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Abstract: Despite the use of new techniques on embryo selection and the presence of equipment
on the market, such as EmbryoScope® and Geri®, which help in the evaluation of embryo quality,
there is still a subjectivity between the embryologist’s classifications, which are subjected to inter-
and intra-observer variability, therefore compromising the successful implantation of the embryo.
Nonetheless, with the acquisition of images through the time-lapse system, it is possible to perform
digital processing of these images, providing a better analysis of the embryo, in addition to enabling
the automatic analysis of a large volume of information. An image processing protocol was developed
using well-established techniques to segment the image of blastocysts and extract variables of
interest. A total of 33 variables were automatically generated by digital image processing, each
one representing a different aspect of the embryo and describing a different characteristic of the
blastocyst. These variables can be categorized into texture, gray-level average, gray-level standard
deviation, modal value, relations, and light level. The automated and directed steps of the proposed
processing protocol exclude spurious results, except when image quality (e.g., focus) prevents
correct segmentation. The image processing protocol can segment human blastocyst images and
automatically extract 33 variables that describe quantitative aspects of the blastocyst’s regions, with
potential utility in embryo selection for assisted reproductive technology (ART).

Keywords: digital image processing; blastocyst; morphology-derived variables; segmentation;
embryo selection

1. Introduction

Digital image processing and artificial intelligence (AI) techniques are rapidly gaining
acceptance in medical sciences, including reproductive medicine [1,2], as tools for objective
identification of lesions on medical images and even for disease diagnosis and prognosis.
In the field of assisted reproductive technology (ART), these techniques are currently under
investigation for identifying embryological parameters predictive of fitness for freezing
and implantation [3]. Furthermore, automated image processing is now being used to
improve the standardization and accuracy of diagnostics and prediction [4].
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In the field of ART, computer-aided analyses are especially suitable for evaluation
and classification of gametes and embryos [5], and, when combined with other methods,
to predict embryo fate for ART [6]. Considering the complexity of each step and the
vast number of variables to be considered, ART is an ideal field to test the potential of
AI techniques [7]. Indeed, several algorithms have been developed to classify embryos
or predict reproductive success that apply classical statistical methods such as logistic
regression or various AI techniques [8].

The raw data for embryo evaluation is often acquired using a time-lapse system (TLS),
which yields dynamic information on embryo morphology [9]. Digital image processing
of these TLS-acquired image series has improved the accuracy of human embryo eval-
uation [10,11]. For instance, selection based on TLS has resulted in a 20% increase in
pregnancy rate using ART [12]. However, embryo evaluation is still largely subjective
and based on the embryologist’s experience, resulting in inconsistencies that contribute
to the variability in clinical outcome [13,14]. Therefore, automation of embryo evaluation,
although challenging due to the complexity of embryological variants [15], may lead to
more consistent ART success.

Digital image processing as applied to ART includes multiple computational tech-
niques that can extract mathematical variables from either conventional or TLS-acquired
embryo images. Furthermore, AI techniques can automate this parameter selection process
to obtain objective metrics associated with embryo morphology and quality [16,17]. Cur-
rently, the most widely used embryo classification system in Brazil and Argentina is that
proposed by Gardner and Schoolcraft [18] and recently detailed by Puga-Torres et al. [19],
which evaluates embryo fitness according to expansion of the blastocyst (EX), quality of
the inner cell mass (ICM), and quality of the trophectoderm (TE) [20]. Image processing
can evaluate embryonic quality by combining metrics for each region of the blastocyst
(including the zona pellucida and the segmented ICM and TE) as described for bovine
embryos [21]. In conjunction with AI tools, such image processing methods may help
embryologists select the best oocyte or embryo for freezing, in addition to helping to
distinguish euploid from aneuploid embryos [8,22].

