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Abstract: This study examines various factors and conditions that are related with the performance of
reinforcement learning, and defines a multi-agent DQN system (N-DQN) model to improve them. N-
DQN model is implemented in this paper with examples of maze finding and ping-pong as examples
of delayed reward system, where delayed reward occurs, which makes general DQN learning difficult
to apply. The implemented N-DQN shows about 3.5 times higher learning performance compared
to the Q-Learning algorithm in the reward-sparse environment in the performance evaluation, and
compared to DQN, it shows about 1.1 times faster goal achievement speed. In addition, through the
implementation of the prioritized experience replay and the implementation of the reward acquisition
section segmentation policy, such a problem as positive-bias of the existing reinforcement learning
models seldom or never occurred. However, according to the characteristics of the architecture that
uses many numbers of actors in parallel, the need for additional research on light-weighting the
system for further performance improvement has raised. This paper describes in detail the structure
of the proposed multi-agent N_DQN architecture, the contents of various algorithms used, and the
specification for its implementation.

Keywords: reinforcement learning; Q learning; DQN (Deep Q Networks); HDQN (Hierarchical
DQN); NDQN (Multi-Agent DQN); delayed reward system; maze game; multi-agent reinforcement
learning; prioritized experience replay

1. Introduction

Reinforcement learning is an algorithm that makes autonomous decision-making in
the direction of maximizing the value expected in the future by defining the environment
to be applied as the state, behavior, and expected reward. Unlike other techniques such as
supervised learning, since reinforcement learning recognizes the state of data and makes
decisions, it is the more effective in solving the problem of choosing the optimal policy at
every moment. In addition, it has the advantage of being able to proceed with learning by
judging the environment and situation by oneself without the need for prior knowledge on
complex problems [1].

However, this does not mean that reinforcement learning with these strengths can
be applied to all fields and problems. A variety of unpredictable and abrupt variables
may occur in certain fields and systems, and they use high-dimensional data with an
unpredictable number of cases. In a specific environment like this, a clear limitation of
reinforcement learning is revealed [2].

As an example, the most commonly used Q-Learning algorithm in reinforcement
learning has a decision-making structure that evaluates the Q-value of an action and selects
the action with the highest value when performing the learning in the environment based
on the Markov Decision Process (MDP) theory [3]. It is a learning paradigm with learning
by rewards/penalties with some interesting applications, so as to maximize numerical
performance measures that express a long-term objective. This decision-making structure
is most similar to the basic philosophy of reinforcement learning, but when this structure is
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applied to an environment with poor regularity, it has been found that the learning ability
is significantly deteriorated [2].

Setting up the goal of multi-agent reinforcement learning is a difficult task, which
incorporates the stability of the learning dynamics of the agent on the one hand, and the
adaptation to the changing behavior of the other agents on the other hand. The goals
typically formulate conditions for static games, in terms of strategies and rewards. Several
factors that directly affect the performance of reinforcement learning are suggested, vari-
ous studies and attempts are being made to improve the learning performance in many
applications. An environment in which rewards occur frequently means an environment in
which there is a high probability of achieving a goal even through unlearned actions, and
conversely, an environment in which rewards do not occur frequently means that the prob-
ability of obtaining a defined reward in an irregular and anomalous environment is low. In
such an environment where rewards are low, many problems arise in performing learning.

If the agent knows enough facts about its environment, the corresponding logical
approach allows him to formulate plans that are guaranteed to work. Such an organization
of the functioning of the agent is very convenient. Unfortunately, agents almost never have
access to all the necessary information about their environment. Therefore, agents must act
under conditions of uncertainty, which makes applying the traditional Q learning algorithm
difficult to sparse reward environment. Episodes acquired by each actor performing actions
are stored and shared in the replay buffer, and in this process, various reinforcement
learning improvement factors such as prioritized experience replay and segmentation
of reward acquisition sections are applied. This study further expands the hierarchical
structure into multi-agent HDQN to further utilize the strengths of HDQN, meaning that
the proposed structure adds multi-layers of neural networks on HDQN.

