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Featured Application: This study represents a new approach for gaining insight into genetic reg-
ulatory mechanisms that drive development of dark-cutting meat in beef carcasses. This knowl-
edge provides a step toward further elimination of this phenotype that remains a significant eco-
nomic problem for the beef industry.

Abstract: “Dark-cutting” meat in beef carcasses can result from conditions such as long-term stress
and depleted glycogen stores, but some aspects of the physiological mechanisms that cause dark-
cutting phenotypes remain poorly understood. Certain responses to stress factors in fully developed
tissues are known to be regulated by specific microRNAs. We investigated microRNA expression in
Longissimus lumborum biopsies from carcasses derived from a contemporary group of 78 steers from
which a high incidence of dark-cutting meat occurred. Our objective was to identify any potential
microRNA signatures that reflect the impact of environmental factors and stresses on genetic signaling
networks and result in dark-cutting beef (also known as dark, firm, and dry, or DFD) in some animals.
MicroRNA expression was quantified by Illumina NextSeq small RNA sequencing. When RNA
extracts from DFD muscle biopsy samples were compared with normal, non-DFD (NON) samples,
29 differentially expressed microRNAs were identified in which expression was at least 20% different
in the DFD samples (DFD/NON fold ratio ≤0.8 or ≥1.2). When correction for multiple testing was
applied, a single microRNA bta-miR-2422 was identified at a false discovery probability (FDR) of
5.4%. If FDR was relaxed to 30%, additional microRNAs were differentially expressed (bta-miR-
10174-5p, bta-miR-1260b, bta-miR-144, bta-miR-142-5p, bta-miR-2285at, bta-miR-2285e, bta-miR-3613a).
These microRNAs may play a role in regulating aspects of stress responses that ultimately result in
dark-cutting beef carcasses.

Keywords: skeletal muscle; beef cattle; meat quality; dark cutter; DFD; stress; animal welfare; carcass
trait; microRNA; RNA sequencing; gene network; miR-2422

1. Introduction

Minimizing stress and ensuring the overall well-being of food animals are necessary
and important goals for all livestock producers. Such practices inevitably enhance pro-
duction operations since reduction of both physiological and environmental stressors is
known to improve beef carcass quality [1]. Environmental, psychological, and physical
stress significantly increase the costly occurrence of dark-cutting beef, also known as dark,
firm, and dry (DFD). Despite efforts to reduce handling and transport stress and improve
management practices, DFD beef remains an industry problem. The attributes of DFD
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beef and its presumed causes have been described in great detail since the 1940s, and
Lawrie [2] reported that its occurrence was noted as early as 1774. Although it is known
that DFD meat can result from several factors including long-term stress and depleted
glycogen stores, some aspects of the physiological mechanisms that cause DFD phenotypes
remain poorly understood. In fact, in an extensive literature review, Ponnampalam and
colleagues [3] suggested that DFD incidence could be potentially managed with better
understanding of the impact and complex interactions of animal phenotype and stress
factors with management practices. Six decades earlier, Lawrie [2] noted that effective
prevention of DFD beef would depend on “concomitant progress of genetics and neuro-
endocrinology.” In considering unexplored approaches and advances in genetics, unrelated
research in other mammals has shown how profoundly microRNAs (miRNAs) can regulate
the response to stress factors in fully developed tissues (e.g., [4,5]). We hypothesized that
certain miRNA signatures expressed in skeletal muscle in response to environmental factors
and stresses may regulate physiological networks that result in dark-cutting beef in certain
predisposed animals. Better understanding of these phenotypes may enable actionable
strategies—including both pre- and post-harvest opportunities—to reduce the economic
impact of DFD incidence.