Several previous studies have used computational techniques to extract various quan-
titative parameters describing the blastocyst stage. Santos Filho et al. [23] developed a
method that yielded segmented images of the ICM and TE, while Singh et al. [24] applied
identification and segmentation algorithms to isolate the TE. Matos et al. [25] even used
digital image processing techniques for semiautomated selection of mouse blastocyst quality.

The inclusion of more objective embryo features, such as blastocyst width and/or area,
may further improve selection for successful pregnancy [26]. With this study, the authors,
based on their previous experience with the image segmentation of bovine and murine
embryos [21,25], aimed to provide an objective and comprehensive assessment of human
blastocyst morphology based on images captured by two distinct sources, EmbryoScope®

and Geri® incubators, using various image processing techniques from the widely available
Matlab® platform. In the future, the feature variables extracted from image processing
should be tested and validated in the assisted reproduction research (i.e., as program’s
inputs to predict the human blastocyst fitness).

2. Materials and Methods
2.1. Study Design

The study was approved by the Institutional Review Board (IRB) of IVI Foundation,
whose code corresponds to 1709-VLC-094-MM. In this research project, encrypted data
was used, i.e., it was not possible to associate identified persons because the link with all
information that identifies the subjects has been destroyed. Consequently, it was estimated
that it would neither be necessary nor feasible to obtain the informed consent of the subjects,
as it is a study with anonymized data. In addition, there was not express opposition from
the subjects for the use of the data for the intended purposes.
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2.2. Image Dataset

All raw images were of blastocysts collected from patients receiving assisted reproduc-
tion treatment between 2017 and 2019 at IVI-RMA (Valencia, Spain) and grown in either
the EmbryoScope® time-lapse incubator from Vitrolife or the Geri® time-lapse incubator
from Genea Biomedx (Figure 1).
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Figure 1. Human blastocysts maintained in the EmbryoScope® incubator (a) or the Geri® incubator (b).

The original dataset comprised 353 images of embryos growing in an EmbryoScope®

incubator and 474 images of embryos growing in a Geri® incubator, of which 33 im-
ages from the EmbryoScope® incubator and 165 from the Geri® incubator were excluded.
The 33 EmbryoScope® images were excluded due to poor focus (n = 16), display of a
nonblastocyst stage embryo (n = 14), incomplete visualization of the entire blastocyst
(n = 2), or insufficient light to recognize individual regions (n = 1; Supplementary File,
Figure S1). The 165 Geri® images were excluded due to display of a nonblastocyst stage
embryo (n = 79), blurred inner cell mass (n = 82), or display of a hatched blastocyst (n = 4).
Therefore, 320 EmbryoScope® and 309 Geri® images were included (629 images in total).
Of these, 289 images from the EmbryoScope® incubator (90.3%) and 215 images from the
Geri® incubator (69.6%) were correctly processed by the methods proposed in the following
sections, while the other 125 images were not correctly segmented, mainly due to the low
quality of the raw image (Supplementary File, Figure S2).

2.3. Image Processing and Variable Extraction

The images provided by each incubator have unique characteristics (Figure 1) requiring
different approaches for processing and feature extraction. The principal differences in
processing relevant to image segmentation are presented in Table 1.

Segmentation of embryo images required between 10 and 12 steps to completely isolate
the blastocyst, ICM, and TE. The steps used for segmentation of images from each incubator
and typical changes to the image following each step are presented in Figures 2 and 3.

2.4. Grayscale Conversion and Image Resizing

To reduce the computational load associated with image processing, raw images were
first converted to grayscale [27,28] and adjusted to a standard size using the Matlab® Image
Processing Toolbox™ grayscale conversion and resizing functions [29].



Appl. Sci. 2022, 12, 3531 4 of 20

Table 1. Different segmentation steps required for images provided by Geri® and EmbryoScope®

incubators, and the variables extracted by each step.