Therefore, this paper intends to tackle this delayed reward environment using multi-
agent N-DQN. Similarly, this paper also attempts to improve the reinforcement learning
performance by examining these issues through various experiments focusing on various
factors and conditions that affect performance. Multi-agent N-DQN model is presented
and implemented in this paper. N-DQN is a concept that applies and extends the structure
of HDQN [3], layering several actors, and has a structure in which tasks are performed
simultaneously/parallelly through policy-based behavior management.

Specifically in this paper, the multi-agent N-DQN model is proposed in Section 3,
which improves the existing Q-Learning and Deep Q-Networks (DQN) algorithms. We
explain the used technology and performance improvement factors. In addition, as a work
to prove this, performance evaluation is performed by implementing N-DQN, Q-Learning,
and DQN in two environments with different characteristics, and the results are compared
and analyzed in Sections 4 and 5. These experimental results are intended to examine
what potentiality the N-DQN model might have in solving the limitations of reinforcement
learning in delayed reward system. At last, conclusions and future research issues are dealt
with in Section 6.

2. Related Works
2.1. Q-Learning

Q-Learning is one of the most representative algorithms for reinforcement learning
based on MDP [4]. Q-Learning evaluates the Q-value of an action while learning and selects
the action with the highest value. Equation (1) means this Q-Learning algorithm. At each
time t, the actor performs an action (At) in a state (St) and transits to a new state (St+1), and
as a result of this, it obtains a reward (Rt), which repeats using the weighted sum of the old
value and the new information.

Q(St, At)← Q(St, At) + α
(

Rt+1 + γmaxQ
(
St+1, a′

)
−Q(St, At

)
)′ (1)

However, since Q-Learning uses the same values for both evaluating and selecting
each action, there is a problem in that the future value of the present action of the highest
value is overestimated. That is, excessively good Q-values are continuously selected,
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forming a positive bias in learning, and as learning progresses, a vicious cycle occurs [5].
This phenomenon is a chronic problem that has occurred in general function estimation
even before the introduction of deep learning.

To solve this problem, researchers at Google’s DeepMind and MIT devised a hierarchical-
DQN (HDQN) model that parallelly processes multiple reinforcement learning models.
This means a structure in which learning is performed by being layering into top-level and
lower-level, as shown in Table 1. In the HDQN model, the top-level and the lower-level
have different purposes. The lower level is not intended to achieve a final goal, but has
a unique purpose that is valid at that point. Conversely, the top-level collects the results
generated in the lower-level and performs learning based on the policy. The mechanism of
this hierarchical structure was found to increase the possibility of efficient learning even in a
complex and irregular environment. Therefore, this study further expands the hierarchical
structure into multi-agent HDQN which is shown in Figure 1 to further utilize the strengths
of HDQN. It is intended to define a H-DQN model that stratifies multiple neural networks,
and simultaneously performs actions in parallel based on policies.

Table 1. Basic rules of the maze game.

No. Rule

1 The actor can only move in four directions:
up/down/left/right

2 The actor cannot go through walls
3 The actor must reach his/her destination in the shortest time possible
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) from the starting point of the
maze to the ending point as shown in Figure 2. The actor can move in only four directions
(up/down/left/right) by default, and there is an intuitive rule that walls cannot pass.
In this process, the actor is considered to have the best performance in the order of the
least amount of time or steps required to reach the destination. Even before reinforcement
learning emerged and was studied, there were various studies to automatically perform
maze finding [1]. In general, it is implemented in a way that heuristics are applied to
recursive functions, etc., and rather than implementing a mechanism to find the destination
all at once, the problem was solved by finding the optimal path and weight in repeated
experiences [1].
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Therefore, when applying reinforcement learning to the maze game, this problem-
solving method is also applied. In other words, it is to find and learn the optimal weight
from the learning data (Episode) generated during repeated training of the actor. To perform
intuitive experiments, this study implemented the maze game environment through Python
by implementing a reinforcement learning model with such a direction, and the rules
applied in the game are defined in Table 1.