The appearance of DFD beef deviates from the bright, cherry red color desired by
consumers, and may vary from slight discoloration to dark purple to nearly black in
color [6]. In cattle that experience antemortem stress, muscle glycogen stores can become
depleted. After harvest, a process of postmortem glycogen utilization typically occurs in
the muscle tissue, resulting in lactic acid production and subsequent pH decline. In stressed
animals, however, carcass pH remains high, resulting in de-oxygenated myoglobin and
darker color [2,7,8]. Lawrie [2] also noted that certain rations, especially green grass, could
cause undesirable color in beef. Grass-fed and grain-fed cattle have been shown to differ
energetically, resulting in darker lean [9]. Mitochondrial respiration rate can also influence
the DFD phenotype [10].

Occurrence of DFD has been shown to be a seasonal problem with great economic
impact [8,11]. In 1946, Bratzler [6] noted a one percent dark cutter incidence in a 1939 survey
and estimated Chicago packer economic loss at approximately $1 M at that time. Inflation-
adjusted estimates would put that loss at $20.2 M in 2022. In the 2016 United States Beef
Quality Audit, overall presence of dark-cutting carcasses was 1.9% [12]. The estimated
incidence in the U.S. has fluctuated slightly over the past 20 years with 3.2% in 2011 [13],
1.9% in 2005 [14], and 2.3% in 2000 [15]. Current industry incidence of DFD at the largest
U.S. beef packing plants is estimated at approximately 1%. Even at 1%, with an estimated
discount averaging $281/head in 2020, the annual economic impact on the US beef industry,
with 32.8 million cattle processed, is estimated at $95 to $100 million, demonstrating that
dark cutting remains a significant problem. Moreover, this issue is not limited to the U.S. In
Australia, for example, a more than 7% incidence of DFD can occur at certain times of year,
particularly at the end of summer [11].

We were interested in exploring a potential role for miRNAs in regulating the oc-
currence of DFD meat. MicroRNAs are small (20–27 nt) RNA molecules that function as
molecular rheostats to fine-tune the expression of genes as part of many physiological
processes. These small molecules can regulate the function of entire networks of genes [16]
and their existence adds layers of complexity to previous understanding of genetic mecha-
nisms [17]. General understanding of the physiological implications of miRNAs is currently
limited, and this area of research has not yet been widely explored in livestock species. We
have investigated the importance of miRNAs on metabolic capacity in skeletal muscle from
mice [18], and recently developed methods for isolation of plasma and muscle miRNAs
from beef cattle [19]. Certain miRNAs are potent regulators of skeletal muscle growth
and development.

In this project, we utilized muscle samples obtained from a contemporary group of
steer carcasses that had an unusually high incidence of DFD meat, to investigate whether
miRNA expression profiles were associated with this undesirable phenotype.
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2. Materials and Methods
2.1. Animal and Tissue Resources

Tissue samples and phenotypes for this project derived from a beef cattle herd that
was established as a designed genetic mapping population for carcass quality traits and
female calf production phenotypes [20]. Bos indicus—Bos taurus steers (Cycle 1) for carcass
evaluation were produced in a reciprocal F2 mating design from Angus (A) and Nellore
(N) F1 sires and dams (Table 1). Angus-sired (AN; pairs of letters indicate the sire and
dam breeds, respectively) and Nellore-sired (NA) parents were utilized, resulting in four
parental breed-of-origin combinations (ANAN, ANNA, NAAN, NANA, where the first two
letters indicate the sire, and the last two letters indicate the dam, Cycle 2). Contemporary
Cycle 3 animals (from parents produced in Cycle 1) were also produced. Although these
animals are all 50% Angus and 50% Nellore, the different breeding strategies used to
produce them provide for potential genetic segregation for all traits of interest. Previous
reports from our group investigated carcass traits of the Cycle 1 animals; this study utilized
Cycle 2 and Cycle 3 animals reared during the same year.

Table 1. Breeding scheme for animals 1 utilized in the study, derived from Cycle 2 and Cycle 3.