Segmentation Step Embryo Scope® Geri® Variable Extraction

1 Conversion of the input image
to grayscale X X -

2 Edge detection using a Canny filter X X -

3 Partial embryo isolation X X -

4 Histogram adjustment (contrast,
stretching, and tone) X X -

5 Prewitt adjustment X X -

6 Binary conversion X X -

7 Isolation of the whole blastocyst X X
Measurement of the area and radius of the
blastocyst by equations using the Matlab®

Image Processing ToolboxTM

8 TE and blastocoel + ICM isolation X X

Variables describing TE and the blastocoel
+ ICM using the Matlab® Image

Processing ToolboxTM, local binary
pattern (LBP) algorithm, and gray-level

cooccurrence matrix (GLCM)

9 Threshold adjustment X X -

10 Segmentation based on the grayscale X -

11 Determination of the binary distance X -

12 ICM isolation X X
Variables describing the ICM using the
Matlab® Image Processing ToolboxTM,

LBP algorithm, and GLCM

ICM: inner cell mass; TE: trophectoderm.

2.5. Canny Filter Application for Edge Detection

In this work, a Canny filter (CF) was applied to detect image edges (Figure 4). In addi-
tion to a CF, Santos [30] added a Gaussian filter to reduce noise for improved location of
edges. Therefore, the Gaussian filter described by Equation (1) was also applied, where σx
and σy represent the standard deviations of pixels along the x and y axes, respectively.

G(x, y) =
1

2 π σx σy
e
−x2

2σ2
x
+

−y2

2σ2
y (1)

This filter application is necessary to obtain information for isolating the region of
interest (ROI), specifically the image of the blastocyst without surrounding background.
A CF application can be found in the Matlab® Image Processing Toolbox™ [29].

2.6. Detection of Circles by the Hough Transform

The Hough transform (HT) algorithm is used to detect forms such as lines, circles,
and ellipses in digital images [31]. According to Seifozzakerini et al. [32], this technique
is useful for the recognition of straight lines or circular forms, and thus is appropriate for
ROI detection since embryos present a circular form. Circle parameterization described by
Hough [33] is presented in Equation (2), where (a, b) represents the central coordinate and r
represents the radius.

fc (x, y) = (x − a)2 + (y − b)2 − r2 = 0 (2)

These functions yield parameters such as the circle center and radius length that in turn
allow for isolation of the ROI (Figure 5). Hough transformation was then followed by a final
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contrast adjustment to enhance ROI boundaries. The Matlab® Image Processing Toolbox™
has all the functions needed to apply the HT as well as the contrast adjustment [29].
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2.7. Histogram Adjustment

Contrast is an essential parameter determining image resolution [34]. To further
improve image quality, contrast was optimized by histogram adjustment using the Matlab®

Image Processing Toolbox™ [29]. However, different contrast adjustments are required for
images obtained by Geri® (Figure 6) and EmbryoScope® (Figure 7) to maintain an adequate
standard for the desired variable acquisition.
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Appl. Sci. 2022, 12, 3531 8 of 20

Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 21 
 

 
Figure 5. Partial detection of the embryo by the Hough transform (HT). (a,b) From the edges of the 
image obtained by the Canny filter, circles were detected by the Hough transform to isolate the ROI 
(red circumference). (c) Thus, the embryo is partially isolated from the rest of the image. 

2.7. Histogram Adjustment 
Contrast is an essential parameter determining image resolution [34]. To further im-

prove image quality, contrast was optimized by histogram adjustment using the Matlab® 
Image Processing Toolbox™ [29]. However, different contrast adjustments are required 
for images obtained by Geri® (Figure 6) and EmbryoScope® (Figure 7) to maintain an ad-
equate standard for the desired variable acquisition. 

 
Figure 6. Histogram adjustment for an image from the Geri® incubator. The histogram of the original 
image (a) is stretched to yield a higher contrast image (b). 