2.3. The Ping-Pong Game

The ping-pong game is a game where the actor tracks and hits the ball (
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), and the ball is sent to a space where the ball
cannot be received by the opponent’s paddle as shown in Figure 3. The actor can basically
perform one of five actions (top/bottom/left/right/nothing), and the movement is limited
to a movement of up/down. The left/right action can be triggered when the ball hits the
paddle and pushes the ball strongly in the opponent’s direction. The ball advances through
the laws of physics when hitting and is refracted when it touches the top/bottom of the
game screen. Therefore, it is important for the actor to strike the ball in a position that the
opponent cannot receive while considering these laws of physics. Table 2 shows the rules
of the ping-pong game. In applying reinforcement learning to the ping-pong game, both the
position of the actor paddle, the position of the ball, and the position of the opponent’s paddle
should be considered. It is predicted that, when various objects move like this, the value of the
previously performed learning data may be lowered according to the movement of the object.
To implement and experiment with a reinforcement learning model with such a direction we
implemented using Python, and the opponent’s paddle operates by the rule-based algorithm
with heuristics. Therefore, the content of performance evaluation means a confrontation
structure between reinforcement learning and rule-based heuristics.
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Table 2. Basic rules of the ping-pong game.

No. Rule

1 The actor can perform 5 actions:
up/down/left/right/nothing

2 Up/down is related to movement, and left/right pushes the ball
3 When the ball touches the upper/lower area of the game screen, it is refracted

2.4. Multi-Agent System and Reinforcement Learning

A multi-agent system is a group of autonomous, interacting entities sharing a common
environment, which they perceive with sensors and upon which they act with actuators.
Multi-agent systems are finding applications in a variety of domains including robotic
teams, distributed control, resource management, collaborative decision support systems,
data mining, etc.

Because of the distributed nature of the multi-agent solution, such as the speedup
made possible by parallel computation, multiple reinforcement learning agents can harness
new benefits from sharing experience, e.g., by communication, teaching, or imitation. When
one or more agents fail in a multi-agent system, the remaining agents can take over some
of their tasks. This implies that multi-agent reinforcement learning is inherently robust.
Furthermore, by design most multi-agent systems also allow the easy insertion of new
agents into the system, leading to a high degree of scalability.

However, multi-agent reinforcement learning algorithms are typically applied to
small problems only, like static games and small grid-worlds. Therefore, it is unclear
whether these algorithms scale up to realistic multi-agent problems, where the state and
action spaces are large or even continuous. The discrete state-action space grows expo-
nentially in the number of state and action variables (dimensions). Because basic rein-
forcement learning algorithms like Q-learning estimate values for each possible discrete
state or state-action pair, this growth leads directly to an exponential increase of their
computational complexity.

3. Proposed Multi-Agent N-DQN
3.1. Proposed Architecture

As shown in Figure 4, the N-DQN uses several neural networks (
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experience according to the action are shared in one memory, and the best data is selected
and prioritized for learning.
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3.1.1. Hierarchization and Policy

N-DQN is defined by being largely divided into a main layer and a sublayer. First,
the sublayer is defined as an actor that actually performs an action, obtains rewards and
experiences, and stores them in memory, and the main layer extracts better data from the
learning data (Episode). It controls the behavior of the sublayers through policies, while
managing actual learning. Looking at the example in Figure 4, each of the four sublayers
( ) can perform four types of actions. At this time, the sublayer is implemented to
perform the action that has not been performed before and without overlapping with other
sublayers’ actions by the policy established by the main layer ( ). This implementation
policy is to increase learning efficiency by efficiently creating episodes in contrast to the
existing reinforcement learning algorithms, and it can be implemented as in Algorithm 1.

Algorithm 1 refers to the process in which each sublayer (
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) takes a non-
overlapping action through the history queue H created by the main layer ( ). History
queue H stores state and action records for all episodes stored in the existing replay buffer.
Therefore, each sublayer can verify the redundancy of its current target action by checking
the history queue H. The existing Q-Learning and DQN algorithms perform random actions
to acquire learning data that has not been performed [3]. This is implemented as a process
(e-greedy) in which a random number is generated, an action is performed when it is lower
than the threshold, and the process of gradually lowering the value of the threshold is
repeatedly performed. Because these procedures rely on random probabilities, their clarity
and efficiency are poor [6]. However, multi agent N-DQN does not rely only on random
probability through Algorithm 1, but it performs verification and by actively intervening in
the creation of learning data through policy, the efficiency of learning can be increased.

