
����������
�������

Citation: Liaskos, O.; Mitsigkola, S.;

Arapakopoulos, A.; Papatzanakis, G.;

Ginnis, A.; Papadopoulos, C.; Peppa,

S.; Remoundos, G. Development of

the Virtual Reality Application: “The

Ships of Navarino”. Appl. Sci. 2022,

12, 3541. https://doi.org/10.3390/

app12073541

Academic Editor: Enrico Vezzetti

Received: 16 March 2022

Accepted: 29 March 2022

Published: 30 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Development of the Virtual Reality Application:
“The Ships of Navarino”
Orestis Liaskos 1,*, Sofia Mitsigkola 1, Andreas Arapakopoulos 2, Georgios Papatzanakis 1, Alexandros Ginnis 1,
Christos Papadopoulos 1, Sofia Peppa 2 and Georgios Remoundos 3

1 School of Naval Architecture and Marine Engineering, National Technical University of Athens,
10682 Athens, Greece; smitsigkola@gmail.com (S.M.); gpap@deslab.ntua.gr (G.P.);
ginnis@naval.ntua.gr (A.G.); chpap@central.ntua.gr (C.P.)

2 Department of Naval Architecture, University of West Attica, 12243 Athens, Greece;
aarapakopoulos@uniwa.gr (A.A.); speppa@uniwa.gr (S.P.)

3 Department of Shipping, Trade and Transport, School of Business, University of the Aegean,
82132 Chios, Greece; gremoundos@aegean.gr

* Correspondence: liaskos.orestis@gmail.com; Tel.: +30-697-848-3826

Abstract: Virtual reality and 3D modeling techniques are increasingly popular modes of representa-
tion for historical artifacts and cultural heritage, as they allow for a more immersive experience. This
article describes the process that was adopted for the development of a virtual reality application for
four ships involved in the historic battle of Navarino. The specific naval battle was the culmination
of military operations during the Greek Revolution in 1827, in which the allied British, Russian,
and French fleet defeated Turkish-Egyptian forces. Representative 3D models of four significant
warships that participated in the battle of Navarino were created: the British “Asia”, the French
frigate “Armide”, the Russian “Azov”, and the Ottoman “Kuh-I-Revan”. These historic ships were
digitally designed according to historical drawings and a VR battle environment was developed,
which visitors can experience. In addition, the 3D models were generated by a 3D printer and painted
according to the digitized ship-models. The development was conducted within the realm of the
NAVS Project. The VR application, “The Ships of Navarino”, as well as the 3D-printed models were
presented as part of a physical exhibition hosted in the Eugenides Foundation in Athens, Greece.

Keywords: virtual reality; cultural heritage; 3D modeling; game engines; application development;
ship design; 3D printing; exhibition

1. Introduction

Positioned in the intersection of technological and other sectors, VR applications
are often in the middle of multidisciplinary stakeholders, fulfilling various needs and
addressing complicated issues. The VR experience “The Ships of Navarino” was developed
for the Oculus Rift S and the Oculus Quest, to be presented as a part of a physical exhibition
held in the Eugenides Foundation, Athens, Greece. More specifically, the VR experience
“The Ships of Navarino” is a tour inside four significant ships that participated in the battle
of Navarino: the British “Asia”, with admiral Cordington in the lead, the French frigate
“Armide”, the Russian “Azov”, and the Ottoman “Kuh-I-Revan”. Considering that the
VR experience was a part of a larger exhibition, it should have a limited duration and be
accessible to all audiences.

It is difficult to visualize a historical artifact when there are technological limitations.
Optimization processes will often boost the performance based on the cost of visual fidelity
and the risk of historical inaccuracies. This paper will highlight the development process of
the recent VR project “The Ships of Navarino” and will provide an empirical contribution
to the optimization methodology of a VR application that communicates intact historical
information and opens up the possibilities of a broader dissemination range. During this

Appl. Sci. 2022, 12, 3541. https://doi.org/10.3390/app12073541 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073541
https://doi.org/10.3390/app12073541
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12073541
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073541?type=check_update&version=2

Appl. Sci. 2022, 12, 3541 2 of 24

project, based on historical sources, four ships involved in the historic Battle of Navarino
were digitally recreated and developed into a VR application that became accessible to a
wide audience as part of the anniversary exhibition “Run onto the waves of the formidable
sea. 1821, the War at Sea.” in the Eugenides Foundation [1]. The optimization methodolo-
gies adopted targeted the VR platforms and resulted in 3D models also suitable for online
hosting, enriching the dissemination of the project. Furthermore, based on the 3D models
and 3D textures, accurate models of the ships were 3D-printed and painted for display in
the exhibition.

1.1. Related Works

Virtual Reality (VR), 3D modeling techniques, and 3D printing have become very popu-
lar in various fields such as cultural heritage [2–6], ship design [7–9], and education [10–12].
Museums and institutions [13] use new media to offer new ways to communicate historical
information to visitors and engage with new audiences. Information and communication
technologies (ICTs) are known to enhance creativity in cultural and educational experiences,
as they encourage learning by exploring an open environment and allow for a nonlinear
storyline [14]. The use of VR enhances the user’s immersion, while 3D models hosted
online broaden the accessibility of information to users situated outside the reach of a
cultural institution [15] (p. 7002). Furthermore, historical artifacts can be replicated and
restored by using 3D printing technology [16].

1.2. The Ships of Navarino

Requirements and constraints, such as the time duration of the VR visit, the inclusion
of people not accustomed to watching VR, and the device specifications set some early
design directions for the general approach.

Specifically, considering the time limitation, unnecessary interaction with the VR
environment or any gamification elements that would extend the duration of the guide
were not included in the final experience. Design decisions were aimed towards a more
friendly approach for people new to VR, such as the transition between ships. The VR
hands were included, providing a better understanding of the controller locations and
to facilitate actions such as pointing. Moreover, the introduction scene was designed to
resemble a cabin (Figure 1), as this is the only ship room that is, scale-wise, closer to the
human size, offering a more friendly transition from the real world to the virtual one.

Although interacting with the virtual world provides many possibilities for viewers to
experience historical events and artifacts, the available technology comes with significant
limitations regarding performance. While the Oculus Rift S targets 1–2 million triangles
and 500–1000 draw calls per frame, the Oculus Quest targets 300,000–500,000 triangles and
150–175 draw calls per frame [17]. Put simply, this means that, considering performance, a
very serious reduction was needed to be made to the number of polygons of the 3D models,
and the number of materials, texture sizes and lighting had to be optimized.

On the other hand, the aspiration of the project was to provide a realistic representation
of the four historic warships, enhanced with important information about the decisive
Battle of Navarino. From the beginning of development, it was clear to us that a reduction
of complexity in the 3D models or the quality of textures and materials was not an option:
the project’s depiction of the warships should be as accurate as possible.

Optimization methodologies adopted from the video game field were the answer to
this problem.

• The high polygon count 3D models, derived from detailed drawings and NURBS
surfaces (.3DM) were turned into a more common type of mesh, then remeshed and
retopologized in order to reduce polygon count.

• In order to reduce draw calls, unwrapping and texturing was carried out in a manner
that focused on the reusability of textures and materials on different meshes, resulting
in a reduced number of materials. In addition, a tool was used to bake the lights
in Unity3d.

Appl. Sci. 2022, 12, 3541 3 of 24

• Occlusion culling was also implemented in order to reduce triangles and draw calls
per frame.

In the following parts, the methodology employed for the development of the VR
experience “The Ships of Navarino”, will be presented and analyzed in detail.

Appl. Sci. 2022, 12, 3541 3 of 24

• In order to reduce draw calls, unwrapping and texturing was carried out in a manner

that focused on the reusability of textures and materials on different meshes, result-

ing in a reduced number of materials. In addition, a tool was used to bake the lights

in Unity3d

• Occlusion culling was also implemented in order to reduce triangles and draw calls

per frame.

In the following parts, the methodology employed for the development of the VR

experience “The Ships of Navarino”, will be presented and analyzed in detail.

Figure 1. The introductory scene of the VR application “The Ships of Navarino”. Screenshot from

Unity3d.

2. Methodology

2.1. Ship Plans & 3D Model Creation in Rhino3D

The methodology is described in relation to only one of the four ships indicated

above, the Russian Azov. For a better comprehension of the work in this project, the his-

toric ship lines plan of Azov [18] was used for the creation of the 3D ship models in

Rhino3D [19]. The historical research and documentation of the aforementioned blue-

prints was carried out by the NAVS project partners Institute of Mediterranean Studies,

FORTH, and the Eugenides Foundation.

The geometry in Rhino3D is based on the NURBS [20,21] mathematical model, which

aims to produce mathematically correct representations of curves and freeform surfaces

[22]. The development of ship sections, as seen with red NURBS curves in Figure 2, is a

basic method that is commonly used in ship design. These curves are smoothed out, in

order to create a hull that is as smooth as possible.

In the next step, a subset of the faired curves was chosen to form a curve network

that leads to a hull-surface. The surface was mirrored, and with the proper adjustments,

the hull converted into a closed polysurface, which is the equivalent of a solid in Rhino3D.

The hull, along with the keel, is shown in Figure 2 (green), with the selected sections (red)

aligned in 2D and 3D space.

Figure 1. The introductory scene of the VR application “The Ships of Navarino”. Screenshot
from Unity3d.