Figure 6. Histogram adjustment for an image from the Geri® incubator. The histogram of the original
image (a) is stretched to yield a higher contrast image (b).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 9 of 21 
 

 
Figure 7. Histogram adjustment for an image from the EmbryoScope® incubator. The histogram of 
the original image (a) is stretched to yield a higher contrast image (b). 

2.8. Maxima of Gradient Magnitude 
In a grayscale image, gradient magnitude (GM) is defined as the root mean square of 

the directional gradients along two orthogonal directions [35]. In general, GM maxima 
can be detected at the boundaries (edges) of a region [36]. For extracting the GM, several 
operators can be used, such as the Prewitt method, which is efficient for detecting edges. 
According to Yang et al. [37], this method can detect edges in the vertical (Gy) and hori-
zontal (Gx) directions and calculate the GM using a pair of 3 × 3 convolution masks (Figure 
8). This technique is applied using the Matlab® Image Processing Toolbox™. 

 
Figure 8. Directions of the Prewitt gradient operator. From the convolution masks, the Prewitt dif-
ferentiation operator calculates the gradient in the vertical direction through the Gy matrix, while 
Gx calculates the gradient in the horizontal direction. Gy and Gx matrixes are also called derivative 
masks and are applied to calculate the difference of pixel intensities in an edge region of the image. 

Using this technique, GMs are obtained (Figure 9b), which can later be converted into 
maximum values (Figure 9c). This process allows brightness-invariant areas (i.e., regions 
of the image with similar characteristics) to be captured and grouped. Based on the max-
imum magnitude values, pixels within a specific range can be extracted. 

Figure 7. Histogram adjustment for an image from the EmbryoScope® incubator. The histogram of
the original image (a) is stretched to yield a higher contrast image (b).

2.8. Maxima of Gradient Magnitude

In a grayscale image, gradient magnitude (GM) is defined as the root mean square
of the directional gradients along two orthogonal directions [35]. In general, GM maxima
can be detected at the boundaries (edges) of a region [36]. For extracting the GM, several
operators can be used, such as the Prewitt method, which is efficient for detecting edges.
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According to Yang et al. [37], this method can detect edges in the vertical (Gy) and horizontal
(Gx) directions and calculate the GM using a pair of 3 × 3 convolution masks (Figure 8).
This technique is applied using the Matlab® Image Processing Toolbox™.
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Figure 8. Directions of the Prewitt gradient operator. From the convolution masks, the Prewitt
differentiation operator calculates the gradient in the vertical direction through the Gy matrix, while
Gx calculates the gradient in the horizontal direction. Gy and Gx matrixes are also called derivative
masks and are applied to calculate the difference of pixel intensities in an edge region of the image.

Using this technique, GMs are obtained (Figure 9b), which can later be converted into
maximum values (Figure 9c). This process allows brightness-invariant areas (i.e., regions of
the image with similar characteristics) to be captured and grouped. Based on the maximum
magnitude values, pixels within a specific range can be extracted.
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2.9. Binary Image Construction

A binary image is composed of a matrix containing only 0s and 1s, where the 1s
represent the object of interest [38]. To obtain a binarized image, pixel values within a
defined range are converted to 1s, while all other pixels are set to 0 (Figure 10b). This process
is important for applying the HT and allows total isolation of the blastocyst (Figure 10c),
TE (Figure 10d), and blastocoel plus ICM (Figure 10e).

Segmentation of the image into blastocyst, TE, and blastocoel plus ICM allows the
extraction of several variables. In this process, variation and similarity of texture, uniformity
in gray-level distribution, proximity of the grayscale to the GLCM diagonal in ICM and
blastocoel, mean gray level, and standard deviation of gray level are extracted. In addition,
brightest and darkest regions, average brightness, most frequent light intensity (modal
value), binary image sum, blastocyst radius, and area measurements are calculated.
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Figure 10. Isolation of the blastocyst, trophectoderm, and blastocoel plus inner cell mass (ICM).
(a) Maxima of gradient magnitude. (b) Binary transformation using a defined range. (c–e) Isolation
of the blastocyst (c), trophectoderm (d), and Blastocoel + ICM (e).