Cycle 1 Cycle 2 Cycle 3

NA × NA 4 crosses; combinations
of NA and AN F1 parents NA × NA

1 All animals are 50% Nellore (N, Bos indicus) and 50% Angus (A, Bos taurus). A pair of letters indicate the breeds
of sire and dam in the cross, respectively.

Steers were spring-born, castrated at approximately 60 to 70 days of age, and weaned
at an average of approximately 7 months of age. After weaning, they were penned together
and remained a single group for the rest of their lives. The steers grazed native pastures for
approximately 130 days after weaning, were transported 140 km to College Station, Texas,
and were fed a growing diet there for approximately 100 days. They were then transported
190 km to a commercial feedlot in South Texas and fed for 170 days until harvest at a
commercial processing facility in Corpus Christi, TX, USA. Immediately post-mortem,
approximately 1 g of skeletal muscle was biopsied from the Longissimus lumborum (adjacent
to the 12th rib steak taken for quality evaluation) of each animal. Muscle biopsies were
flash frozen in liquid nitrogen and stored at −80 ◦C. Numerous carcass traits were obtained
at harvest and after processing. For this contemporary group, 25 of the 78 beef carcasses
unexpectedly exhibited the DFD phenotype.

2.2. RNA Extraction & Quantification

A modified version of the Molecular Research Center Inc. (MRC; Cincinnati, OH, USA)
TRI reagent protocol was used for extraction of total RNA from each of the frozen L.
lumborum skeletal muscle biopsies (n = 78) [21]. During RNA extraction, approximately
100–200 mg of each muscle sample was ground in liquid nitrogen in a ceramic mortar and
pestle and homogenized in Tri-Reagent. Following extraction and purification, total RNA
for each sample was quantified via spectrophotometry (NanoDrop ND-1000 spectropho-
tometer; ThermoFisher Scientific, Wilmington, DE, USA). Sample integrity was verified
via capillary electrophoresis (Agilent 2100 Bioanalyzer; Agilent Technologies, Santa Clara,
CA, USA) according to the manufacturer’s protocol. Samples were stored at −80 ◦C until
further use.

2.3. Small RNA Sequencing

Total RNA was submitted to the Texas A&M Institute for Genome Sciences and
Society (TIGSS) facility (College Station, TX, USA) for small RNA-sequencing. Prior to
sequencing, each sample was re-quantified via fluorometer (Qubit 2.0, ThermoFisher
Scientific, Waltham, MA, USA). Libraries of small RNAs were prepared with the NEXTflex®

Small RNA-Seq kit v3 library kit (Bioo Scientific, Austin, TX, USA, a Perkin-Elmer company).
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This kit enables sequencing of the small RNA fraction and uses randomized bases at adapter
ligation junctions to reduce bias. The quality of the small RNA libraries was evaluated
via the Agilent 2200 TapeStation (Agilent Technologies, Santa Clara, CA, USA) prior to
sequencing, as recommended by the manufacturer. The sequence (single-end 100 nt reads)
was generated from the libraries via the Illumina NextSeq platform within two flow-cells
(Illumina, San Diego, CA, USA). Raw sequence count data for each sample were deposited
in NCBI’s Gene Expression Omnibus [22] and are accessible through GEO Series accession
number GSE193003 and SRA Bioproject PRJNA794121 https://www.ncbi.nlm.nih.gov/
geo/query/acc.cgi?acc=GSE193003 (accessed on 7 January 2022).

