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Abstract: Solar irradiance forecasting has been an essential topic in renewable energy generation.
Forecasting is an important task because it can improve the planning and operation of photovoltaic
systems, resulting in economic advantages. Traditionally, single models are employed in this task.
However, issues regarding the selection of an inappropriate model, misspecification, or the presence
of random fluctuations in the solar irradiance series can result in this approach underperforming.
This paper proposes a heterogeneous ensemble dynamic selection model, named HetDS, to forecast
solar irradiance. For each unseen test pattern, HetDS chooses the most suitable forecasting model
based on a pool of seven well-known literature methods: ARIMA, support vector regression (SVR),
multilayer perceptron neural network (MLP), extreme learning machine (ELM), deep belief network
(DBN), random forest (RF), and gradient boosting (GB). The experimental evaluation was performed
with four data sets of hourly solar irradiance measurements in Brazil. The proposed model attained
an overall accuracy that is superior to the single models in terms of five well-known error metrics.

Keywords: solar irradiance forecasting; heterogeneous ensemble dynamic selection model;
neural networks

1. Introduction

Energy production plays a major role in modern societies, impacting the economy
and the development of several countries [1]. Over the past years, energy production
has primarily relied on the employment of fossil fuels, which are still the main energy
production source [2]. However, fossil fuels are one of the primary emission sources of
CO2, which also contributes to greenhouse effects and global warming [3]. Moreover, it is a
non-renewable energy source, and it is being consumed more than it is produced.

Alternatively, solar energy is an important renewable energy source that produces
on average 1.74 × 1017 W in 1 year, which is meets energy demands worldwide [4]. Solar
energy is considered a promising alternative to fossil fuels. However, it has intermittent and
volatile characteristics due to factors, such as precipitation, temperature, wind velocity, and
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atmospheric pressure [5,6]. These volatile characteristics can produce voltage fluctuations,
possibly leading to instability in the power grid if they are not taken into account [7].
Moreover, the integration of traditional power systems with renewable power sources
requires a precise balance between the demand and supply of power [6,8]. If the energy
demand surpasses the energy supply, destabilization of the power grid can occur, resulting
in power quality degradation or even grid damage.

Conversely, if the demand is lower than the supply, energy will eventually be lost,
and wastage can occur because of the possible high costs associated with the storage
of solar energy [7]. Considering the prediction of the demand and supply, the strategic
section of energy plants decides whether energy is purchased. Prediction errors can lead to
extra charges for the final consumer [9]. Therefore, accurate forecasting of solar irradiance
plays a major role in power grid systems, estimation of reserves, scheduling, congestion
management, use of produced energy in the energy market, and reduction of energy
production costs [5,9,10].

Traditional statistical methods, such as the autoregressive integrated moving average
(ARIMA) and seasonal ARIMA (SARIMA), are popular due to their simplicity and a
well-defined Box and Jenkins methodology is used to select a suitable configuration of
the model [11]. However, ARIMA models assume a linear correlation structure between
forecasts and past data, which may underperform in the presence of nonlinear patterns.
Considering that real-world data is often composed of a combination of linear and nonlinear
patterns [12], and solar irradiance data present intermittent and volatile characteristics, the
ARIMA models may perform worse than other methods in the literature [5,13].

In contrast to linear statistical models, forecasting methods based on machine learning
are more suitable for mapping nonlinear patterns [13] in data. Machine learning methods,
such as artificial neural networks (ANNs) and support vector machines (SVMs), are flexible
data-driven models and have been used in the irradiation forecasting context [13]. However,
machine learning-based models can also present problems related to model misspecification,
overfitting, and underfitting [14–16], which leads to a poor generalization capacity [17].