The textures were examined by the local binary pattern (LBP) algorithm and by
constructing a gray-level cooccurrence matrix (GLCM). The LBP algorithm is a widely
applied approach to recognize and analyze texture in images [39]. In this study, the LBP
technique was applied to determine the textures of the ICM, TE, and EX. In Matlab®,
the LBP algorithm is included in the Computer Vision ToolboxTM [40]. Feature extraction
using the LBP algorithm consists of two main steps (Figure 11), thresholding and encoding.
In the first step, all neighboring pixels in each defined area (e.g., pattern) are compared
to the value of the central pixel. Then, all values of the neighboring pixels are changed
to a binary value (0 if lower than the value of the central pixel or 1 if larger). After this
transformation, the encoding step involves conversion of the binary number obtained to a
decimal value [39].
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Figure 11. Representation of the Local Binary Pattern (LBP) algorithm. (a) The initial blastocyst image.
(b) The matrix of pixel values obtained from an area of the image. (c) The binary matrix derived
using the LBP algorithm. The values of this matrix (0s and 1s) are read clockwise starting from the
left-most upper quadrant following the arrow. (d) Through this process, a binary number is obtained
and converted to a decimal number. This process is repeated until the entire image is processed.

The GLCM algorithm was also applied to examine the textures of the ICM, TE, and the
blastocoel plus ICM images obtained by segmentation. This statistical method, included
in the Image Processing ToolboxTM, essentially examines texture by analyzing the spatial
relationships among pixels, specifically how often pairs of pixels with specific values and
in a specified spatial relationship occur in an image. This analysis yields the GLCM, from
which statistical measures are extracted [29]. Using this algorithm, it is possible to extract
information such as variation of the texture level, texture similarities, uniformity of the
gray-level distribution, and proximity of the grayscale to the GLCM diagonal.

The brightness and darkness variables of the image were then extracted from the TE
and blastocoel + ICM images. The darkness of the image was measured as the sum of the
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top 10% darkest pixels, and the brightness as the sum of the remaining pixels. The mean
brightness of each region was estimated using the pixels with values between the 10%
darkest and the 10% brightest. Image metrics such as radius and area were extracted from
the distribution of pixels obtained by the Matlab® Image Processing ToolboxTM [29].

2.10. Grayscale Intensification

Grayscale standardization alone cannot provide good texture segmentation results.
In addition, it is important to intensify the light and dark tones of the image using an
optimal threshold (ψ) specific for Geri® and EmbryoScope® incubators. Using Equation
(3), it is possible to convert the values of a pixel matrix (Iij) and increase the frequency of
maxima and minima, yielding a new higher contrast matrix (GIij) as depicted in Figure 12.

GIij =

( Iij

ψ

)2

∗ ψ (3)

Iij: grayscale pixel matrix.
ψ: threshold.
GIij: matrix containing the converted values of Iij.
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Figure 12. Grayscale intensification. (a) Representation of the intensification process by applying a
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intensification based on a defined ψg threshold for images from the Geri® incubator. (c) Grayscale
intensification based on a defined ψe threshold for images from the EmbryoScope® incubator.
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2.11. ICM Partial Isolation Based on the Grayscale

Segmentation based on grayscale is a step specific to images from the Geri® incubator,
which have greater contrast between light and dark tones. In this process, the weight of
each pixel in the image is calculated as the absolute difference between the pixel value (Gij)
and a previously defined threshold (ψ) (Equation (4)). Using these calculated weights, it is
possible to generate a new image (I) containing the partially segmented ICM. Resources
from Matlab® Image Processing Toolbox™ [29] were used for this process. The method
is illustrated in Figure 13a, and the results of partial ICM segmentation are shown in
Figure 13b.