2.4. Bioinformatic and Statistical Analysis

Raw sequencing datafiles were transferred from the Illumina BaseSpace cloud-based
storage system to the TAMU TIGSS High Performance Computing Cluster (HPCC) for
further processing. The overall sequence quality of each sample was assessed via the
FastQC program. Low-quality sequence data (Phred score < 20) [23] and the adapter
sequences were removed with the Trimmomatic v. 0.32 genomic trimming program [24,25].
FASTA files from miRbase containing known Bos taurus sequence data for known precursor
hairpins and mature miRNAs (miRNA hairpins = 1064 and mature miRNAs = 1030), the
hairpin.bta.fa, and mature.bta.fa files (miRBase v.22.1) were uploaded to the TIGSS HPCC
for further analyses [26]. Filtered sequence reads that passed initial quality control were
mapped to precursor hairpins and mature miRNA sequences, then quantified via the
mirDeep2 software package [27]. This process generated a miRNA expression profile for
all mature miRNAs expressed in each sample. Sequence read counts were organized into
an analysis matrix for comparison of NON (n = 53) and DFD (n = 25) samples.

Data were filtered to remove any miRNAs that possessed ≤10 count reads across all
samples. Once filtered, the count matrix was normalized via DESeq2 software (v. 1.34.0)
with the median of ratios method that scales the raw count data to account for sequenc-
ing depth, followed by differential expression analysis by using a generalized linear
model [28–30]. With this approach, read counts were modelled to a negative binomial
distribution and a Wald test was utilized for hypothesis testing to identify potentially
differentially expressed transcripts. To correct for multiple testing, p-values generated by
the Wald test were adjusted at a false discovery rate (FDR) of 5% according to the method
of Benjamini-Hochberg [31,32]. An adjusted p ≤ 0.05 accompanied by a fold difference
≤0.8 or ≥1.2 was set as the cut-off for differentially expressed miRNAs. This cut-off reflects
an expression difference between groups of at least 20% and a maximum of 5% probability
of false discovery.

2.5. Institutional Approvals

This project utilized only post-mortem muscle biopsy samples. However, animal use
protocol 2008-234 was approved by the Texas A&M Agricultural Animal Care and Use
Committee for all project activities, including sample collection.

3. Results
3.1. Family Distribution of Dark-Cutting Phenotype

From a contemporary group of 78 F2 and F3 steers that were part of a designed genetic
mapping herd of Bos indicus—Bos taurus cattle, we unexpectedly observed a 32% incidence
of DFD meat in carcasses following harvest. The distribution of incidence across sire groups
(Figure 1) demonstrated a likely genetic component contributing to DFD occurrence.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193003
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE193003
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Figure 1. Incidence of DFD in offspring of sires with at least 4 progeny in the contemporary group
cohort (n = 78). Letters designate sire, followed by its number of offspring within the cohort.

3.2. miRNA Sequence Output

A total of 289,357,401 raw sequence reads were generated across all 78 samples.
Sequence reads were 101 bps in length, with an average of 3,709,710 reads generated
per sample. Following the excision of the adapters and removal of low-quality reads,
275,932,303 sequence reads were retained, reflecting an average of 3,537,594 usable reads
per sample. These miRNA sequence reads possessed an average Phred quality score of 31,
GC content of 34.5%, and were 15–22 nucleotides in length. Metpally et al. [33] found that
beyond 1.5 million mapped reads, diminishing returns were achieved for miRNA sequenc-
ing experiments. Similarly, the trade-off between sequencing depth and sample number has
been discussed, demonstrating the value of larger sample sizes for differential expression
analyses [34]. With high quality RNA samples obtained immediately postmortem and
prior to identification of carcasses with DFD beef, sequence characterization of muscle from
25 genetically defined steers that produced dark cutting meat offers a rare set of data for
evaluating genetic regulation of the phenotype.

3.3. Identification of Differentially Expressed miRNAs

After mapping sequences to Bos taurus miRNAs in miRbase (greater than 90% of the
total small RNA sequence reads mapped to B. taurus miRNAs), 542 miRNAs passed the
initial filtering within the DESeq2 analysis software (Supplemental Table S1). Because
this experiment’s goal was to determine whether miRNAs might play a role in the DFD
phenotype, other small RNAs were not investigated and we did not attempt to determine
potentially novel miRNAs in this dataset. Nearly half of the miRNAs were expressed simi-
larly between the dark-cutting and normal (DFD and NON) groups, exhibiting expression
ratios (DFD/NON) between 0.90 and 1.10 (Figure 2).