To overcome the limitations of single and machine learning models, one possible
strategy is to combine the forecasts of several models through the employment of ensembles
to improve the system’s accuracy [18]. This strategy is promising because it reduces the
risk of selecting an inappropriate model. In addition, it has the flexibility of the use
of different combination strategies and different model generation methodologies [19].
Ensemble learning strategies are often composed of three stages: generation, pruning,
and combination [19,20]. The ensembles can be classified according to the base learners
being homogeneous or heterogeneous. Homogeneous ensembles are composed of the same
learning algorithm while heterogeneous ones are often composed of different ones [19]. The
main issue is that ensembles must be as accurate and diverse as possible, and the diversity
control must be performed in the generation stage. In this sense, heterogeneous ensemble
approaches are expected to produce more diverse models, considering the different learning
algorithms of the base models [19,21].

In the context of solar irradiation forecasting, several ensemble learning approaches
have employed a static ensemble of forecasters through time [13,22–25]; however, consider-
ing the volatile and dynamic characteristics of solar irradiance, static ensemble approaches
can present inaccurate results since the best model could change over time. This dynamic
characteristic is expected because solar irradiance may be affected by weather condi-
tions [4]. Therefore, a dynamic model selection strategy [14] could improve the results over
static ones.

In this work, an ensemble based on dynamic selection is proposed for solar irradiance
forecasting. The proposed model, referred to as heterogeneous ensemble dynamic selection
(HetDS), chooses the most appropriate set of models from a pool of forecasters comprising
ARIMA, support vector regression (SVR), multilayer perceptron neural network (MLP),
extreme learning machine (ELM), deep belief network (DBN), random forest (RF), and
gradient boosting (GB). The best model in the pool is selected based on a local accuracy
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procedure, which defines a region of competence of size k. Experiments were conducted
using the base models and static ensemble approaches, and the results demonstrate that
the proposed method achieves the overall best results, considering the root mean square
error (RMSE) and mean absolute percentage error (MAPE), mean absolute error (MAE),
average relative variance (ARV), and index of agreement (IA), based on evidence provided
by Friedman–Nemenyi [26] hypothesis testing. Moreover, the proposed model presents the
following advantages:

• Reduces the risk of selecting an inappropriate model;
• Dynamically searches for the most suitable forecaster to predict a given local pattern

in a solar irradiance series;
• It is an agnostic model since other forecasting models can be explored in the pool;
• Increases the generalization capacity of the system.

The rest of the paper is divided as follows: the related works are discussed in Section 2;
Section 3 describes the models used to perform solar irradiance forecasting; Section 4
presents our proposal to solve the same problem; Section 5 shows the details of the database
used, computational results, and a discussion; and finally, Section 6 presents the main
conclusions and future works.

2. Related Works

Considering the volatility of irradiation data and the importance of obtaining accurate
results in power grid systems, several models have been employed to improve the accuracy
of forecasts. In general, forecasting models for solar irradiance are classified into physical
models, empirical, statistical, and machine learning models [27]; however, hybridization
between these classes of models is also possible and tends to improve the results when
compared with single model approaches [28,29].

Physical models, such as numerical weather prediction (NWP), are complex structures
that consider several aspects of the environment and the irradiance data [30]. In contrast,
empirical models are less complex and often employ linear and nonlinear regressions to
perform estimates [31]. However, empirical models may present limited accuracy.

Statistical models, such as the autoregressive integrated and moving average model
(ARIMA) perform temporal mappings over past data and produce forecasts, and have

been used in several irradiance forecasting applications. Shadab et al. [32] employed a
multiplicative seasonal ARIMA model to forecast monthly average isolation data consid-
ering different sky conditions. Voyant et al. [33] employed an ARIMA to predict global
irradiation. In this work, the model is used in conjunction with MLP networks, and the
proposed approach is compared with single models.

Machine learning models are not only capable of performing nonlinear mappings
in the data but also present some flexibility regarding noisy data and tend to achieve an
improved performance since real-world data often composed of nonlinear patterns. The
employment of SVM models in irradiation tasks has achieved promising results. Chen
and Li [34] used the SVM models, considering exogenous variables, such as sunshine
ratio, maximum and minimum air temperature, relative humidity, and atmospheric water
vapor pressure. Moreover, Bendiek et al. [35] employed an optimization method for several
models, such as SVM and MLP, and then performed experimental comparisons. The results
indicated that SVM with the proposed optimization achieved the best results.