Iij =
∣∣Gij − ψ

∣∣ (4)
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Figure 13. Grayscale segmentation. (a) A grayscale pixel matrix (G) can be partially segmented by
the difference between each pixel value and a set threshold (ψ ). The new partially segmented matrix
is termed (I ). (b) Process applied to the blastocoel and ICM. It is possible to visualize the result of
partial segmentation using a weight matrix logarithm.

2.12. Determination of Binary Distance

Another technique used only for Geri® images is binary Euclidean distance (BDij)
calculation (Equation (5)). The binary distance is defined as the distance from every pixel to
the nearest nonzero pixel [41]. After binary transformation of the partially segmented ICM,
the inverse of this image is submitted to the distance calculation process (Figure 14). This
improves the quality of the final segmentation by eliminating noise present in the image.

BDij =
√
(x1 − x2)

2 + (y1 − y2)
2 (5)

2.13. ICM Isolation by Gabor Filter

Segmentation by Gabor multichannel filters is an established method in image pro-
cessing. This technique allows characterization and separation of textures by creating
channels for different frequencies and orientations, similar to the human visual system.
To segment the ICM and obtain the Gabor magnitude, we initially used the combinations
of frequency and orientation presented by Jain and Farrokhnia [42]. After this process,
Gaussian low-pass filters were applied (Figures 15e and 16b), an important postprocessing
step to normalize the different outputs and decrease the magnitude variations according
to Kim and Kang [43]. Gaussian low-pass filters enhance smoothness and reduce noise
(the difference between neighboring gray levels). In this way, it is possible to differen-
tiate image regions in different planes (Figures 15f and 16c) and fully segment the ICM
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(Figures 15g and 16d). In the last steps, clustering is performed using the Matlab® Statistics
and Machine Learning Toolbox™ [44].
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(c) Two main planes representing different textures of the image. (d) Isolation of the ICM. 

2.14. Evaluation of the Image Segmentation 

Figure 15. Isolation of the ICM by Gabor filtering of an image from the Geri® incubator. (a) Isolation
of the Blastocoel + ICM. (b) Partial isolation of the ICM. (c) After partial isolation, an inverse binary
matrix was obtained. (d) Binary distance matrix. (e) When applying the Gabor filter, low-pass
Gaussian filtering is also used to differentiate regions of the previous image. (f) Two main planes are
obtained, each representing the different textures of the image. (g) Isolation of the ICM.

Additional variables were extracted by isolation of the ICM. The textures were then
analyzed by the LBP algorithm and the GLCM. The area was calculated by the distribution
of the pixels in this segmentation. The blastocoel area was calculated by subtraction of the
area of the ICM (Figures 15g and 16d) from the total area of the blastocoel + ICM image
(Figures 15a and 16a). Expansion of the embryo was estimated indirectly by calculating the
area of embryo (without the TE) occupied by the ICM.
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(a) Isolation of the Blastocoel + ICM. (b) Application of the Gabor filter and low-pass Gaussian filter.
(c) Two main planes representing different textures of the image. (d) Isolation of the ICM.

2.14. Evaluation of the Image Segmentation

The effectiveness of the segmentation (in correct or incorrect) was based on the visual
screening by an experienced embryologist (mainly MFGN; 21, 25, 45, 46). This work did
not use independent experts or human-annotated segmentation as comparison standards.

3. Results

The image processing steps summarized in Table 1 automatically generated a total
of 33 variables, each representing a different feature of the EX or a subregion (ICM or TE).
These variables can be divided into three main categories, EX, ICM, and TE, according to
the ROI represented (Table 1).

These variables can also be divided into six categories according to the image property
represented: texture, gray-level average; gray-level standard deviation, modal value (most
frequent pixel value), relations, and light level.