2. Methodology
2.1. Ship Plans & 3D Model Creation in Rhino3D

The methodology is described in relation to only one of the four ships indicated above,
the Russian Azov. For a better comprehension of the work in this project, the historic ship
lines plan of Azov [18] was used for the creation of the 3D ship models in Rhino3D [19].
The historical research and documentation of the aforementioned blueprints was carried
out by the NAVS project partners Institute of Mediterranean Studies, FORTH, and the
Eugenides Foundation.

The geometry in Rhino3D is based on the NURBS [20,21] mathematical model, which
aims to produce mathematically correct representations of curves and freeform surfaces [22].
The development of ship sections, as seen with red NURBS curves in Figure 2, is a basic
method that is commonly used in ship design. These curves are smoothed out, in order to
create a hull that is as smooth as possible.

In the next step, a subset of the faired curves was chosen to form a curve network that
leads to a hull-surface. The surface was mirrored, and with the proper adjustments, the
hull converted into a closed polysurface, which is the equivalent of a solid in Rhino3D.
The hull, along with the keel, is shown in Figure 2 (green), with the selected sections (red)
aligned in 2D and 3D space.

Appl. Sci. 2022, 12, 3541 4 of 24
Appl. Sci. 2022, 12, 3541 4 of 24

Figure 2. Drawings of the Azov Ship: left—lines plan; right—surfaces constructed in Rhino3D.

Proper cuts in the solid hull were made, as shown in Figure 3, to construct the deck

flooring and the openings for the masts and cannons. Figure 3 also depicts the deck com-

ponents of the Azov, as well as the longitudinal wooden strips that run outside the hull

and follow the geometry of the outer surface.

Figure 3. Hull, deck, and deck details (lifeboats, deck hatch covers, etc.). 3D models created in

Rhino3D.

The full-rigged 3D model of Azov equipped with sails and masts is depicted In Fig-

ure 4. The sailing ropes are also shown in the same figure. Finally, with all the gunport

windows open, the cannons can be seen (starboard side).

Figure 2. Drawings of the Azov Ship: left—lines plan; right—surfaces constructed in Rhino3D.

Proper cuts in the solid hull were made, as shown in Figure 3, to construct the deck
flooring and the openings for the masts and cannons. Figure 3 also depicts the deck
components of the Azov, as well as the longitudinal wooden strips that run outside the hull
and follow the geometry of the outer surface.

Appl. Sci. 2022, 12, 3541 4 of 24

Figure 2. Drawings of the Azov Ship: left—lines plan; right—surfaces constructed in Rhino3D.

Proper cuts in the solid hull were made, as shown in Figure 3, to construct the deck

flooring and the openings for the masts and cannons. Figure 3 also depicts the deck com-

ponents of the Azov, as well as the longitudinal wooden strips that run outside the hull

and follow the geometry of the outer surface.

Figure 3. Hull, deck, and deck details (lifeboats, deck hatch covers, etc.). 3D models created in

Rhino3D.

The full-rigged 3D model of Azov equipped with sails and masts is depicted In Fig-

ure 4. The sailing ropes are also shown in the same figure. Finally, with all the gunport

windows open, the cannons can be seen (starboard side).

Figure 3. Hull, deck, and deck details (lifeboats, deck hatch covers, etc.). 3D models created
in Rhino3D.

The full-rigged 3D model of Azov equipped with sails and masts is depicted In
Figure 4. The sailing ropes are also shown in the same figure. Finally, with all the gunport
windows open, the cannons can be seen (starboard side).

Appl. Sci. 2022, 12, 3541 5 of 24Appl. Sci. 2022, 12, 3541 5 of 24

Figure 4. The fully rigged 3D model of Azov (from the stern).

2.2. Polygon Mesh Optimization

2.2.1. Conversion of a Rhino3D Model to a Polygon Mesh

As mentioned in the previous chapter, Rhino3D uses the NURBS mathematical

model for the surfaces produced (Figure 5).

This method cannot be used by the other software utilized in this project, so it was

necessary to convert all the surfaces from NURBS surfaces into another surface type,

called a polygon mesh. Polygon meshes are collections of vertices, edges, and faces that

define an object and can be used by any 3D-modeling and design software. There are

many common file formats that can contain meshes, and for this project the .FBX file for-

mat [23] was chosen as it can contain many different objects separately, while also pre-

serving the hierarchy of those objects.

Figure 5. NURBS surfaces in Rhino3D.

In order to export a NURBS surface into a .FBX file containing all the polygonal

meshes, a conversion from NURBS surface to polygonal mesh was deemed necessary.

This conversion had to be as lean as possible, meaning as few polygons as possible while

maintaining all the surface’s information (geometry and curvature). Furthermore, in order

to make future steps easier, with regard to unwrapping and texturing of the models (on

Figure 4. The fully rigged 3D model of Azov (from the stern).

2.2. Polygon Mesh Optimization
2.2.1. Conversion of a Rhino3D Model to a Polygon Mesh

As mentioned in the previous chapter, Rhino3D uses the NURBS mathematical model
for the surfaces produced (Figure 5).

This method cannot be used by the other software utilized in this project, so it was
necessary to convert all the surfaces from NURBS surfaces into another surface type, called
a polygon mesh. Polygon meshes are collections of vertices, edges, and faces that define an
object and can be used by any 3D-modeling and design software. There are many common
file formats that can contain meshes, and for this project the .FBX file format [23] was chosen
as it can contain many different objects separately, while also preserving the hierarchy of
those objects.

Appl. Sci. 2022, 12, 3541 5 of 24

Figure 4. The fully rigged 3D model of Azov (from the stern).

2.2. Polygon Mesh Optimization

2.2.1. Conversion of a Rhino3D Model to a Polygon Mesh

As mentioned in the previous chapter, Rhino3D uses the NURBS mathematical

model for the surfaces produced (Figure 5).

This method cannot be used by the other software utilized in this project, so it was

necessary to convert all the surfaces from NURBS surfaces into another surface type,

called a polygon mesh. Polygon meshes are collections of vertices, edges, and faces that

define an object and can be used by any 3D-modeling and design software. There are

many common file formats that can contain meshes, and for this project the .FBX file for-

mat [23] was chosen as it can contain many different objects separately, while also pre-

serving the hierarchy of those objects.

Figure 5. NURBS surfaces in Rhino3D.

In order to export a NURBS surface into a .FBX file containing all the polygonal

meshes, a conversion from NURBS surface to polygonal mesh was deemed necessary.

This conversion had to be as lean as possible, meaning as few polygons as possible while

maintaining all the surface’s information (geometry and curvature). Furthermore, in order

to make future steps easier, with regard to unwrapping and texturing of the models (on

Figure 5. NURBS surfaces in Rhino3D.

In order to export a NURBS surface into a .FBX file containing all the polygonal
meshes, a conversion from NURBS surface to polygonal mesh was deemed necessary.
This conversion had to be as lean as possible, meaning as few polygons as possible while
maintaining all the surface’s information (geometry and curvature). Furthermore, in order
to make future steps easier, with regard to unwrapping and texturing of the models (on

Appl. Sci. 2022, 12, 3541 6 of 24

which more details are provided later), it was desirable to make all or most of the polygons
quads, meaning that each polygon was defined by four edges and four vertices.

Rhino3D provides two ways for doing this conversion:

• Automatically during export, resulting in much undesired topology (many triangles,
especially around holes in the mesh) making subsequent processes more difficult.

• Quad remeshing, which attempts to convert the NURBS surface into a polygon mesh
containing only quads [24].

A quad-based topology means that a mesh is comprised mainly by quads. This is a
generally preferable practice for 3D artists, for various reasons. A quad-based model is the
most useful form for 3D modeling, as it ensures a clean topology and provides edge flow
that can easily be adjusted. This is highly important when further editing is needed, for
example when attempting to reduce polygon count, or when unwrapping is mandatory for
texturing the mesh; as in this case. Secondly, subdividing a clean quad-based topology is a
controlled and low-risk task, while creating edge loops in a primarily triangle-based mesh
can be unexpected and cause shading issues that will be rendered into the game engines.

Whilst game engines such as Unity3d triangulate the 3D model during import, the
triangulation of a quad is considered more predictable than that of an Ngon (a poly-
gon with more than four edges), which may result in unwanted shadings and normal
vector calculations.

Quad remeshing was chosen because it produced excellent quality polygon meshes
that maintained all the original surface’s information while being solely comprised of
quads. The following figure (Figure 6) clearly shows, in contrast to the previous figure,
that the mesh holes are completely defined by the quads around them, while the NURBS
surface has no discernible way of defining the holes.

Appl. Sci. 2022, 12, 3541 6 of 24

which more details are provided later), it was desirable to make all or most of the polygons

quads, meaning that each polygon was defined by four edges and four vertices.

Rhino3D provides two ways for doing this conversion:

• Automatically during export, resulting in much undesired topology (many triangles,

especially around holes in the mesh) making subsequent processes more difficult.

• Quad remeshing, which attempts to convert the NURBS surface into a polygon mesh

containing only quads [24].

A quad-based topology means that a mesh is comprised mainly by quads. This is a

generally preferable practice for 3D artists, for various reasons. A quad-based model is

the most useful form for 3D modeling, as it ensures a clean topology and provides edge

flow that can easily be adjusted. This is highly important when further editing is needed,

for example when attempting to reduce polygon count, or when unwrapping is manda-

tory for texturing the mesh; as in this case. Secondly, subdividing a clean quad-based to-

pology is a controlled and low-risk task, while creating edge loops in a primarily triangle-

based mesh can be unexpected and cause shading issues that will be rendered into the

game engines.