Random forests (RFs) are part of the ensemble class of models, where several regression
trees are employed and combined to achieve the final result. This approach is interesting
to solar radiation forecasting since the data may present high volatility, and it mitigates
the chance of selecting an inappropriate model. Srivastava et al. performed several
comparisons among machine learning models, such as classification and regression trees
(CART) and random forests, using data from India, and the RF model obtained the best
results. Huang et al. [36] compared several methods using exogenous data and concluded
that the RF method achieved the smallest errors. Another algorithm employed in irradiation
forecasting tasks is gradient boosting (GB), which is based on a tree-based ensemble learning
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technique. Park et al. [37] employed LightGBM to perform multi-step ahead forecasting in
irradiation data. Moreover, Fan et al. [38] used an extreme gradient boosting algorithm and
SVM to predict daily global solar radiation using temperature and precipitation in humid
subtropical climates.

The work of Elminir et al. [39] was one of the pioneering works that applied neural
networks when considering solar irradiance components. In this investigation, the au-
thors predicted infrared, ultraviolet, and global insolation using an MLP trained by the
Levenberg–Marquardt algorithm. The database addressed was from Egypt. They also
applied the trained network considering a database from Helwan and Aswan. In both
cases, the accuracy was up to 90%.

MLP was also applied to generate synthetic daily solar radiation series using five
exogenous variables as inputs: daily clear sky global radiation, cloud cover, temperature,
water vapor, and ozone. They proposed that the model can generate good predictions for
locations in which there are no ground measurements. The results proved the generalization
capability of MLPs.

The paper from Salcedo-Sanz et al. [40] considers the outputs of the WRF meso-scale
model as inputs of an ELM to predict solar irradiation. They proposed the application of the
coral reefs optimization algorithm with species (CRO-SP) as a feature selection procedure
to minimize the number of input variables. The same author proposed the use of coral
reefs optimization (CRO) hybridized with an ELM to predict solar irradiation [41]. A
binary-encoded CRO is used as a variable selection model. A comparison was performed
considering the performances of the genetic algorithm replacing the CRO, and the SVR,
MARS, and MLR as the predictor. The results revealed the viability of the proposed method.

The deep belief network was applied to perform the monthly solar forecasting task
considering Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data in
the work of Ghimire et al. [42]. The authors also evaluated the use of 15 feature selection
algorithms among the filters, wrappers, and bio-inspired approaches. The computational
results revealed that the model can overcome MLP, decision trees, RF, and GB. A similar
architecture (functional DBN) was proposed together with embedding clustering for daily
global solar radiation forecasting by Zang et al. [43]. The model could overcome the
stand-alone DBN, functional DBN, and other ML-based models.

3. Background

This section describes the models used to perform solar irradiance forecasting.

3.1. Autoregressive and Moving Average Model

The autoregressive and moving average models (ARMA) belongs to the Box and
Jenkins family of linear models [11]. While the AR part considers the lags of the series, the
MA creates the output response addressing random shocks at−P−j [44], which are weighted
by θj coefficients, as in Equation (1):

x̂t = φ1xt−P + . . . + φpxt−P−p+1 − θ1at−P − . . .− θqat−P−q+1 + at, (1)

where φi and θj are the autorregressive and moving average coefficients, respectively; P
is the number of steps ahead considering the direct approach; and i = 1, 2, . . . , p and
j = 1, 2, . . . , q, are free coefficients [44].

The most usual way to apply the model considers the random shocks at as equivalent
to the residual set of the previous samples [45].

Finally, to adjust the free coefficients of the ARMA model, we used the maximum
likelihood estimator (MLE), which is the usual way [11]. Note that this model can also be
named the autoregressive and moving average model (ARMA) when no differentiations
are performed in the time series [11].
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3.2. Random Forest

The random forest (RF) algorithm was introduced by Breiman in 2001 [46]. It is a
learning method used for classification and regression that operates by building multiple
decision trees during the training and production of the final prediction.