Because miRNAs can be potent cellular regulators of gene expression and small
changes may have great effects, a cut-off for differential expression between DFD and NON
was set to a level of at least 20% (ratio of DFD/NON ≤ 0.8 or ≥1.2). Although messenger
RNA (mRNA) transcriptome analyses often utilize a two-fold expression difference as a
cut-off, much smaller differences in miRNA expression can have powerful downstream
impacts on gene expression. As a result, we chose a 20% difference in expression as a
reasonable measure for examining potential differences between DFD and NON samples.
Of 170 miRNAs meeting the differential expression threshold, 28 miRNAs also met the
initial threshold for statistical significance (p≤ 0.05; Table 2). However, after a correction for
multiple testing was applied, only a single miRNA, bta-miR-2422, approached significance
with a 5.4% probability of being a false positive (padj = 0.0541; Table 2). Seven additional
bovine miRNAs met the cut-off if the FDR threshold was relaxed to 30% (miR-10174-5p,
miR-1260b, miR-144, miR-142-5p, miR-2285at, miR-2285e, miR-3613a). These data for the
“top” miRNAs presented in Table 2 are also displayed in Supplemental Figure S1 as an
expression heatmap of raw read counts across all animals. As was also reflected in the
DESeq2 analysis of differential expression, animal-to-animal variability is observed, and
small changes in expression are somewhat difficult to visualize graphically.

The “myomiRs” are miRNAs known to be specifically expressed and have a regula-
tory function within skeletal muscle [35]. These microRNAs (miR-1, miR-133a, miR-133b,
miR-206, miR-208a, miR-208b, mir-486, mir-499) are included in the table of differentially
expressed microRNAs as a reference because of their specificity to skeletal muscle. All of
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the myomiRs were detected but were not differentially expressed between the two groups
(Table 2).

Table 2. MicroRNAs differentially expressed in muscle biopsies from normal beef carcasses (NON)
and those exhibiting the dark, firm, dry phenotype (DFD). The threshold for statistical significance
for differential expression is padj ≤ 0.05. MyomiR data are also included in the table.

MicroRNA Counts
(Normalized) 1

Fold Difference
(DFD/NON) 2

p Value
(Wald Test) 3

padj
(FDR ≤ 0.05) 4

bta-miR-2422 5.54 1.72 9.98 × 10−5 0.054073752
bta-miR-10174-5p 2.68 1.93 0.0018698 0.253362794

bta-miR-1260b 12.13 1.58 0.0009795 0.253362794
bta-miR-144 25.26 0.56 0.0015518 0.253362794

bta-miR-142-5p 145.19 0.77 0.0045699 0.286059911
bta-miR-2285at 2.18 1.77 0.0043885 0.286059911
bta-miR-2285e 3.14 1.61 0.0036349 0.286059911
bta-miR-3613a 375.89 0.79 0.0053443 0.289662932
bta-miR-493 20.74 1.26 0.006497 0.320127236

bta-miR-27a-5p 10.57 1.38 0.0074149 0.334904236
bta-miR-136 8.86 0.68 0.0100435 0.400069983
bta-miR-146a 246.05 0.75 0.0110384 0.400069983

bta-miR-23b-5p 1.56 2.12 0.011072 0.400069983
bta-miR-10162-5p 1.32 1.84 0.0233158 0.554531616

bta-miR-1307 12.53 1.29 0.0189402 0.554531616
bta-miR-2285aa 1.32 0.45 0.0198697 0.554531616
bta-miR-2285r 1.56 0.50 0.0189285 0.554531616

bta-miR-31 4.48 0.63 0.0221755 0.554531616
bta-miR-2284k 1.44 0.54 0.0267659 0.580285276