Whilst game engines such as Unity3d triangulate the 3D model during import, the

triangulation of a quad is considered more predictable than that of an Ngon (a polygon

with more than four edges), which may result in unwanted shadings and normal vector

calculations.

Quad remeshing was chosen because it produced excellent quality polygon meshes

that maintained all the original surface’s information while being solely comprised of

quads. The following figure (Figure 6) clearly shows, in contrast to the previous figure,

that the mesh holes are completely defined by the quads around them, while the NURBS

surface has no discernible way of defining the holes.

Figure 6. Result of quad-remeshing the NURBS surfaces of Figure 5.

The quad mesh does have some issues, especially in the bow area, but all those are

refined during the retopology that takes place in the immediate step following this con-

version. The quad remeshing tool could not be used on all objects of the models, so re-

topology was completed on those objects.

After the quad-remeshing process was complete, all the meshes created were ex-

ported into a .FBX file which was then used for retopology, unwrapping, and texturing of

the models.

2.2.2. Retopology

Retopology is “the act of recreating an existing surface with more optimal geometry”

and it is used to modify a high-resolution 3D model to its optimal form, to be utilized for

animation or texturing [25]. The reason retopology was used in “The Ships of Navarino”

was twofold. Firstly, since retopology is one of the most popular methodologies that 3D

designers use to reduce polygon count, it was utilized for optimization purposes. Sec-

ondly, a low polygon model, with clean topology that provides edge flow, significantly

Figure 6. Result of quad-remeshing the NURBS surfaces of Figure 5.

The quad mesh does have some issues, especially in the bow area, but all those
are refined during the retopology that takes place in the immediate step following this
conversion. The quad remeshing tool could not be used on all objects of the models, so
retopology was completed on those objects.

After the quad-remeshing process was complete, all the meshes created were ex-
ported into a .FBX file which was then used for retopology, unwrapping, and texturing of
the models.

2.2.2. Retopology

Retopology is “the act of recreating an existing surface with more optimal geometry”
and it is used to modify a high-resolution 3D model to its optimal form, to be utilized for
animation or texturing [25]. The reason retopology was used in “The Ships of Navarino”
was twofold. Firstly, since retopology is one of the most popular methodologies that 3D
designers use to reduce polygon count, it was utilized for optimization purposes. Secondly,
a low polygon model, with clean topology that provides edge flow, significantly reduces
the UV mapping complexity, a process necessary for later texturing (Figures 7 and 8).

Appl. Sci. 2022, 12, 3541 7 of 24

There are various options for retopologization:

• Manually, in a 3D-modeling software such as Blender. Given the built-in features
of Blender, such as surface snapping and the shrink-wrap modifier, a designer can
attempt to rebuild the high poly model polygon-by-polygon.

• Using specialized retopology Blender add-ons that attempt to reduce complexity and
accelerate the retopologizing process.

• Using software outside Blender that offers more retopology tools.

Using some Blender retopology add-ons that allowed face snapping was the best
option for this project.

Appl. Sci. 2022, 12, 3541 7 of 24

reduces the UV mapping complexity, a process necessary for later texturing (Figure 7 and

8).

There are various options for retopologization:

• Manually, in a 3D-modeling software such as Blender. Given the built-in features of

Blender, such as surface snapping and the shrink-wrap modifier, a designer can at-

tempt to rebuild the high poly model polygon-by-polygon.

• Using specialized retopology Blender add-ons that attempt to reduce complexity and

accelerate the retopologizing process.

• Using software outside Blender that offers more retopology tools.

Using some Blender retopology add-ons that allowed face snapping was the best op-

tion for this project.

Figure 7. A non-quad-based model before retopology. Screenshot from Blender.

Figure 8. The same model after retopology with edge flow. Screenshot from Blender.

Figure 7. A non-quad-based model before retopology. Screenshot from Blender.

Appl. Sci. 2022, 12, 3541 7 of 24

reduces the UV mapping complexity, a process necessary for later texturing (Figure 7 and

8).

There are various options for retopologization:

• Manually, in a 3D-modeling software such as Blender. Given the built-in features of

Blender, such as surface snapping and the shrink-wrap modifier, a designer can at-

tempt to rebuild the high poly model polygon-by-polygon.

• Using specialized retopology Blender add-ons that attempt to reduce complexity and

accelerate the retopologizing process.

• Using software outside Blender that offers more retopology tools.

Using some Blender retopology add-ons that allowed face snapping was the best op-

tion for this project.

Figure 7. A non-quad-based model before retopology. Screenshot from Blender.

Figure 8. The same model after retopology with edge flow. Screenshot from Blender. Figure 8. The same model after retopology with edge flow. Screenshot from Blender.

Appl. Sci. 2022, 12, 3541 8 of 24

After remeshing, retopologizing, and refining the meshes, the most optimal form of
the ship models was achieved. The final models counted significantly less polygons and
were lighter and easier to manipulate.

Converting a high poly to a low poly benefits not only the modeling process but also
the quality of the final model, because details of the high poly can be maintained without
causing performance penalties (Figure 9).

Appl. Sci. 2022, 12, 3541 8 of 24

After remeshing, retopologizing, and refining the meshes, the most optimal form of

the ship models was achieved. The final models counted significantly less polygons and

were lighter and easier to manipulate.

Converting a high poly to a low poly benefits not only the modeling process but also

the quality of the final model, because details of the high poly can be maintained without

causing performance penalties (Figure 9).

By converting the high poly model into normal, occlusion, and other maps, details

that demand a large number of polygons can be rendered into them and used as textures

afterwards.

Figure 9. High poly to low poly workflow example. Screenshot from Blender and Adobe Substance

3D Painter.

2.2.3. Texturing

3D Texturing refers to the process of creating detailed textures (maps) to be applied

(mapped) onto the surface of a 3D model. In order for the texture to be applied correctly

onto the surface, the model has to be prepared with a process called UV unwrapping.

2.2.4. UV Unwrapping

A UV map is the representation of the surface of a 3D model onto a 2D map that is

later used for texturing the specific surface. The process of creating a UV map is called UV

unwrapping. For 3D texturing it is necessary to unwrap all of an object’s surfaces to the

UV space. To further explain, the process works as follows: the unwrapped surface is pro-

jected onto a specific place in the UV coordinates, which enables the surface to display the

texture information on the 3D model. An example of a UV-unwrapped texture is shown

in Figure 10.

The way the UV maps are organized is crucial for the texturing process. For example,

if two or more surfaces are overlapping in the UV map, these surfaces will keep rendering

the same textured coordinates. In addition, the UV maps have to be distortion-free and

maintain their proportion ratio, otherwise the texture appears stretched and dispropor-

tionate. UV unwrapping is also critical with respect to the texture quality. In fact, the

larger the item on the UV space, the greater the density, meaning that there is more space

available for painting details.

Figure 9. High poly to low poly workflow example. Screenshot from Blender and Adobe Substance
3D Painter.

By converting the high poly model into normal, occlusion, and other maps, details that
demand a large number of polygons can be rendered into them and used as textures afterwards.

2.2.3. Texturing

3D Texturing refers to the process of creating detailed textures (maps) to be applied
(mapped) onto the surface of a 3D model. In order for the texture to be applied correctly
onto the surface, the model has to be prepared with a process called UV unwrapping.

2.2.4. UV Unwrapping

A UV map is the representation of the surface of a 3D model onto a 2D map that is
later used for texturing the specific surface. The process of creating a UV map is called
UV unwrapping. For 3D texturing it is necessary to unwrap all of an object’s surfaces to
the UV space. To further explain, the process works as follows: the unwrapped surface is
projected onto a specific place in the UV coordinates, which enables the surface to display
the texture information on the 3D model. An example of a UV-unwrapped texture is shown
in Figure 10.

Appl. Sci. 2022, 12, 3541 9 of 24

Figure 10. Example of UV unwrapping. Texture created with Adobe Substance 3D Painter.

Another thing to take into account when unwrapping is the seams. A seam is the

edge where the mesh surface is “cut” in order for the 3D model to be mapped onto the

UV map. Seams can create visual discontinuation of the texture if they are misplaced, so

when possible, they should be hidden in places not easily visible, or where the material

changes.

All known 3D-modeling software include tools for UV unwrapping the 3D model, as

this procedure is mandatory and texturing depends on that. “The Ships of Navarino”,

were unwrapped into Blender and their UV maps organized hierarchically by size, in a

way that most space was held by the surfaces that were most likely to be seen closely by

the user.

2.2.5. Applying Textures to a Polygon Mesh

When a 3D model is successfully unwrapped there are two options:

• Manually paint the textures onto the UV maps

• Import the unwrapped 3D model into 3D texturing software and generate the

painted textures.

3D texturing software, such as Substance 3D Painter, provide the necessary tools for

painting high-quality and detailed maps (base color, normal, roughness, metallic, ambient

occlusion, etc.), facilitating the creation of PBR materials. PBR stands for physical based

rendering but it can also be known as physical based shading. It is a pipeline that simu-

lates materials in a plausible way, aiming for realistic results.

Advanced masking and procedural texturing tools allow us to achieve textures that

are much harder to create with a 2D program such as Gimp or Photoshop. Substance 3D

Painter allows the creation of realistic materials using various sources and provides pro-

cedural tools to enhance the base materials with whatever is necessary for the most accu-

rate resemblance. Finally, it bakes the textures to different maps according to the target

engine, in this case the metallic channel of Unity3d’s standard shader.