The main layer also creates and executes policies related to rewards to enhance the effi-
ciency of learning. In Figure 4, the main layer presents a goal to the sublayer. This is a result
from the fact that one of the factors that directly affects the performance of reinforcement
learning comes from the frequency of occurrence of rewards [7]. Reinforcement learning is
characterized by a significant change in learning difficulty according to the frequency and
probability of rewards according to an action [7].
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To solve this problem, N-DQN establishes a policy that divides and subdivides the
reward acquisition period. Specifically, learning is performed for a certain period of time
(time, step), and in an environment where reward acquisition occurs little, the principal
of NDQN is to enable the gradual learning by subdividing the reward acquisition section
based on the episode, which includes all information such as action, reward, and status.
This series of processes is shown in Algorithm 2. It refers to the process in which an
immediate reward is given by checking the subdivided reward acquisition period. It has
information about the predefined reward acquisition period in the form of a list, and the
reward value corresponding to each period is also maintained. Using these values, while
taking a random action at every step and calculating the reward for it, eventually after
checking whether it corresponds to reward acquisition, an additional reward is given to
the immediate reward.

Algorithm 1: Action Control Policy

1 Input: number of sublayer N, current states, target action a
2 Initialize: shared replay memory D to size N ∗ n
3 Initialize: N action-value function Q with random weights
4 Initialize: episode history queue H to size N ∗ n

5

Copy data to H from D
For 1, N do

For state in H do
if state = s then

For action in state.action do
if action != a then

do action
else

break
else

do action

Algorithm 2: Reward Policy

1 Input: current state s, immediate reward r
2 Initialize: list of lethal state L, dict of reward P

3
Initialize: the number of reward point K
After do action
Before return immediate reward r

4

For k in range (0, K)
if s = L[k] then

return r += P[L[k]]
else

return r

3.1.2. Parallel Processing and Memory Sharing

Actors in the sublayers performs actions simultaneously in parallel and the system is
implemented to share the result (episode) information in one replay buffer. To implement
such parallel processing and shared structure, this study referred to the parallel processing
structure using Apache Spark [8–10]. Figure 5 shows the parallel processing structure ap-
plied to N-DQN. The example used in the figure shows a structure in which two actors (Sub
Conv) are processed in parallel through the Apache Spark library, and it is actually based
on the research results showing that the performance is better than a single processing.
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Each episode result obtained by the actor performing parallel processing can be shared
and stored in the replay buffer. Due to this, the speed of data accumulation in the buffer is
improved in proportion to the number of actors. After that, the main layer efficiently selects
and learns data from the rapidly accumulated replay buffer. Algorithm 3 is a specification
for implementing the structure of sharing experience, which is one of the characteristics of
N-DQN. Each actor (
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) obtains the value of n number of action-value function Q
and stores the result in the shared replay buffer. As such, the learning data shared by several
actors enables collecting data faster than a general reinforcement learning algorithm.

Algorithm 3: N-DQN Experience Sharing

1 Procedure: training
2 Initialize: shared replay memory D to size N ∗ n
3 Initialize: N action-value function Q with random weights

4

Loop:
episode = 1, M do
Initialize state s1

For t = 1, T do
For each Qn do

With probability ε select random action at
otherwise select at = argmaxa Qn(st, a; θi)
Execute action at in emulator and observe rt and st+1
Store transition (st, at, rt, st+1) in D

End For
Sample a minibatch of transitions (sj, aj, rj, sj+1) from D
Set yj: =
rj For terminal sj+1
rj + γmax_(aˆ′) Qn(sj+1, a′; θi) For non-terminal sj+1

Perform a gradient step on (yj − Qn(sj, aj; θi))2 with respect to θ

end For
5 End Loop
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3.1.3. Training Policy

In general, the reinforcement learning algorithm stores data in the replay buffer
to remove the dependence between data, and then performs learning by selecting it ran-
domly [6]. However, not all data stored in the replay buffer have the same value. Exceptions
may occur depending on the environment, but in general, a specific experience may have a
more important value [11]. Various studies have been conducted to prioritize or classify
the importance of learning data according to these characteristics, and of them, the most
representative technology is the prioritized experience replay [11].