bta-miR-2299-5p 1.89 0.56 0.0265474 0.580285276
bta-miR-11994 6.87 1.28 0.0468123 0.604508006

bta-miR-18b 0.47 0.37 0.0462686 0.604508006
bta-miR-2285q 3.66 0.66 0.0304856 0.604508006
bta-miR-2478 32.27 1.24 0.0307361 0.604508006
bta-miR-431 1.26 2.08 0.0323255 0.604508006
bta-miR-543 12.77 1.28 0.0328225 0.604508006

bta-miR-6123 5.08 0.73 0.047955 0.604508006
bta-miR-671 2.17 0.60 0.0348298 0.604508006

MyomiRs 5

bta-miR-206 10,196.55 1.12 0.004750072 0.286059911
bta-miR-208b 236.105 0.80 0.063240802 0.604508006

bta-miR-1 2,711,501.56 0.92 0.090611395 0.680638063
bta-miR-499 16,961.84 0.93 0.258200039 0.904697654
bta-miR-486 1758.97 1.06 0.333875388 0.973667764
bta-miR-133a 59,175.47 0.99 0.992791693 0.987194328
bta-miR-133b 833.48 1.04 0.440191294 0.992229627
bta-miR-208a 2.25 0.94 0.769097948 0.992229627

1 The normalized geometric mean sequence read counts over all samples. 2 The miRNA expression ratio
comparison of normal and DFD groups, reported as the arithmetic ratio of normalized read counts (DFD/NON).
3 Wald statistic. The value of the test statistic for the miRNA as computed within DESeq2 software. 4 Adjusted
Wald test p-values corrected for multiple testing at FDR of 5% via the adjusted Benjamini–Hochberg method.
5 The “myomiRs” are miRNAs known to be expressed and have a regulatory function in skeletal muscle. These
are included as a reference as common muscle miRNAs.
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Figure 2. Distribution of expression ratios observed between DFD and NON groups for 542 miRNAs
detected. Fold difference is expressed as ratio of DFD/NON and numerals indicate number of
miRNAs within a bin.

3.4. TargetScan Search for Putative Targets of bta-miR-2422

To determine potential targets that bta-miR-2422 may regulate, a search was conducted
in TargetScan Software, Release 8.0 [36,37]. This software utilizes a statistical model to
predict the effects of miRNAs binding to canonical sites based upon 14 different features of
the microRNA, miRNA site, or mRNA—including the mRNA sequence around the site—to
predict which sites within mRNAs are most effectively targeted by microRNAs [36,37].
However, in the case of poorly annotated or documented miRNAs, the results of analysis
can produce primarily false positives. TargetScan analysis of miR-2422 predicted 3375 tran-
scripts with sites potentially targeted by the miRNA, but these predictions are noted by
TargetScan as not likely to be functional. The predicted dataset is included as Supplemental
Table S2 for completeness, but at this time, no obvious targets of miR-2422 are proposed.

4. Discussion

This study utilized RNAseq analysis to evaluate differential expression of miRNAs
in L lumborum skeletal muscle biopsies that were obtained from a contemporary group of
carcasses in which an unexpectedly high incidence of dark-cutting beef was observed (25 of
78 carcasses). Similar sets of steers fed in the same manner and same locations in other
years did not have similar incidence. Our objective for this study was to determine whether
specific miRNAs were associated with the dark-cutting phenotype and the physiological
mechanisms underlying this undesirable trait. At more than 3.5 million mapped reads per
sample, with 78 biological replicates—including 25 DFD samples—this study is a robust
sequence analysis of miRNA expression in skeletal muscle samples, providing a unique
and valuable reference for genetic analysis of the DFD phenotype.