Reference images are some of the most important resources for the design of the tex-

tures and, when talking about a realistic representation of a historical event, are strictly

tied with the quality of the result. For “The Ships of Navarino”, there was access to a small

archive of drawings and images resembling the warships, and to historical specialists that

acted as counselors. On this basis the various materials of the ships were created. Given

the fact that this project demanded careful spending on materials and texture sizes, a flex-

ible organization of UV maps was used so that one texture would include more than one

material and every material could be used in more than one mesh, and potentially in more

than one ship.

To further elaborate on this, every texture was a blend of more than one material,

depending on each ship’s demand for different materials (Figure 11). Creating textures in

this way also proved to be very useful in a later stage, when correcting a mesh’s material

was an easy procedure when could occur just by moving the UV tiles to different coordi-

nates. However, due to their unique nature, specific meshes such as a ship’s wheel (Figure

12), anchor, or figureheads, were treated differently, as they were solely hand-painted and

in fact, in more detail, so that the materials could be used exclusively on them.

Figure 10. Example of UV unwrapping. Texture created with Adobe Substance 3D Painter.

The way the UV maps are organized is crucial for the texturing process. For example,
if two or more surfaces are overlapping in the UV map, these surfaces will keep rendering

Appl. Sci. 2022, 12, 3541 9 of 24

the same textured coordinates. In addition, the UV maps have to be distortion-free and
maintain their proportion ratio, otherwise the texture appears stretched and disproportion-
ate. UV unwrapping is also critical with respect to the texture quality. In fact, the larger the
item on the UV space, the greater the density, meaning that there is more space available
for painting details.

Another thing to take into account when unwrapping is the seams. A seam is the
edge where the mesh surface is “cut” in order for the 3D model to be mapped onto
the UV map. Seams can create visual discontinuation of the texture if they are mis-
placed, so when possible, they should be hidden in places not easily visible, or where the
material changes.

All known 3D-modeling software include tools for UV unwrapping the 3D model,
as this procedure is mandatory and texturing depends on that. “The Ships of Navarino”,
were unwrapped into Blender and their UV maps organized hierarchically by size, in a
way that most space was held by the surfaces that were most likely to be seen closely by
the user.

2.2.5. Applying Textures to a Polygon Mesh

When a 3D model is successfully unwrapped there are two options:

• Manually paint the textures onto the UV maps.
• Import the unwrapped 3D model into 3D texturing software and generate the

painted textures.

3D texturing software, such as Substance 3D Painter, provide the necessary tools for
painting high-quality and detailed maps (base color, normal, roughness, metallic, ambient
occlusion, etc.), facilitating the creation of PBR materials. PBR stands for physical based
rendering but it can also be known as physical based shading. It is a pipeline that simulates
materials in a plausible way, aiming for realistic results.

Advanced masking and procedural texturing tools allow us to achieve textures that
are much harder to create with a 2D program such as Gimp or Photoshop. Substance
3D Painter allows the creation of realistic materials using various sources and provides
procedural tools to enhance the base materials with whatever is necessary for the most
accurate resemblance. Finally, it bakes the textures to different maps according to the target
engine, in this case the metallic channel of Unity3d’s standard shader.

Reference images are some of the most important resources for the design of the
textures and, when talking about a realistic representation of a historical event, are strictly
tied with the quality of the result. For “The Ships of Navarino”, there was access to a
small archive of drawings and images resembling the warships, and to historical specialists
that acted as counselors. On this basis the various materials of the ships were created.
Given the fact that this project demanded careful spending on materials and texture sizes,
a flexible organization of UV maps was used so that one texture would include more than
one material and every material could be used in more than one mesh, and potentially in
more than one ship.

To further elaborate on this, every texture was a blend of more than one material,
depending on each ship’s demand for different materials (Figure 11). Creating textures
in this way also proved to be very useful in a later stage, when correcting a mesh’s
material was an easy procedure when could occur just by moving the UV tiles to different
coordinates. However, due to their unique nature, specific meshes such as a ship’s wheel
(Figure 12), anchor, or figureheads, were treated differently, as they were solely hand-
painted and in fact, in more detail, so that the materials could be used exclusively on them.
Additionally, corrections on these objects were a more complex procedure as they could
only be completed with Substance Painter.

Appl. Sci. 2022, 12, 3541 10 of 24

Appl. Sci. 2022, 12, 3541 10 of 24

Additionally, corrections on these objects were a more complex procedure as they could

only be completed with Substance Painter.

Figure 11. Maps created by Adobe Substance 3D Painter.

Figure 12. Azov’s deck. Screenshot from the environment of the Unity3d Game Engine.

Following a pipeline that highlighted reusability, when possible, a significant reduc-

tion in draw calls was achieved, because inside Unity3d their number maintained a low

reassuring performance whilst maintaining accurate representation of materiality on the

ships (Figure 13).

Figure 11. Maps created by Adobe Substance 3D Painter.

Appl. Sci. 2022, 12, 3541 10 of 24

Additionally, corrections on these objects were a more complex procedure as they could

only be completed with Substance Painter.

Figure 11. Maps created by Adobe Substance 3D Painter.

Figure 12. Azov’s deck. Screenshot from the environment of the Unity3d Game Engine.

Following a pipeline that highlighted reusability, when possible, a significant reduc-

tion in draw calls was achieved, because inside Unity3d their number maintained a low

reassuring performance whilst maintaining accurate representation of materiality on the

ships (Figure 13).

Figure 12. Azov’s deck. Screenshot from the environment of the Unity3d Game Engine.

Following a pipeline that highlighted reusability, when possible, a significant reduc-
tion in draw calls was achieved, because inside Unity3d their number maintained a low
reassuring performance whilst maintaining accurate representation of materiality on the
ships (Figure 13).

Appl. Sci. 2022, 12, 3541 11 of 24Appl. Sci. 2022, 12, 3541 11 of 24

Figure 13. Ships from the VR application “Ships of Navarino”. Screenshot from Unity3d.

2.3. Developing and Optimizing a VR Application in Unity3d

When developing a VR application, it is very important that optimization is taken

very seriously. There are many steps to optimizing any application made in Unity3d, es-

pecially for a VR project. The goal of the project was to keep as much of the visual fidelity

as possible while also obtaining acceptable performance, to avoid the implications of an

inadequate or inconsistent performance (nausea, motion sickness). In this chapter, the op-

timization steps that were implemented are thoroughly discussed.

2.3.1. Geometry Optimization to Reduce CPU Time

The first step is geometry and texture size optimization, both of which were already

completed in the previous step. Since meshes require CPU time to be drawn, the fewer

triangles they contain the better [26]. Textures use both the CPU and GPU, for loading and

displaying, respectively. Lowering their size is important to avoid long loading times be-

tween scenes and potential VRAM limitations on the graphics card, which could lead to

stuttering. Additionally, separating the different items into separate meshes is considered

beneficial for the third step of the optimization process, occlusion culling.

2.3.2. Choice of Lighting Method

The second step is using baked lighting instead of real-time lighting. Real-time light-

ing requires every triangle to be drawn multiple times in order to display the mesh, the

texture that is applied on the mesh, and the shadows cast by the mesh or nearby meshes.

Although this can produce more realistic lighting and shadows, it is very intensive on

hardware and may produce lower than necessary performance, because VR is already

intensive on the GPUs. On the other hand, baked lighting is precomputed and has a very

small performance overhead, while also providing acceptable levels of lighting and

shadow quality [27].

In Unity3d, lighting is separated into direct and indirect (Figure 14). Every ray cast

from the light source that hits a mesh is considered direct lighting, and every surface that

is lit from the bounces of those rays is considered indirect lighting [27].

Figure 13. Ships from the VR application “Ships of Navarino”. Screenshot from Unity3d.

2.3. Developing and Optimizing a VR Application in Unity3d

When developing a VR application, it is very important that optimization is taken very
seriously. There are many steps to optimizing any application made in Unity3d, especially
for a VR project. The goal of the project was to keep as much of the visual fidelity as possible
while also obtaining acceptable performance, to avoid the implications of an inadequate or
inconsistent performance (nausea, motion sickness). In this chapter, the optimization steps
that were implemented are thoroughly discussed.

2.3.1. Geometry Optimization to Reduce CPU Time

The first step is geometry and texture size optimization, both of which were already
completed in the previous step. Since meshes require CPU time to be drawn, the fewer
triangles they contain the better [26]. Textures use both the CPU and GPU, for loading
and displaying, respectively. Lowering their size is important to avoid long loading times
between scenes and potential VRAM limitations on the graphics card, which could lead to
stuttering. Additionally, separating the different items into separate meshes is considered
beneficial for the third step of the optimization process, occlusion culling.

2.3.2. Choice of Lighting Method

The second step is using baked lighting instead of real-time lighting. Real-time lighting
requires every triangle to be drawn multiple times in order to display the mesh, the texture
that is applied on the mesh, and the shadows cast by the mesh or nearby meshes. Although
this can produce more realistic lighting and shadows, it is very intensive on hardware and
may produce lower than necessary performance, because VR is already intensive on the
GPUs. On the other hand, baked lighting is precomputed and has a very small performance
overhead, while also providing acceptable levels of lighting and shadow quality [27].

In Unity3d, lighting is separated into direct and indirect (Figure 14). Every ray cast
from the light source that hits a mesh is considered direct lighting, and every surface that is
lit from the bounces of those rays is considered indirect lighting [27].