Because the N-DQN utilizes many actors according to the characteristics of the archi-
tecture, the accumulation speed of experience is faster than the general DQN. Therefore,
the mechanism for determining the value of experience by implementing prioritized expe-
rience replay based on this architecture is a factor that greatly affects learning performance.
The importance of experience is proportional to the amount that can be learned from the
current state through the experience. These quantitative values can be obtained through the
difference between the TD target defined as a TD-error and the actual V(S). It is generally
defined as Equation (2).

δj = Rj + γjQtarget
(
Sj, maxaQ

(
Sj, a

))
−Q

(
Sj−1, Aj−1

)
(2)

The quantitative value obtained through Equation (2) is implemented by creating a
probability distribution based on the size of TD-error as in Algorithm 4 and extracting a
value from the distribution. We can simply use the TD-error value, but it is known that
using the probability distribution shows better results [4,12–14].

Algorithm 4: Prioritized Experience Replay

1.
Input: minibatch k, step-size n, replay period K and size N, exponents α and β, budget T
and N action-value function Q

2. Initialize replay memory H = θ, ∆ = 0, p1 = 1
3. Observe S0 and choose A0 ~ π0(S0)

4.

for t = 1 to T do
Observe St , Rt , rt
for p = 1 to N do
Store transition (St−1 , At−1 , Rt , rt , St ) in H with maximal priority pt = maxi<t pi
end for
if t ≡ 1 mod K then
for j = 1 to k do
Sample transition j ~ P(j) = pαj / ∑i pαi
Compute sampling weight
wj = (N·P(j))−β/maxiwi
Compute TD-error
δj = Rj + rjQtarget(Sj, argmaxaQ(Sj, a))−Q(Sj−1, Aj−1)
Update transition priority pj ← | δ |
Gather weight-change
∆← ∆ + wj · δj · ∇θQ(Sj−1, Aj−1)
end for
Update weights θ ← θ + n · ∆, reset ∆ = 0
From time to time copy weights into target NN θtarget ← θ

end if
for p = 1 to N do
Choose action At∼ πθ(St)
end for

end for
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4. Evaluation Results and Analysis with Maze Finding
4.1. Environment

Figure 6 refers to the structure for performing reinforcement learning in the maze
game environment. The principle that the action at each state is performed is diagrammed.
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4.2. Training Features

The state is defined as the actor’s current position coordinates (x/y) in the game.
The actor is implemented to acquire information again each time an action is performed
because the location changes in real time according to the action. Action is defined
as the direct movement of an Actor. The actor can take one of the following actions
(up/down/left/right) and cannot pass through blocked walls. Reward is defined as check-
ing how close the state’s location information is to the goal in proportion to the number
of cells. Also, when reaching the goal, it is implemented to obtain a reward with a high
weight. Table 3 shows the object of learning in the maze game.

Table 3. Object of learning in the maze game.

Category Contents

State The coordinates of actor’s location (x/y)
Action Up/down is related to movement, and left/right pushes the ball

Rewards +1, on arrival at the goal
For movement of each step—(0.1/number of cell)

4.3. Implement and Performance Evaluation
4.3.1. N-DQN-Based Implementation

Four sublayers and one main layer were used between the implementation of reinforce-
ment learning in the maze game environment through N-DQN. The learning algorithm is
based on the DQN and includes the structure and functions of the architecture described in
Chapter 3. Figure 7 means the reward policy applied to the maze game. While performing
learning and exploration for a certain period, it establishes a policy to subdivide the reward
acquisition periods based on the time taken in each state and the number of steps to reach
the goal. In the reward, the sum of the rewards until the game is finished is calculated and
weighted by additionally implementing Equation (3), which is discounted by a factor of y
at each stage. In addition to this process, the stage in which the reward rapidly deteriorates
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is identified based on the state. The identified stage as such is given a negative reward to
the weight.