The name came from random decision forests that were first proposed by Ho [47].
The method combines Breiman’s idea of bagging and the random selection of features,
independently introduced by Ho [47] and Amit and Geman [48], to build a collection of
decision trees with a controlled variation.

The trees used in RF are based on binary partitioning trees. These trees partition the
predictor space using a sequence of binary divisions on individual variables. The root
node of a tree comprises the entire predictor space. The nodes that are not split are called
terminals and form the final partition of this space. Therefore, each non-terminal node is
divided into two descending nodes, according to the value of the predictor variables. A
division is determined by a division point or a continuous predictor variable. When the
points for the predictor are less than the split point, the decision is made to go to the left,
and the remainder goes to the right [49].

3.3. Gradient Boosting

Decision trees have several important characteristics for forecasting tasks. However,
decision trees’ individual predictive power can be enhanced by forming a prediction
committee, which is the central idea of boosting techniques.

Boosting is a generic strategy to improve the performance of any learning algorithm.
The method was proposed to deal with pattern classification problems, with the introduc-
tion of the AdaBoost [50]. Subsequently, several generalizations emerged from the original
strategy, among them, the gradient boosting algorithm [51], which can be applied to both
classification and regression problems, using any differentiable objective function.

The so-called boosting methods are based on the principle of minimizing a cost
function through the aggregation of multiple weak models (weak learners) to build a more
robust model using the gradient method as a procedure, which comprises a systematic
strategy for the construction of forecast committees [51].

In a boosting method, the performance evaluation of the models is performed se-
quentially. The criteria in the next step can be changed according to the evaluation in the
previous step: if the first evaluator indicates a low score for a criterion, this score will be
considered by the next evaluator. Thus, the final assessment is more accurate, and the
process is more dynamic [52].

In the gradient boosting method, errors are minimized by the gradient descent algo-
rithm. The proposal avoids local minimum points so that the second-best criterion receives
the best rating by adjusting the criteria to capture the best performance [53].

3.4. Support Vector Regression

Support vector regression (SVR) [54] is based on the structural risk minimization,
characterized by a convex optimization problem, generating a single global minimum. The
objective is to find a function in the form of 2:{

f
∣∣∣ f (x) = wTx + b, w ∈ <d, b ∈ <

}
(2)

where w is a weight vector with components determined by the regularized risk function, x
is the input vector, and b is the bias.

In regression problems, the model provides continuous outputs to the training data,
considering a maximum deviation of ε of the expected value [55]. However, the cost
function is not computed for values inside the region limited by ε. In addition, the use of
kernel functions makes it possible to perform nonlinear mappings in the data to a feature
space in which a linear function is found.
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3.5. Multilayer Perceptron

Multilayer perceptron (MLP) is a famous architecture of neural networks. It is a
feedforward approach since the information present in the inputs flows in just one direction,
from the input layer to the output layer. The MLP is a universal function approximator
because it can map any continuous, nonlinear, limited, and differentiable function with a
predetermined error threshold.

The most usual way to train the weights of MLP is the backpropagation algorithm [56],
which uses the information of the gradient function to modify the values of the weights
in order to reduce the output error. In this work, we address an MLP with three layers
(input, hidden, and output layers), and a sigmoid function is employed as an activation
function [57].

3.6. Extreme Learning Machines

The extreme learning machines (ELMs) are feedforward neural networks but contain
just a single hidden layer [58]. The main difference between them lies in the training
process. While the MLP uses an iterative process to adjust the weights of the network, the
ELM just modifies the weights of the hidden layer.

To perform the training, a linear regression problem is considered. The proposers of
the architecture, Huang et al. [59], used the Moore–Penrose generalized inverse operation
since it simultaneously minimizes the norm of the output weight vector and the mean
square error of the output response [60]. The authors also proved that the insertion of a
new randomly generated neuron in the hidden layer led to a decrease in the output error.

3.7. Deep Belief Network

The deep belief network (DBN) is a deep learning model that was introduced by
Hinton et al. in 2006 [61]. It is a probabilistic generative graphical model created to
overcome the limitations of traditional models, such as slow convergence and convergence
to a local minimum, among others.