Baked lighting was chosen in order to save as much performance as possible, given
the fact that each frame is drawn twice for any VR application (once for each eye). For this
method a Lightmapper was needed, which is a piece of software that uses light sources
in a scene to precompute direct and indirect lighting and shadows cast from all sources,
and then compresses the data into textures called lightmaps. These lightmaps were then
overlaid on the textures applied to each mesh to give the illusion of lighting and shadows.
Unity3d does offer a Lightmapper that is built into the engine, but it was decided to use
a Unity Asset Store package named “Bakery GPU Lightmapper” because of its superior

Appl. Sci. 2022, 12, 3541 12 of 24

speed and end result. Bakery’s standard shader is equivalent to Unity3d’s standard shader
with a few extra features. For example, Unity3d’s built-in Lightmapper does not include
lightmap specular highlights while Bakey GPU Lightmapper does. This makes scenes
using Bakery a lot more vibrant and realistic [28].

Appl. Sci. 2022, 12, 3541 12 of 24

Figure 14. Direct and indirect lighting.

Baked lighting was chosen in order to save as much performance as possible, given

the fact that each frame is drawn twice for any VR application (once for each eye). For this

method a Lightmapper was needed, which is a piece of software that uses light sources in

a scene to precompute direct and indirect lighting and shadows cast from all sources, and

then compresses the data into textures called lightmaps. These lightmaps were then over-

laid on the textures applied to each mesh to give the illusion of lighting and shadows.

Unity3d does offer a Lightmapper that is built into the engine, but it was decided to use a

Unity Asset Store package named “Bakery GPU Lightmapper” because of its superior

speed and end result. Bakery’s standard shader is equivalent to Unity3d’s standard shader

with a few extra features. For example, Unity3d’s built-in Lightmapper does not include

lightmap specular highlights while Bakey GPU Lightmapper does. This makes scenes us-

ing Bakery a lot more vibrant and realistic [28].

2.3.3. Occlusion Culling

The third step is occlusion culling. This is a process which prevents Unity3d from

rendering objects that are outside of the frustum of the camera or hidden by other objects.

This is completed as default in every frame, since the main camera performs culling cal-

culations to determine which objects should not be drawn and can be supplemented by

precomputed (“baked”) occlusion for all static objects for better performance. This process

saves both CPU and GPU time, because there is less geometry to be drawn per frame. The

performance impact of this process is dependent on scene size, object count, and camera

count [29] Only two cameras were used in the VR rig (one for each eye), aiming to balance

the scene layout and object count so as to have as few objects as possible while occluding

those necessary.

2.3.4. Achieving Visual Fidelity

A decent level of visual fidelity had to be maintained while keeping all optimization

steps in mind. There are many factors that affect visual fidelity, but the two most im-

portant ones are shader workflow and post-processing.

Figure 14. Direct and indirect lighting.

2.3.3. Occlusion Culling

The third step is occlusion culling. This is a process which prevents Unity3d from
rendering objects that are outside of the frustum of the camera or hidden by other objects.
This is completed as default in every frame, since the main camera performs culling
calculations to determine which objects should not be drawn and can be supplemented by
precomputed (“baked”) occlusion for all static objects for better performance. This process
saves both CPU and GPU time, because there is less geometry to be drawn per frame. The
performance impact of this process is dependent on scene size, object count, and camera
count [29] Only two cameras were used in the VR rig (one for each eye), aiming to balance
the scene layout and object count so as to have as few objects as possible while occluding
those necessary.

2.3.4. Achieving Visual Fidelity

A decent level of visual fidelity had to be maintained while keeping all optimization
steps in mind. There are many factors that affect visual fidelity, but the two most important
ones are shader workflow and post-processing.

Shader Workflow

Unity3d offers two shader workflows by default, the metallic workflow and the
specular workflow [30]. The textures and texture maps that were created in the previous
steps were designed with the metallic workflow in mind, because it was considered that it
would offer a better representation of the actual material being in mind during the design.
The specular workflow gave all materials a more “plastic” quality than actually desired,
meaning some objects became too glossy when they should have been rough (e.g., the
wood deck floor in Figure 15.

Appl. Sci. 2022, 12, 3541 13 of 24

Appl. Sci. 2022, 12, 3541 13 of 24

Shader workflow

Unity3d offers two shader workflows by default, the metallic workflow and the spec-

ular workflow [30]. The textures and texture maps that were created in the previous steps

were designed with the metallic workflow in mind, because it was considered that it

would offer a better representation of the actual material being in mind during the design.

The specular workflow gave all materials a more “plastic” quality than actually desired,

meaning some objects became too glossy when they should have been rough (e.g., the

wood deck floor in Figure 15.

Figure 15. Top—metallic workflow shader; bottom—specular workflow shader.

Post-Processing

There is a variety of post-processing filters available for use in Unity3d. Only anti-

aliasing was used to reduce the number of jagged edges, bloom to enhance the bright

spots of the scene (mostly light reflections), ambient occlusion to emphasize the difference

between directly and indirectly lit surfaces of the models, and color grading to give a

Figure 15. Top—metallic workflow shader; bottom—specular workflow shader.

Post-Processing

There is a variety of post-processing filters available for use in Unity3d. Only anti-
aliasing was used to reduce the number of jagged edges, bloom to enhance the bright
spots of the scene (mostly light reflections), ambient occlusion to emphasize the difference
between directly and indirectly lit surfaces of the models, and color grading to give a better
look to the models. Of note, is the slight orange-yellow tint added and the enhancement of
the shadows, especially between the lifeboats (Figure 16).

Appl. Sci. 2022, 12, 3541 14 of 24

Appl. Sci. 2022, 12, 3541 14 of 24

better look to the models. Of note, is the slight orange-yellow tint added and the enhance-

ment of the shadows, especially between the lifeboats (Figure 16).

Figure 16. Top—scene with post-processing; bottom—scene without post-processing.

2.3.5. Adding Functionality to the Application

Unity3d uses the C# scripting language, so all the scripts are written in C# based on

object-oriented and component-based architecture. The scripts were organized into three

main categories: scene management, virtual reality implementation, and user interface.

Scene Management

Scene management is relevant to every three-dimensional object, audio, language

management, and every function created to support this application besides VR scripts

and UI scripts. The majority of the objects are static, due to the limited interaction with

the user (museum limitation due to time constraints), so their management is restrained

to updates of the player’s position (ship, deck, cabin, masts).

Figure 16. Top—scene with post-processing; bottom—scene without post-processing.

2.3.5. Adding Functionality to the Application

Unity3d uses the C# scripting language, so all the scripts are written in C# based on
object-oriented and component-based architecture. The scripts were organized into three
main categories: scene management, virtual reality implementation, and user interface.

Scene Management

Scene management is relevant to every three-dimensional object, audio, language
management, and every function created to support this application besides VR scripts and
UI scripts. The majority of the objects are static, due to the limited interaction with the user
(museum limitation due to time constraints), so their management is restrained to updates
of the player’s position (ship, deck, cabin, masts).

There are some non-static objects, mainly the information points (tool-tips). Each
information point indicates a position of interest, containing additional data (two pictures,
1. only info point, 2. opened info). All information points are buttons that display histor-
ical documents and pictures towards the player’s field of vision. The scripts that were

Appl. Sci. 2022, 12, 3541 15 of 24

developed for the information points are more complicated when compared to the rest of
the scripts in this category. The aim was to develop scripts as generic as possible for the
displaying images (multiple or none) in different sizes for each information point along
with text (long or short). This was because information points had to be placed in various
places on all ships (images for different aspects of information points: 1, only text; 2, text
and one image; 3, text with two images side by side; 4, multiple text with multiple images).

As mentioned above, scripts were developed for audio and language management.
We used background music and sound effects that change with the user’s position and
enhance the VR experience. Furthermore, scripts that allow the use of multiple display
languages were created.

Virtual Reality Implementation

Virtual reality implementation scripts/functionalities pertain to the user’s capability
of moving in the three-dimensional world and the “bridging” between the Oculus device
and the Unity3d engine. For the VR implementation it was decided to use the Unity asset
“VR Interaction Framework” [31], with some adjustments to meet specific needs.

User Interface (UI)

The user interface (UI) script category concerns the interaction between the user and
the 3D environment. The greater number of scripts that were developed for the UI involves
buttons that are embedded in the 3D environment and buttons that are ingrained in the user
(hands/controllers). Simple code sequences for the buttons were designed for two reasons:
firstly, these button-scripts may be executed continuously, and complex code could affect
the application’s performance; secondly, the use of the buttons’ functionality is limited to
changing the player’s position or to displaying objects (UI), so no complicated code chains
are needed.

The VR Interaction Framework that was used contained models for virtual hands
to give a better understanding of the user’s position. Instructions were added, that can
be toggled on or off, to each of the user’s virtual hands in order to help the user identify
the functions of each button and also to reduce the time that they would need to become
accustomed to the VR controls. Controller models were also added to the virtual hands, to
make it even easier for the users to orient their fingers on the controllers.