Rt =
T

∑
t′=1

Yt′−t rt (3)
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4.3.2. Performance Evaluation and Discussion

In this section, to evaluate the performance of the proposed multi-agent N-DQN
model, we compare and examine our results with Q-Learning and DQN algorithm under
the same environments and conditions. Figure 8 is the result of applying Q-Learning to a
5 × 5 maze environment. In conclusion, Q-Learning solved the problem within the targeted
400 steps, and it took less than 50 steps and showed good learning efficiency. In a maze of
small size, there is a high probability of achieving a goal even by unlearned actions. For this
reason, the simple storage method using Q-table shows higher efficiency than other models
using Q-network. Figure 9 is the result of applying DQN to a 5 × 5 maze environment. In
conclusion, the DQN algorithm failed to solve the problem within the targeted 400 steps.
The goal was successfully resolved in the result of additionally performing the number
of targeted steps by adding 25% (100 steps) compared to the previous one to check the
possibility of a logic error occurring between implementations.
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These experimental results suggest that the cause of failure is that the process of
selecting a learning sample from the replay buffer has randomness, and so the learning
efficiency is not good [6]. Additional implementations of algorithms that improve learning
efficiency, or sequential removal of the oldest data from the replay buffer, will also signifi-
cantly improve performance. Figure 10 is the result of applying N-DQN to a 5 × 5 maze
environment. In conclusion, the N-DQN solved the problem within the targeted 400 steps,
and it shows stable performance after about 100 steps. Unlike DQN, since various perfor-
mance improvement factors are implemented, the learning efficiency is very outstanding.
However, problems with high H/W or resource occupancy occurring in parallelization
of sublayers are identified. Q-Learning managed to solve the problem with the fewest
steps and time. The 5 × 5 sized maze does not have many episodes, and there is a high
probability of obtaining a reward even for an unlearned action. In other words, it was
judged that the difficulty of learning was too easy to draw a conclusion, so an additional
experiment was conducted by further expanding the size of the maze. Table 4 summarizes
5 × 5 learning results.
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Table 4. Summary of 5 × 5 learning results.

Model Goal Need Step Time Required
(400 Step)

Q-Learning Success 50 step 46.7918 s
DQN Fail 500 step 57.8764 s

N-DQN Success 100 step 66.1712 s

Figure 11 shows the result of applying Q-Learning to a 10 × 10 maze environment.
Q-Learning failed to solve the problem within the targeted 700 steps. However, if the
number of learning steps was increased, it showed an upward curve to an extent that it
is enough to reach the goal. In fact, it was confirmed that the goal was achieved from the
result of performing about 1200 steps of learning by increasing the goal value by 1.7 times.
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Figure 12 is the result of applying the DQN to a 10 × 10 maze environment. The DQN
failed to solve the problem within the targeted steps as in the case of the 5 × 5 maze. This
shows that it sometimes resulted in good performance curves in several experiments, but it
is judged to be a factor of luck. Learning efficiency started to appear when 1400 learning
steps were performed, when doubling the number of learning steps. From the result of
observing the actor’s movement through rendering to consider the cause of the performance
degradation, it was confirmed that when entering the wrong section of the maze, it was not
possible to get out and performed an inefficient action. Therefore, a large amount and number
of state and actions occurs in episodes, and the performance of learning is greatly reduced.

Figure 13 is the result of applying the N-DQN to a 10 × 10 maze environment. The
N-DQN succeeded in solving the problem within the targeted 700 steps, and it showed
consistent and stable learning efficiency. When about 400 steps have passed, learning at
a certain level or more has already been completed. These results are most influenced
by policies that control learning and action [15]. By implementing prioritized experience
replay and polices of subdividing the reward acquisition stage, the positive-bias problem
of the existing reinforcement learning hardly occurred, and it is estimated that the problem
of lowering learning efficiency in the reward-sparse environment has also been improved.
However, as before, it shows a very high share of hardware resources due to the nature of
the architecture that uses a large number of actors in parallel. This can be greatly improved
by turning off the rendering responsible for the visualization of the game screen.
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Table 5 is a summary of the experimental results. Only the N-DQN solved the problem
within the targeted stage, and compared to the DQN, it showed about 10% faster perfor-
mance speed. In terms of learning efficiency, the reward value of 0.75 obtained through
700 steps by Q-Learning was obtained through about 200 steps by N-DQN. This means a
performance difference of about 3.5 times. Even when the reward was delayed, the N-DQN
model showed stable learning performance.