A DBN is composed of restricted Boltzmann machines (RBMs), in which each one
presents two layers, visible and hidden. In this case, each hidden layer acts as a visible layer
to the next RBM. The first two layers present indirect connections that create an associative
memory. On the other hand, the lower layers present direct connections [62].

The training process follows a greedy approach so that each layer is adjusted until
the global optimum is found, starting from the visible layer of the RBM. Then, the hidden
layer is tuned, and its outputs are used as inputs to the next RBM layer until the end of the
network [63].

4. Proposed Method

The proposed model comprises two stages: (i) model generation and (ii) model
selection. The model generation stage performs the training of all forecasting methods
(ARIMA, GB, RF, SVR, DBN, ELM, MLP) to produce a pool of models. The model generation
stage is crucial to the ensemble, considering that the models should be as accurate and
diverse as possible. The accuracy is achieved through a search methodology over the
space of the possible parameter configurations of all models, and diversity is achieved
because different models with distinct learning algorithms are used in the pool. The model
generation architecture is presented in Figure 1.

The dynamic model selection stage occurs as new test instances arrive at the proposed
model, HetDS(m,k) (source code available at: https://github.com/domingos108/solar_
forecasting, accessed on 5 March 2022), standing for a heterogeneous ensemble dynamic
selection. Based on the local performance, the proposed method selects the best set models
with a size m from the pool for each new test instance. It defines a region of competence of
a size k, composed of the k nearest instances in the validation set. Therefore, all models in
the pool are evaluated in this region employing the RMSE metric, and the m models with
the lowest RMSE are selected to perform the forecast of the test instance.

https://github.com/domingos108/solar_forecasting
https://github.com/domingos108/solar_forecasting
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The Euclidean distance metric is employed to determine the k nearest instances on
the validation set. Therefore, different models can be selected for each test instance to
improve the forecast accuracy. The architecture of the dynamic model selection is presented
in Figure 2. The configuration of the number of models m used in the dynamic ensem-
ble and the number of nearest instances k plays a major role in the performance of the
proposed system.
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Figure 2. Dynamic model selection stage.

Lower and higher values of m increase the chance of selecting inappropriate model(s)
since there is no guarantee that the best model(s) in the region of competence (validation
set) will also demonstrate an improved generalization capacity on the test set. In the
first scenario, when the value of m is near 1, the selected model may not achieve an
improved performance on the test set, whereas in the second situation, when the value
of near the size of the pool, it increases the chance of selecting inaccurate models for the
ensemble combination.

Moreover, solar irradiation data presents dynamic characteristics due to exogenous
variables. In addition, the value of k defines the size of the region of competence, which
should represent the dynamics of the system. The models are combined through a median
operator [64] since it is more robust to outliers. It is essential to mention that if the value of
m = 1, then no combination is performed.
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5. Experiments

The experiments were conducted on four datasets of solar plants from four cities in
Brazil. All data correspond to hourly measures of solar irradiance, considering sunlight
times, which is generally between 6:00 and 18:00 in Brazil. The data was split into three
disjoint sets to perform training and model selection, and the last set was used for testing.
To select the model parameters, a grid search procedure was conducted in the parameter
space defined in Table 1. Regarding the ARIMA, p and q are the AR order and the MA
order, respectively. Concerning the SVR, γ is the kernel parameter, C is the regularization
factor, and ε is the maximum deviation of the observed value.

Table 1. Parameter configuration of the models and algorithms used.