After setting up the scenes (one for each ship, plus one home scene), a map was created,
on which there was one button for each ship. Each button has a different image and is
easily discernible. Clicking one of the ship buttons brings up an information panel, which
contains basic information about each ship, including the captain’s name, crew number,
ship type etc. The user can then click the “explore” button to transition to any selected ship.
This map has been included in every scene and can be accessed at any time, provided the
user is close enough to use the buttons. Each user starts on the home scene, so when the
user takes the headset off it automatically transitions back to the home scene. Additionally,
two buttons have been included in the map so that the user can change between Greek and
English. The localization system is set up in a way that it is easy to add more languages,
should that be necessary during the exhibit’s lifespan.

Another way of transitioning between scenes was also created. Since the ships are
large in size, it would be very inefficient for the user to be forced to return to the map in
order to change scenes. Therefore, a portable UI panel was created. This is a simplified
version of the map, as it only contains the images of the ships. The users can toggle this
portable UI on or off with a button and transition between scenes from wherever they
desire. This portable UI also allows the user to change freely between languages.

Appl. Sci. 2022, 12, 3541 16 of 24

2.4. Changes Based on User Feedback
2.4.1. Fixes before Release

As with all applications, there were a few issues that occurred during the testing
period. In order to fix all the bugs with the code and all visual issues faster, we consulted
with people from the 3D application field (mostly friends and family).

The first issue was visual fidelity. At the start of development, much focus was placed
on optimization, without giving enough weight to visual fidelity. However, with the
techniques described in the previous chapter, such as baked lighting, this visual issue was
fixed with no performance penalty.

The second issue was the way scene transitions were handled. At first, the only way
was through the static map. The best suggestion was to create a portable UI that was simpler
and smaller than the map (in order to avoid clipping with the surrounding geometry as
much as possible), which was implemented as described in the previous chapter.

There were several issues with text displaying in the application outside of the
Unity3d environment. These had to do with font quality and z-fighting, both of which
were fixed.

Bakery has a mode for Lightmap baking called “SH” (short for spherical harmonics).
This mode produces much more realistic results than the one used, but it did not function
properly on the standalone application, so “full lighting” was determined to be the best
choice. The reason behind the “SH” mode not functioning properly is unclear.

There was an issue with Oculus VR Interaction DLL, which rendered all of the VR
Interaction Framework’s functionality unusable. This was fixed with an update to that
specific DLL. Additionally, a few issues with the Oculus Dash support in the application
existed at first, but those were also fixed with an update to the same DLL.

2.4.2. Problems Identified after Release

The only major bug found after release was a bug referring to the portable UI described
in the previous chapter. If the user was fast enough to click the “explore” button while the
fade between scenes was still happening, the application would crash. Fortunately, this
bug was quickly patched before the exhibit was opened to the public.

There were issues with the user’s movement in a few places on the ships, which were
caused by some misplaced colliders. This was quickly fixed, otherwise it made some areas
of the ship inaccessible.

There were some minor changes on the flag textures of the ships, because the initial
flags did not match the actual flags used by the navies in the 1800s.

3. The Ships of Navarino
3.1. 3D Models of Four Historic Ships

In total, four historic ships were created: the French frigate “Armide”, the British
“Asia”, the Russian “Azov”, and the Ottoman “Kuh-I-Revan”, which can be seen in the
following Figures 17–20.

Appl. Sci. 2022, 12, 3541 17 of 24Appl. Sci. 2022, 12, 3541 17 of 24

Figure 17. The French frigate “Armide”. Screenshot from Unity3d.

Figure 18. The British “Asia”. Screenshot from Unity3d.

Figure 17. The French frigate “Armide”. Screenshot from Unity3d.

Appl. Sci. 2022, 12, 3541 17 of 24

Figure 17. The French frigate “Armide”. Screenshot from Unity3d.

Figure 18. The British “Asia”. Screenshot from Unity3d. Figure 18. The British “Asia”. Screenshot from Unity3d.

Appl. Sci. 2022, 12, 3541 18 of 24Appl. Sci. 2022, 12, 3541 18 of 24

Figure 19. The Russian “Azov”. Screenshot from Unity3d.

Figure 20. The Ottoman “Kuh-I-Revan”. Screenshot from Unity3d.

Figure 19. The Russian “Azov”. Screenshot from Unity3d.

Appl. Sci. 2022, 12, 3541 18 of 24

Figure 19. The Russian “Azov”. Screenshot from Unity3d.

Figure 20. The Ottoman “Kuh-I-Revan”. Screenshot from Unity3d. Figure 20. The Ottoman “Kuh-I-Revan”. Screenshot from Unity3d.

Appl. Sci. 2022, 12, 3541 19 of 24

The user can explore the main decks, the cabins, and the masts of these ships in the VR
application, and read historic information about them during the naval battle of Navarino.

3.2. VR Application

The latest version of the VR application created is available to download from the
NAVS project website [1]. There is also a preview of the application on the same site.

3.3. 3D Printing Process

The four ship models were printed on an SLA 3D printer called iSLA500 [32].
Stereolithography (SLA) [33] is a type of 3D-printing technology that operates by

using a UV laser on a vat of photopolymer resin. This technology uses the UV laser and
photopolymerization to turn photosensitive liquid resin into 3D solid polymers [34], layer
by layer, creating the desired models.

Several review articles [35–37] have appeared recently addressing SLA 3D printing.
The 3D printing volume is 300 mm × 300 mm × 300 mm, with a 0.1 mm dimensional

printing tolerance. The models are all scaled at 1:125, which is the same for all four
Navarino ships.

After finishing the design in Rhino3D, the 3D-printing process began (see Section 2.1).
A .3DM [38] file was converted to a .STL [39] file format. This file format is commonly
used for 3D printing and is supported by a variety of software packages. The .STL files
define only the surface of the full model geometry, without color or texture representation,
through a triangulation procedure [40].

The .STL file was then loaded into the slicer software of the printer [41] to prepare the
selected model for the 3D printer by generating a corresponding G-code [42]. The G-code
instructions were sent to the 3D printer extruder, specifying all linear movements as well
as commands for controlling the temperature of the extruder and/or positioning support
objects on the 3D model (Figure 21).

Appl. Sci. 2022, 12, 3541 19 of 24

The user can explore the main decks, the cabins, and the masts of these ships in the

VR application, and read historic information about them during the naval battle of Nav-

arino.

3.2. VR Application

The latest version of the VR application created is available to download from the

NAVS project website [1]. There is also a preview of the application on the same site.

3.3. 3D Printing Process

The four ship models were printed on an SLA 3D printer called iSLA500 [32].

Stereolithography (SLA) [33] is a type of 3D-printing technology that operates by us-

ing a UV laser on a vat of photopolymer resin. This technology uses the UV laser and

photopolymerization to turn photosensitive liquid resin into 3D solid polymers [34], layer

by layer, creating the desired models.

Several review articles [35–37] have appeared recently addressing SLA 3D printing.

The 3D printing volume is 300 mm × 300 mm × 300 mm, with a 0.1 mm dimensional

printing tolerance. The models are all scaled at 1:125, which is the same for all four Nava-

rino ships.

After finishing the design in Rhino3D, the 3D-printing process began (see Section

2.1). A .3DM [38] file was converted to a .STL [39] file format. This file format is commonly

used for 3D printing and is supported by a variety of software packages. The .STL files

define only the surface of the full model geometry, without color or texture representation,

through a triangulation procedure [40].

The .STL file was then loaded into the slicer software of the printer [41] to prepare

the selected model for the 3D printer by generating a corresponding G-code [42]. The G-

code instructions were sent to the 3D printer extruder, specifying all linear movements as

well as commands for controlling the temperature of the extruder and/or positioning sup-

port objects on the 3D model (Figure 21).

Figure 21. Left—printing process; right—3D-printed product.

Due to the printing volume constraint of the specific printer, the ship models were

printed into parts, in order to generate as large a model as feasible, as seen in Figure 22.

In addition, the printed object was brushed and rinsed in isopropyl alcohol (IPA) to

remove any remaining uncured resin. The printed parts were then placed in a UV curing

chamber [43] (chamber model: PCA600). Their hardness and stability are improved by

this post-curing process.

Figure 21. Left—printing process; right—3D-printed product.

Due to the printing volume constraint of the specific printer, the ship models were
printed into parts, in order to generate as large a model as feasible, as seen in Figure 22.

In addition, the printed object was brushed and rinsed in isopropyl alcohol (IPA) to
remove any remaining uncured resin. The printed parts were then placed in a UV curing
chamber [43] (chamber model: PCA600). Their hardness and stability are improved by this
post-curing process.

Appl. Sci. 2022, 12, 3541 20 of 24Appl. Sci. 2022, 12, 3541 20 of 24

Figure 22. Finished products after alcohol rinse and UV cure.

Finally, the aforementioned supports (see Figures 21 and 22) were removed from the

parts of the ship model, and the SLA parts were assembled and painted by an artist. The

four final ship models are shown in the following Figures 23–26.

Figure 23. Azov 3D printed model after painting process.

Figure 22. Finished products after alcohol rinse and UV cure.

Finally, the aforementioned supports (see Figures 21 and 22) were removed from the
parts of the ship model, and the SLA parts were assembled and painted by an artist. The
four final ship models are shown in the following Figures 23–26.

Appl. Sci. 2022, 12, 3541 20 of 24

Figure 22. Finished products after alcohol rinse and UV cure.

Finally, the aforementioned supports (see Figures 21 and 22) were removed from the

parts of the ship model, and the SLA parts were assembled and painted by an artist. The

four final ship models are shown in the following Figures 23–26.

Figure 23. Azov 3D printed model after painting process. Figure 23. Azov 3D printed model after painting process.

