse different scales’ indicators to obtain the temporal
embedding and finally combine the two to make a time series prediction.
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