Table 5. Summary of 10 × 10 learning results.

Model Goal Need Step Time Required
(400 Step)

Q-Learning Fail 1200 step 379.1281 s
DQN Fail step 427.3794 s

N-DQN Success 700 step 395.9581 s
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5. Evaluation Results and Analysis with Ping-Pong

In this section, we have implemented a ping-pong game to verify the performance of
our multi-agent N-DQN [16].

5.1. Environment

Figure 14 refers to the structure for performing reinforcement learning in the
ping-pong game.
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5.2. Training Features

State is defined in the game as the current position coordinates of the actor’s paddle
and the current position of the ball. The actor’s paddles and balls change their positions in
real time according to actions, so it is implemented to acquire information again every time
an action is performed. Action is defined as a direct movement of the actor’s paddle. The
actor takes one of the four actions up/down/left/right. Because the player wins the round
if the opponent’s paddle fails to receive the ball, a high-weighted reward is given. On the
other hand, because the player loses the round if the actor’s paddle misses the ball, reward
is given negatively. Table 6 shows the objects of leaning in the maze game.

Table 6. Objects of learning in the maze game.

Category Contents

State Coordinates of the current position of the paddle (x/y)
Coordinates of the current position of the ball (x/y)

Action 1 action of up/down/left/right actions

Rewards +1, if the opponent’s paddle misses the ball
−1, if the ball is missed by the actor’s paddle, otherwise 0

5.3. Implement and Performance Evaluation
5.3.1. N-DQN-Based Implementation

In order to implement the reinforcement learning in the ping-pong game environment
through N-DQN, four sublayers and one main layer were used. Figure 14 shows this
hierarchical structure and architecture. The learning algorithm was based on the DQN,
and it includes the structure and functions of the architecture described in Section 3. As a
pre-preparation process for reinforcement learning, the game is divided into frames and
processed in gray scale [17]. It is based on the research results that this process affects the
recognition rate [17,18].

After that, after adjusting the image frame to the size of 80 × 80, four frames are
stacked to form an 80 × 80 × 4 array. The neural network has a structure of a total of
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three layers as shown in Figure 15, and the last hidden layer consists of 256 fully connected
ReLUs. Among the implementations of the learning algorithm, the most common structure
is utilized based on the DQN algorithm. When performing an action in a given state
through a function defined as a Q-value as shown in Equation (4) below, the maximum
expected value is approximated and used [6].

Q∗(s, a) = E[Rt |st = s, at = a] (4)
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The learning structure defined by Equation (3) can be implemented in the same way
as Algorithm 5. The code of the algorithm was written based on DQN. As the ball and the
opponent’s paddle move organically, the value of the future value Q(at) brought by each
action at of the actor paddle may be lowered. To solve this problem, we implemented a
centralized critic policy that individualizes objects is necessary [19,20].

Algorithm 5: PING-PONG Game’s DQN Training

1. Procedure: training
2. Initialize: replay memory D to size N
3. Initialize: action-value function Q with random weights

4.

Loop:
episode = 1, M do

Initialize state s_1
for t = 1, T do
With probability ε select random action a_t
otherwise select a_t = argmax_a Q(s_t,a; θ_i)
Execute action a_t in emulator and observe r_t and s_(t + 1)
Store transition (s_t,a_t,r_t,s_(t + 1)) in D
Sample a minibatch of transitions (s_j,a_j,r_j,s_(j + 1)) from D
Set y_j:=
r_j for terminal s_(j + 1)
r_j + γ*max_(aˆ′ ) Q(s_(j + 1),a′; θ_i) for non-terminal s_(j + 1)
Perform a gradient step on (y_j-Q(s_j,_j; θ_i))ˆ2 with respect to θ

end for
5. End Loop
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To maximize the learning efficiency, segmentation of the reward acquisition structure
is also applied. A policy to subdivide the reward acquisition period is established based
on the time taken in each state after performing learning and exploration for a certain
period, and the number of steps to reach the goal. The sum of the rewards until the game is
finished in the reward is calculated, and weighting by implementing Equation (5), which
is discounted by a factor of y at each stage added. This has the purpose of carrying out
the goal in the shortest period, which is consistent with the segmenting of the reward
acquisition structure.