From our analyses, a single miRNA, bta-miR-2422 was identified as differentially
expressed between DFD and NON muscle samples, with the probability of false discovery
at 5.4% based on chosen analytical parameters. To our knowledge, this finding represents
the first instance of a specific miRNA associated with the DFD phenotype. The function
of miR-2422 has not been examined in detail to date. However, this miRNA, along with
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those identified at a greater threshold for false discovery, appears to be consistent with
an association with inflammation and response to stress. Given the novelty of this study,
we include discussion of several miRNAs identified as differentially expressed with a
potential false discovery rate of 30%. Although this choice is a generous threshold for
consideration, it is not unreasonable for a preliminary investigation of the impact and
function of the highest-ranking candidates, even if some of them are later determined to be
false positives. Such investigations may lead to additional insight into genetic regulation of
muscle physiology.

4.1. MiRNA Role in Inflammation and Inflammatory Response

MicroRNAs have been implicated in mediation of inflammatory response in a variety
of conditions and species. A computational study evaluated miRNA-gene interactions
to identify potential regulators of immune response in cattle suffering from trypanosome
infection [38]. This work evaluated seven key innate immune responsive genomic regions
and searched for miRNAs that targeted these genes. The results identified bta-miR-2422 as
one of the top ten miRNAs targeting the coding regions (CDS) of these immune responsive
genes, specifically ICAM-1, ITGAM, LBP, TLR-2, and TNF. Interestingly, in addition to TLR-
2′s association with oxidative stress and inflammation, it has also been linked to skeletal
muscle atrophy in mouse studies [39]. In a different report, when cows were challenged
with Staphlococcus aureus bacteria for assessment of inflammatory response in mastitis,
both miR-2422 and miR-142 were elevated in mammary glands after the challenge [40]. In
addition, Singh et al. [41] found that miR-1260b was significantly upregulated in water
buffalo (Bubalus bubalis) that were suffering from brucellosis as well as Johne’s disease. The
trypanosome work [38] also demonstrated that bta-miR-2422 shares homology with miR-327
in rats and mice (rno-miR-327 and mmu-miR-327). When rats treated intravenously with
gold nanoparticles developed lung inflammation, expression of miR-327 was implicated in
the inflammatory response [42].

4.2. ThermomiRs and Stress Response

Environmental challenges such as cold and heat can also induce stress responses
that alter genetic signaling, including miRNA expression. Heat stress can cause rapid
increases in circulating cytokines. Welc et al. [43] demonstrated that in mice, skeletal
muscle exhibits a distinct stress-induced immune response that has similarity to systemic
responses. When heat stress response was evaluated in cows, miR-2285 was downregulated
in bovine mammary glands following heat exposure [44,45]. Additionally, cold stress
has been associated with decreases in protein synthesis and induction of atrophy in rat
skeletal muscle [46]. The cold-induced RNA-binding protein (CIRP) is upregulated quickly
following cold shock, along with RNA-binding motif protein 3 (RBM3). It has also been
suggested that CIRP can trigger inflammation [47]. Results from an experimental study in
mouse skeletal muscle demonstrated that expression of CIRP promoted glucose metabolism
and depleted glycogen through the AKT signaling pathway [48]. RBM3 has been shown to
regulate the “thermomir” miR-142-5p, known to be responsive to temperature changes in
human cells, and knockdown of miR-142-5p increased T-cell activation [49]. Another effect
of cold exposure is induction of white adipose tissue (WAT) browning. In a mouse model,
miR-327 was identified as a key regulator of WAT browning and thermogenesis [50]. Cold
exposure decreased miR-327 expression, and downregulation of miR-327 increased overall
metabolism regardless of thermal environment. Elevation of the homolog bta-miR-2422 in
the current study suggests the metabolic response to stress in the DFD steer group may
have differed from that in the non-DFD group.