Texture variables denote repeating random regular patterns that provide measures
of structural arrangements on surfaces. They represent the different interactions among
pixels, from the differences in gray level from pixel to pixel in local regions of the image
to the spatial arrangement of gray levels throughout the image. Gray-level average, gray-
level standard deviation, and modal value represent the overall brightness/darkness and
variation in brightness of the embryo. Relations refer to associations between otherwise
distinct features, such as radius and area of the blastocyst. Finally, the light level variables
represent the brightness variation in different regions of the embryo (Supplementary File,
Figures S3–S5).

Variable Definitions

Texture

1. Texture variation in ICM and blastocoel

Represents the texture gray-level differences in ICM and blastocoel. Reflects image
sharpness and depth of grooves. Deeper grooves are related to greater variation and
sharpness.

2. Texture similarities in ICM and blastocoel

Represents the linear dependency of gray levels.

3. Uniformity of the gray-level distribution in ICM and blastocoel

Represents the uniformity of the gray-level distribution through the sum of GLCM
elements squared.
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4. Proximity of the grayscale to the GLCM diagonal in ICM and blastocoel

Represents the distribution of elements in the GLCM according to the diagonal refer-
ence values.

5. Texture variation in ICM
6. Texture similarities in ICM
7. Uniformity of gray-level distribution in ICM
8. Proximity of the grayscale to the GLCM diagonal in ICM

These variables correspond to variables 1, 2, 3, and 4, respectively, but are calculated
from the ICM segmented image.

9. Texture variation in TE
10. Texture similarities in TE
11. Uniformity of the gray-level distribution in TE
12. Proximity of the grayscale to the GLCM diagonal in TE

These variables correspond to variables 1, 2, 3, and 4, respectively, but are calculated
from the TE segmented image.

13. Local texture descriptor in EX

Texture pattern descriptor used to describe the local texture patterns of an image.
The algorithm extracts information about the local texture by establishing a threshold
for “n” neighbors relative to the value of the central pixel. The result is a binary number
between 0 and 255.

14. Local texture descriptor in ICM
15. Local texture descriptor in TE

These variables correspond to variable 13, but are calculated from ICM and TE seg-
mented images, respectively.

Gray-level average

16. Gray-level average in ICM and blastocoel

Represents the average pixel intensity (gray-level value) within the segmented ICM
plus blastocoel image.

17. Gray-level average in TE

Represents the average pixel intensity (gray-level value) within the segmented TE.

18. Blastocyst gray-level average

Represents the average pixel intensity (gray-level value) for the entire blastocyst with
zona pellucida.

Gray-level standard deviation

19. Gray-level standard deviation in ICM and blastocoel

Represents the standard deviation of pixel intensity within the segmented ICM
and blastocoel.

20. Gray-level standard deviation in TE

Represents the standard deviation of pixel intensity within the segmented TE.
Modal value

21. Modal value in ICM and blastocoel

Represents the most frequent light intensity value in the segmented ICM and blastocoel.

22. Modal value in TE

Represents the most frequent light intensity value in the segmented TE.
Relations
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23. Blastocyst sum of binary image

The image threshold is given by the sum of the binary image divided by the area of
the isolated blastocyst calculated from the radius.

24. Blastocyst radius

Radius of the blastocyst.

25. ICM area

Area of the segmented ICM.

26. Blastocoel area

Area of the segmented blastocoel.

27. Ratio between ICM and blastocoel

Represents the expansion of the blastocyst.
Light level

28. Mean luminosity in ICM and blastocoel

All pixels with a luminous intensity between 10 greater than and 10 less than the aver-
age intensity are counted, and this value is then divided by the total area of the blastocyst.

29. Mean luminosity in TE

Calculated as described for variable 28 but using values from the segregated TE.

30. Brightest region in ICM and blastocoel

Brightest area in the segmented ICM and blastocoel.

31. Brightest region in TE

Brightest area in the segmented TE.

32. Darkest region in ICM and blastocoel

Darkest area in the segmented ICM and blastocoel.