Rt =
T

∑
t′=1

Yt′−trt (5)

5.3.2. Performance Evaluation and Discussion

To evaluate the performance of the N-DQN architecture proposed in this paper, we
compare our result against DQN algorithm, with the same environments and conditions.

Figure 16 is the result of applying the DQN algorithm [21–24] to the ping-pong
game environment. In conclusion, although the application of reinforcement learning that
guarantees a certain level of performance through many training steps was successful, there
are often intervals in which the performance deteriorates. It shows inefficient performance
because it relies on randomness in the process of exploring and creating new episodes.
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Figure 17 is the result of applying N-DQN to the ping-pong game environment. In
conclusion, it succeeded in applying reinforcement learning that guarantees a certain level
and compared with the performance result of the DQN algorithm [25–28], it responds more
flexibly to the new episode pattern. Also, there is almost no positive-bias problem. However,
it did not significantly reduce the number of steps required for learning than expected,
and it failed to completely exclude the section where the performance deteriorated. We
still need to find a better solution to this and for the time being, for further performance
improvement, adding heuristics to the reward structure can be a solution [29,30].
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6. Conclusions and Future Research

Since the agent does not have enough knowledge on its environment, the correspond-
ing logical approach allows him to formulate plans that are not guaranteed to work. Agents
almost never have access to all the necessary information about their environment in a
delayed reward system such as games. Therefore, agents must act under conditions of
uncertainty, which makes applying the traditional Q learning algorithm difficult to sparse
reward environment.

In this study, we suggest and implement multi-agent N-DQN model to improve
reinforcement learning by focusing on various factors and conditions that affect the per-
formance of reinforcement learning, especially for the delayed reward systems, which are
not easy to apply with general Q-learning [21–24]. The N-DQN has a structure in which
multiple neural networks are layered by applying and extending the structure of HDQN so
that NDQN can perform actions based on policies simultaneously in parallel. In addition,
several additional ideas and technologies such as prioritized experience replay and subdivi-
sion of reward policies were adopted to improve the performance. The N-DQN, which has
many factors of performance improvement, showed better results in the same environment
than general reinforcement learning algorithms in actual performance evaluation.

The N-DQN shows about 3.5 times higher learning performance compared to the
Q-Learning algorithm in the reward-sparse environment, and compared to the DQN, it
showed about 1.1 times faster goal achievement speed. In addition, through the implemen-
tation of prioritized experience replay and the implementation of the reward acquisition
period segmentation policy, the positive-bias of the existing reinforcement learning hardly
occurred, and several problems of lowering learning efficiency were also improved. We
have showed our implementation result with maze finding and ping-pong games.

According to the characteristics of the architecture that use many numbers of actors
in parallel, the need for additional research on light-weighting the system for further
performance improvement has been raised. It is because the multi-agent N-DQN shows a
higher H/W share than general reinforcement learning models. [9] Consequently, a separate
interest in studying multi-agent simulation and interaction of agents is an extension of the
autonomy of agents by endowing them with the ability to draw logical conclusions and
make decisions. According to these characteristics, we may think of two different directions
for future research. One is more for parallel processing the agents, which implies more
sophisticated algorithm for the distributed agents how to interact each other to expedite
the learning speed. The other is to work on the weight reduction of the neural network
structure to find a better solution (i.e., movement in the example games). We also have a
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plan to do some experiments on control systems in smart factory environment, which will
prove that the model is suitable for self-learning in practical applications [31–34]. Because
of the characteristics of the policy-based system, some heuristics are used in proving those
rules. Hence, the system performance may depend on those heuristics. This is more like
a basic XAI (Explainable AI) problem. The system presented in the paper is for delayed
reward system, so it may need to make some modifications to the algorithm for non-delayed
reward systems.
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