Other stressors have similarly altered miRNA expression. MiRNAs in milk exosomes
were evaluated after cows were subjected to group relocation during their lactation period.
In cows with elevated cortisol in response to this stress, 13 miRNAs were downregulated
compared with controls [51]. One of these, miR-142, was also downregulated in samples
from dark cutters in the current study. Interestingly, plasma concentration of miR-142-
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5p was also altered in grazing cattle compared with housed Japanese Shorthorn, with
differences attributed to altered metabolism [52]. Under conditions of another environmen-
tal stressor, hypoxia, mir-1260b has been identified among the most greatly upregulated
miRNAs (also called “hypoxamiRs”). This miRNA targets GDF11 signaling and is associ-
ated with vascular diseases [53,54]. In a rat model, overexpression of miR-327 enhanced
hypoxia-induced oxidative stress [55]. When a group of Jersey cattle were stressed due to
varying degrees of high-altitude hypoxia, circulating bta-miR-1260b, along with bta-miR-206,
were significantly upregulated in plasma from the stressed group compared with control
animals [56].

4.3. Muscle and MyomiRs

The myomiRs—miRNAs known to be specifically associated with skeletal muscle
(miR-1, miR-133a, miR-133b, miR-206, miR-208a, miR-208b, mir-486, mir-499) [35] were de-
tected but were not differentially expressed (Table 2). Thus, expression of the myomiRs
does not appear to directly contribute to the DFD phenotype. This result may further
reflect dark cutting’s appearance as a response to stress. However, miR-206 exhibited a
fold ratio of DFD/NON = 1.12, p = 0.0048. In pork, polymorphisms in the genes encoding
miR-206 altered expression of the miRNA and were associated with fiber type composition,
drip loss, and lightness of meat [57]. In light of this finding, the myomiRs may require
further investigation.

Differential miRNA expression was also previously evaluated in skeletal muscle
from non-small-cell lung cancer patients who develop cachexia during the course of their
disease and treatment [58]. In their study, miR-144-5p was one of two miRNAs specifically
associated with the cachectic state. Karolina et al. [59] identified miR-144 as a key player in
Type 2 diabetes in a rat model and demonstrated its role in targeting expression of IRS1,
suggesting its role in regulation of insulin signaling. In addition, miR-142 has been shown
to regulate metabolism and lipid utilization in skeletal muscle [60].

The miRNA, bta-mir-10174 was deposited in miRbase as part of an effort to identify
miRNAs expressed in bovine corpora lutea [61]. To our knowledge, however, the function
of this miRNA has not yet been described.

5. Conclusions

Following sequence analysis of skeletal muscle miRNAs in this experiment, we iden-
tified bta-miR-2422 as a potential regulatory molecule that is differentially expressed in
samples obtained from dark-cutting beef carcasses, compared with non-dark-cutting sam-
ples. These findings offer a first step toward answering the question of whether genetic
regulatory mechanisms that function in response to stress can ultimately affect carcass
quality. Coupled with the influence of sire on propensity for offspring to result in DFD beef,
we hypothesize that gene X environment interactions may also factor into DFD occurrence.
The identification of miR-2422 is consistent with other reports of stress-induced immune re-
sponses and may provide additional insight into the physiological responses that create the
DFD phenotype. Additional miRNAs identified in this work with less statistical confidence
are also consistent with reports in the literature of miRNAs associated with response to
cold and heat stress, glycogen utilization, and other physical attributes of skeletal muscle
that are relevant to DFD occurrence. These findings will require substantial validation
and further investigation to demonstrate how miR-2422 and other microRNAs function in
skeletal muscle, to identify whether they play a role in response to environmental stressors,
and to characterize potential target mRNAs. However, this work potentially provides
a novel first step toward further elimination of this undesirable carcass phenotype that
remains a significant economic problem for the meat industry.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12073555/s1, Table S1: Differentially expressed miRNAs,
Table S2: TargetScan analysis results for bta-miR-2422, Figure S1: Heat map illustrating miRNAs with
greatest probability of differential expression across all individuals.

https://www.mdpi.com/article/10.3390/app12073555/s1
https://www.mdpi.com/article/10.3390/app12073555/s1
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