33. Darkest region in TE

Darkest area in the segmented TE.
While 33 variables were extracted, it is unclear if all can be modulated independently.

Collinearity refers to a strong association between two independent variables, and mul-
ticollinearity refers to a strong association among more than two independent variables.
Multicollinearity alters the grouping because the collinear variables end up implicitly
receiving a greater weight. A collinearity analysis can be performed to identify if any of
these 33 variables are related [45].

4. Discussion

In this work, we present a sequence of digital processing steps to segment human
embryo images obtained from two distinct sources. The method produced 33 mathematical
variables from the whole embryo and its specific regions (ICM, TE, and blastocoel). We spec-
ulate that these variables may help in identifying embryos most suitable for freezing and
ultimate implantation for ART.

This sequence of steps was adapted from previous studies by our group on murine em-
bryos [25] and bovine embryos [21,45,46]. The relatively high success rate of segmentation,
especially for embryos photographed in the EmbryoScope® incubator (90.3%), suggests
that these previous findings were beneficial for analysis human of embryo images, a more
challenging application due to both greater variability in embryo morphology compared to
mice and cattle [47] and the more rigorous standards that must be met for ART.

In addition to work on nonhuman species, preliminary results have been published
on digital processing of human blastocyst images from EmbryoScope® for implantation



Appl. Sci. 2022, 12, 3531 17 of 20

selection [48,49]. In contrast, Geri® images have been used much less extensively for
AI development [50]. This paucity of research may reflect less ideal imaging conditions.
Indeed, the rate of successful segmentation was much lower using Geri® images (69.6%)
and required extra steps.

Several of these proposed steps, such as application of the HT algorithm, have already
been applied in previous image processing studies. Van den Heuvel et al. [51] used the
HT to detect the center of the fetal skull and a dynamic programming algorithm to detect
the outside of the fetal skull. They also fitted an ellipse to the dynamic programming
result to measure head circumference, estimate gestational age, and monitor fetal growth.
Huang et al. [52] also used the GLCM approach to identify textural features on ovarian
adenocarcinoma cells indicative of chemoresistance. Specifically, the GLCM was used
to calculate contrast, energy, entropy, and homogeneity, variables that collectively can
reveal the disordered surface morphology characteristic of cancer cells. Alternatively,
Nanni et al. [53] used the LBP algorithm to derive texture descriptors for classifying
2D HeLa images, cells in pap smear datasets, and pain levels from the facial images of
newborns. Thus, our chosen algorithms constitute a set of mathematical tools already used
for a wide range of image processing applications.

Some of the variables extracted may have little or no biological significance despite
conveying information on texture, intensity of edges, and other features. However, these
quantifiable features may still be advantageous over the subjective imaging criteria used
to grade embryos [18,54]. As proof of concept for the potential utility of these variables
in embryo selection, we are performing a pilot study (in progress) on prediction of preg-
nancy and aneuploidy. Briefly, the same 33 extracted variables were used as inputs for
artificial neural network (ANN)-based programs to predict aneuploidy or pregnancy (fetal
heartbeat) from blastocyst images. The ANNs were chosen based on a genetic algorithm
search for the fittest model, similar to that described by Rocha et al. [21,45]. We recently
obtained 96% predictive accuracy for the presence of a fetal heartbeat based on processing
of 172 images from Embryoscope® and receiver operating characteristic curve analysis as
well 95% accuracy for prediction of aneuploidy based on 277 images using the same analytic
processes. Fine-tuning the image processing protocol by creating high-resolution mosaic
images of the whole embryo in segmentation masks to provide additional information
on certain structures (e.g., ICM or TE) or features (texture, contrast, brightness, or edges)
inscrutable by visual inspection may further enhance predictive efficacy.

In summary, we describe an image processing protocol that can successfully segment
human blastocyst images from two distinct sources and extract 33 variables with potential
utility in embryo selection for ART.
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