Appl. Sci. 2022, 12, 3541 21 of 24
Appl. Sci. 2022, 12, 3541 21 of 24

Figure 24. Asia 3D-printed model after painting process.

Figure 25. Kuh I Revan 3D-printed model after painting process.

Figure 24. Asia 3D-printed model after painting process.

Appl. Sci. 2022, 12, 3541 21 of 24

Figure 24. Asia 3D-printed model after painting process.

Figure 25. Kuh I Revan 3D-printed model after painting process. Figure 25. Kuh I Revan 3D-printed model after painting process.

Appl. Sci. 2022, 12, 3541 22 of 24
Appl. Sci. 2022, 12, 3541 22 of 24

Figure 26. Armide 3D-printed model after painting process.

4. Discussion

This paper describes how VR technology and 3D digital modeling were used to rec-

reate the historic Battle of Navarino, contributing to the preservation and wider dissemi-

nation of historical information to a global audience. This work was carried out as part of

the NAVS project, and was launched in a special section at the exhibition of the Eugenides

Foundation in Athens, Greece.

The optimization process for the VR application is explained in detail, including ge-

ometry optimization to save CPU time, baked lighting selection to save as much perfor-

mance as feasible, occlusion culling to save both CPU and GPU time, ways to achieve

adequate visual fidelity, and application functionality. The optimization approaches

adopted, targeting the VR platforms, resulted in 3D models that could also be hosted

online, enhancing the distribution of the project. Furthermore, accurate models of the four

ships involved in the historic battle were digitally recreated, 3D-printed, and painted to

be presented in the museum exhibition.

Author Contributions: Conceptualization, O.L., S.M., A.A., A.G. and C.P.; Data curation, G.R.;

Funding acquisition, A.G. and C.P; Investigation, O.L., S.M., S.P. and G.R.; Methodology, O. L., S.M.,

G.P. and S.P.; Project administration, O.L., A.A., A.G. and C.P.; Resources, O.L.,S.M., A.A., G.P.,

A.G. and C.P.; Software, O.L., G.P. and A.G.; Supervision, O.L. and S.P.; Validation, S.M. and G.P.;

Visualization, O.L., S.M., A.A. and G.P.; Writing–original draft, O.L., S.M., A.A. and G.P.; Writing–

review & editing, O.L., S.M., A.A., A.G., C.P., S.P. and G.R. All authors have read and agreed to the

published version of the manuscript.

Funding: The NAVS Project—promotion, documentation, and technical support of “The Greek

shipbuilding legacy—the Battles of Navarino and Salamis” launched in June 2020, co-financed by

the European Regional Development Fund of the European Union and Greek national funds

through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the

call RESEARCH–CREATE–INNOVATE (project code: Τ1EDK-05103).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Figure 26. Armide 3D-printed model after painting process.

4. Discussion

This paper describes how VR technology and 3D digital modeling were used to recreate
the historic Battle of Navarino, contributing to the preservation and wider dissemination of
historical information to a global audience. This work was carried out as part of the NAVS
project, and was launched in a special section at the exhibition of the Eugenides Foundation
in Athens, Greece.

The optimization process for the VR application is explained in detail, including geom-
etry optimization to save CPU time, baked lighting selection to save as much performance
as feasible, occlusion culling to save both CPU and GPU time, ways to achieve adequate
visual fidelity, and application functionality. The optimization approaches adopted, target-
ing the VR platforms, resulted in 3D models that could also be hosted online, enhancing
the distribution of the project. Furthermore, accurate models of the four ships involved in
the historic battle were digitally recreated, 3D-printed, and painted to be presented in the
museum exhibition.

Author Contributions: Conceptualization, O.L., S.M., A.A., A.G. and C.P.; Data curation, G.R.;
Funding acquisition, A.G. and C.P; Investigation, O.L., S.M., S.P. and G.R.; Methodology, O.L., S.M.,
G.P. and S.P.; Project administration, O.L., A.A., A.G. and C.P.; Resources, O.L.,S.M., A.A., G.P.,
A.G. and C.P.; Software, O.L., G.P. and A.G.; Supervision, O.L. and S.P.; Validation, S.M. and G.P.;
Visualization, O.L., S.M., A.A. and G.P.; Writing–original draft, O.L., S.M., A.A. and G.P.; Writing–
review & editing, O.L., S.M., A.A., A.G., C.P., S.P. and G.R. All authors have read and agreed to the
published version of the manuscript.

Funding: The NAVS Project—promotion, documentation, and technical support of “The Greek
shipbuilding legacy—the Battles of Navarino and Salamis” launched in June 2020, co-financed
by the European Regional Development Fund of the European Union and Greek national funds
through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call
RESEARCH–CREATE–INNOVATE (project code: T1EDK-05103).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Appl. Sci. 2022, 12, 3541 23 of 24

Acknowledgments: The authors would like to thank all those who participated in the project. In
particular, Green Maritime Technology (GMT) who contributed to the design of the 3D ship models
and artist Gigourtakis Yannis who painted the 3D-printed ship models. Additionally, the team would
like to thank E. Nomikou and C. Troumpetari from the Eugenides Foundation for commenting on
drafts of this paper, as well as associate researcher A. Pagonas for his support on the development of
the VR application.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. The Battle of Navarino–E-Navs.eu. Available online: https://e-navs.eu/en/the-battle-of-navarino/ (accessed on 2 March 2022).
2. Soto-Martin, O.; Fuentes-Porto, A.; Martin-Gutierrez, J. A Digital Reconstruction of a Historical Building and Virtual Reintegration

of Mural Paintings to Create an Interactive and Immersive Experience in Virtual Reality. Appl. Sci. 2020, 10, 597. [CrossRef]
3. Chrysanthakopoulou, A.; Kalatzis, K.; Moustakas, K. Immersive Virtual Reality Experience of Historical Events Using Haptics

and Locomotion Simulation. Appl. Sci. 2021, 11, 11613. [CrossRef]
4. Farazis, G.; Thomopoulos, C.; Bourantas, C.; Mitsigkola, S.; Thomopoulos, S.C. Digital approaches for public outreach in cultural

heritage: The case study of iGuide Knossos and Ariadne’s Journey. Digit. Appl. Archaeol. Cult. Herit. 2019, 15, e00126. [CrossRef]
5. Anderson, E.; McLoughlin, L.; Liarokapis, F.; Peters, C.; Petridis, P.; de Freitas, S. Developing serious games for cultural heritage:

A state-of-the-art review. Virtual Real. 2010, 14, 255–275. [CrossRef]
6. Jung, T.; tom Dieck, M. Augmented reality, virtual reality and 3D printing for the co-creation of value for the visitor experience at

cultural heritage places. Emerald Insight 2017, 10, 140–151. [CrossRef]
7. Spencer, R.; Byrne, J.; Hohughton, P. The Future of Ship Design: Collaboration in Virtual Reality; Reasearch Gate: Berlin, Germany,

2019; Available online: https://www.researchgate.net/publication/331674828_The_Future_of_Ship_Design_Collaboration_i
n_Virtual_Reality (accessed on 15 March 2022).

8. Chalfant, J.; Langland, B.; Abdelwahed, S.; Chryssostomidis, C.; Dougal, R.; Dubey, A.; Mezyani, T.E.; Herbst, J.; Kiehne, T.;
Ordonez, J.; et al. A Collaborative Early-Stage Ship Design Environment; Semantic Scholar: Seattle, WA, USA, 2012; Available
online: https://www.semanticscholar.org/paper/A-collaborative-early-stage-ship-design-environment-Chalfant-Langland/
082d6615110859a00f9283ec0847edf42300d8b5 (accessed on 15 March 2022).

9. Cassar, C.; Simpson, R.; Bradbeer, N.; Thomas, G. Integrating virtual reality software into the early stages of ship design.
In Proceedings of the International Conference on Computer Applications in Shipbuilding, Rotterdam, The Netherlands,
24–26 September 2019.

10. Christou, C. Virtual Reality in Education. In Affective, Interactive and Cognitive Methods for E-Learning Design: Creating an Optimal
Education Experience; Tzanavari, A., Tsapatsoulis, N., Eds.; IGI Global: Hersey, PA, USA, 2010; pp. 228–243. [CrossRef]

11. Pantelidis, V. Reasons to Use Virtual Reality in Education and Training Courses and a Model to Determine When to Use Virtual
Reality. Kleidarithmos Comput. Books 2010, 2, 59–70.

12. Fraumann, G.; Diriba, H.; Maes, J. The Role of Higher Education in 3D Printing Research and Innovation; Johtamiskorkeakoulu—School
of Management: Kyoto-shi, Japan, 2015. [CrossRef]

13. Wang, B.; Liu, Y. The Research on Application of Virtual Reality Technology in Museums. IOP Sci. 2019, 1302, 042049. [CrossRef]
14. Christopoulos, D.; Mavridis, P.; Andreadis, A.; Karigiannis, J. Using Virtual Environments to Tell the Story: The Battle of

Thermopylae. In Proceedings of the 2011 3rd International Conferenceon Games and Virtual Worlds for Serious Applications,
Athens, Greece, 4–6 May 2011.

15. Kavoura, A.; Sylaiou, S. Effective Cultural Communication via Information and Communication Technologies and Social Media
Use. In Encyclopedia of Information Science and Technology, 4th ed.; Khosrow-Pour, M., Ed.; IGI Global: Hershey, PA, USA, 2018;
pp. 7002–7013.

16. Short, D. Use of 3D Printing by Museums: Educational Exhibits, Artifact Education, and Artifact Restoration. Mary Ann. Liebert
Inc. Publ. 2015, 2, 209–215. [CrossRef]

17. Guidelines for VR Performance Optimization. Available online: https://developer.oculus.com/documentation/native/pc/dg-
performance-guidelines/ (accessed on 15 March 2021).

18. Ship of the Line Azov, Plans, Кaртoннoе мoделирoвaние, MODELIK, Линейный кoрaбль “Aзoв”. Available online: http:
//www.modelik.ru/index.php/component/jdownloads/summary/7/304?Itemid=0 (accessed on 9 August 2020).

19. Rhino-Rhinoceros 3D. Available online: https://www.rhino3d.com/ (accessed on 15 March 2022).
20. Piegi, L.; Tiller, W. The NURBS Book; Springer Publications: Berlin/Heidelberg, Germany, 1995. [CrossRef]
21. What Are NURBS? Available online: https://www.rhino3d.com/features/nurbs/ (accessed on 15 March 2022).
22. Gross, H.; Brömel, A.; Beier, M.; Steinkopf, R.; Hartung, J.; Zhong, Y.; Oleszko, M.; Ochse, D. Overview on surface representations

for freeform surfaces. In Proceedings of the Optical Systems Design 2015: Optical Design and Engineering VI, Jena, Germany,
23 September 2015. [CrossRef]

23. What Is an FBX File? Available online: https://docs.fileformat.com/3d/fbx/ (accessed on 15 March 2022).
24. Rhinoceros Help-Quad Remesh. Available online: https://docs.mcneel.com/rhino/7/help/en-us/index.htm#commands/quad

remesh.htm (accessed on 15 March 2022).

https://e-navs.eu/en/the-battle-of-navarino/
http://doi.org/10.3390/app10020597
http://doi.org/10.3390/app112411613
http://doi.org/10.1016/j.daach.2019.e00126
http://doi.org/10.1007/s10055-010-0177-3
http://doi.org/10.1108/JPMD-07-2016-0045
https://www.researchgate.net/publication/331674828_The_Future_of_Ship_Design_Collaboration_in_Virtual_Reality
https://www.researchgate.net/publication/331674828_The_Future_of_Ship_Design_Collaboration_in_Virtual_Reality
https://www.semanticscholar.org/paper/A-collaborative-early-stage-ship-design-environment-Chalfant-Langland/082d6615110859a00f9283ec0847edf42300d8b5
https://www.semanticscholar.org/paper/A-collaborative-early-stage-ship-design-environment-Chalfant-Langland/082d6615110859a00f9283ec0847edf42300d8b5
http://doi.org/10.4018/978-1-60566-940-3.ch012
http://doi.org/10.13140/RG.2.1.4068.5842
http://doi.org/10.1088/1742-6596/1302/4/042049
http://doi.org/10.1089/3dp.2015.0030
https://developer.oculus.com/documentation/native/pc/dg-performance-guidelines/
https://developer.oculus.com/documentation/native/pc/dg-performance-guidelines/
http://www.modelik.ru/index.php/component/jdownloads/summary/7/304?Itemid=0
http://www.modelik.ru/index.php/component/jdownloads/summary/7/304?Itemid=0
https://www.rhino3d.com/
http://doi.org/10.1007/978-3-642-97385-7
https://www.rhino3d.com/features/nurbs/
http://doi.org/10.1117/12.2191255
https://docs.fileformat.com/3d/fbx/
https://docs.mcneel.com/rhino/7/help/en-us/index.htm#commands/quadremesh.htm
https://docs.mcneel.com/rhino/7/help/en-us/index.htm#commands/quadremesh.htm

Appl. Sci. 2022, 12, 3541 24 of 24

25. Retopology. Available online: http://people.wku.edu/joon.sung/edu/anim/3d/modeling/retopology/retopology.html
(accessed on 14 March 2022).

26. How the Mesh Affects the Stable Time Increment and CPU Time. Available online: https://abaqus-docs.mit.edu/2017/English
/SIMACAEGSARefMap/simagsa-c-ovwstablecpu.htm (accessed on 15 March 2022).

27. Unity-Manual: Introduction to Lighting. Available online: https://docs.unity3d.com/Manual/LightingInUnity.html (accessed
on 15 March 2022).

28. What Is Bakery and Why Use It. Available online: https://geom.io/bakery/wiki/index.php?title=What_is_Bakery_and_why_u
se_it (accessed on 16 June 2021).

29. Unity-Manual: Occlusion Culling. Available online: https://docs.unity3d.com/560/Documentation/Manual/OcclusionCulling
.html (accessed on 20 February 2022).

30. Unity-Manual: Metallic vs. Specular Workflow. Available online: https://docs.unity3d.com/Manual/StandardShaderMetallicVs
Specular.html (accessed on 15 March 2022).

31. VRIF Wiki. Available online: https://wiki.beardedninjagames.com/ (accessed on 14 March 2022).
32. ZRapid Tech-Innovator of 3D Printing Technologies. Available online: http://www.zero-tek.com/en/sla550.html (accessed on

15 March 2022).
33. Stereolithography/SLA 3D Printing—Simply Explained|All3DP. Available online: https://all3dp.com/2/stereolithography-3d-

printing-simply-explained/ (accessed on 15 March 2022).
34. US4575330A-Apparatus for Production of Three-Dimensional Objects by Stereolithography-Google Patents. Available online:

https://patents.google.com/patent/US4575330A/en (accessed on 15 March 2022).
35. Huang, J.; Qin, Q.; Wang, J. A Review of Stereolithography: Processes and Systems. Adv. Digit. Other Process. 2020, 8, 1138.

[CrossRef]
36. Sharma, S.; Chauhan, A.; Narasimhulu, A. A Review of Recent Developments on Stereolithography. Int. J. Eng. Res. Technol. 2019,

8, 180–185.
37. Ngo, T.; Kashina, A.; Imbalzano, G.; Nguyen, K.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods,

applications and challenges. Compos. Part B Eng. 2018, 143, 172–196. [CrossRef]
38. Rhino File|Spatial. Available online: https://www.spatial.com/resources/glossary/rhino-file-format (accessed on 15 March 2022).
39. STL (STereoLithography) File Format Family. Available online: https://www.loc.gov/preservation/digital/formats/fdd/fdd00

0504.shtml (accessed on 15 March 2022).
40. Triangulation (geometry)-Wikipedia. Available online: https://en.wikipedia.org/wiki/Triangulation_(geometry) (accessed on

15 March 2022).
41. Šljivic, M.; Pavlovic, A.; Kraišnik, M.; Ilić, J. Comparing the accuracy of 3D slicer software in printed enduse parts. In Proceedings

of the 9th International Scientific Conference-Research and Development of Mechanical Elements and Systems (IRMES 2019),
Kragujevac, Serbia, 5–7 September 2019.

42. Brown, A.; de Beer, D. Development of a stereolithography (STL) slicing and G-code generation algorithm for an entry level 3-D
printer. In Proceedings of the 2013 Africon, Pointe aux Piments, Mauritius, 9–12 September 2013. [CrossRef]

43. Zguris, Z. How Mechanical Properties of Stereolithography 3D Prints Are Affected by UV Curing. Available online: https:
//formlabs.com/ (accessed on 15 March 2022).

http://people.wku.edu/joon.sung/edu/anim/3d/modeling/retopology/retopology.html
https://abaqus-docs.mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-ovwstablecpu.htm
https://abaqus-docs.mit.edu/2017/English/SIMACAEGSARefMap/simagsa-c-ovwstablecpu.htm
https://docs.unity3d.com/Manual/LightingInUnity.html
https://geom.io/bakery/wiki/index.php?title=What_is_Bakery_and_why_use_it
https://geom.io/bakery/wiki/index.php?title=What_is_Bakery_and_why_use_it
https://docs.unity3d.com/560/Documentation/Manual/OcclusionCulling.html
https://docs.unity3d.com/560/Documentation/Manual/OcclusionCulling.html
https://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html
https://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html
https://wiki.beardedninjagames.com/
http://www.zero-tek.com/en/sla550.html
https://all3dp.com/2/stereolithography-3d-printing-simply-explained/
https://all3dp.com/2/stereolithography-3d-printing-simply-explained/
https://patents.google.com/patent/US4575330A/en
http://doi.org/10.3390/pr8091138
http://doi.org/10.1016/j.compositesb.2018.02.012
https://www.spatial.com/resources/glossary/rhino-file-format
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://en.wikipedia.org/wiki/Triangulation_(geometry)
http://doi.org/10.1109/AFRCON.2013.6757836
https://formlabs.com/
https://formlabs.com/

	Introduction
	Related Works
	The Ships of Navarino

	Methodology
	Ship Plans & 3D Model Creation in Rhino3D
	Polygon Mesh Optimization
	Conversion of a Rhino3D Model to a Polygon Mesh
	Retopology
	Texturing
	UV Unwrapping
	Applying Textures to a Polygon Mesh

	Developing and Optimizing a VR Application in Unity3d
	Geometry Optimization to Reduce CPU Time
	Choice of Lighting Method
	Occlusion Culling
	Achieving Visual Fidelity
	Adding Functionality to the Application

	Changes Based on User Feedback
	Fixes before Release
	Problems Identified after Release

	The Ships of Navarino
	3D Models of Four Historic Ships
	VR Application
	3D Printing Process

	Discussion
	References