Model Parameters Option

ARIMA p,d,q Hyndman Method [65]

MLP

Algorithm Backpropagation

Activation Function Sigmoid

Number of Hidden Layer Nodes 20, 50, 100

ELM

Algorithm Moore-Penrose pseudo-inverse

Activation Function Hyperbolic Tangent

Number of Hidden Layer Nodes 20, 50, 100, 200, 500

SVR

Kernel RBF

γ 0.1, 0.01, 0.001

C 10, 100, 1000

ε 0.1, 0.01, 0.001

GB

Number of estimators 50, 100, 200

Max depth 5, 10, 15

Max features 0.6, 0.8, 1

Sub sample 0.6, 0.8, 1

Learning rate 0.1, 0.3, 0.5

RF

Number of estimators 50, 100, 200

Max depth 5, 10, 15

Max features 0.6, 0.8, 1

DBN

Number of Hidden Layer Node 100, 200

Learning rate RBM 0.01, 0.001

Learning rate 0.01, 0.001

The ARIMA model employed a stepwise methodology to select an appropriate
model [65]. To perform the predictions, we used 4758 hourly samples of the solar irradia-
tion series so that 60% were used for training (the first 2856 samples), 20% for validation
(951 samples), and 20% for testing (the last 951 samples). Moreover, the data sets used in
the experiments were scaled to the range [0.1, 0.9] [66].

Several configurations of the proposed model were tested, using the m best models
varying in the set 1, 3, 5 and the size of the region of competence varying in the set 5, 10, 20.
Moreover, static ensemble strategies were also tested using mean and median combination
operators using the same models from the pool.

5.1. Data Description

The databases are related to four major cities in Brazil: Florianópolis, Fortaleza,
Salvador, and São Paulo.
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Florianópolis is the capital of Santa Catarina state, located in the south of the country.
It is a coastal town. Fortaleza is the capital of Ceará state, in the Brazilian northeast. It
is also a coastal town relatively close to the equator line. Salvador is the capital of Bahia
state, located in the Brazilian northeast region. São Paulo city is the major city in Brazil. It
is almost on the Tropic of Capricorn. The red marks in Figure 3 represent the locations of
these cities on a map of Brazil. Considering the cyclic behavior of solar irradiation, where
maximum values are often achieved at 12:00 and minimum values at 6:00 and 18:00, all
inputs were analyzed in a window size of 12. Moreover, this value can also be achieved
through an autocorrelation plot.
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Figure 3. Locations of the solar irradiation meters in Fortaleza, Florianópolis, Salvador, and São
Paulo. The satellite map is from Google Maps (Map data©2020 Google; https://www.google.
com/maps/place/Brazil/, accessed on 15 January 2022); the satellite is from Google Earth Pro
(Mapdata©2020 Google; https://www.google.com/maps/@-23.6815315,-46.8754814,10z, accessed
on 15 January 2022). The maps were edited with Microsoft Power Point (version 16.28-19081202).

As can be seen, the longest distance is between Fortaleza and Florianópolis, almost
3400 km. Due to this, it is clear that the sunlight may present different magnitudes along
the year considering all cities. All databases are composed of 4758 hourly samples of solar
irradiation (kJ/m2). We considered the measures from 1 January 2020 to 31 December 2020,
the whole year. However, we selected just the samples from 6:00 to 18:00 during each day.

Table 2 presents the geographical location of the solar irradiation stations and the
descriptive statistics of the corresponding series. Note the difference in the altitude of São
Paulo among the others, the only city that is not a coastal town. The acronyms STD and CV
represent the standard deviation and coefficient of variation, respectively.

https://www.google.com/maps/place/Brazil/
https://www.google.com/maps/place/Brazil/
https://www.google.com/maps/@-23.6815315,-46.8754814,10z
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Table 2. Location of the solar irradiation stations and descriptive statistics regarding the mean and
deviation of solar irradiation.

Station Coordinates Altitude Mean STD CV

Florianopolis −27.0253;
−48.620096 4.87 1230.7 1101.2 0.895

Fortaleza −3.815701;
−38.537792 29.55 1223.9 883.18 0.722

Salvador −13.551500;
−8.505760 47.56 1348.2 1122.6 0.833

São Paulo −23.496294;
−6.620088 785.64 1355.4 1204.6 0.889

5.2. Evaluation Metrics

In this work, we consider the following metrics to perform a comparative analy-
sis among the forecasting models presented, the root mean squared error (RMSE), the
mean absolute percentage error (MAPE), the mean absolute error (MAE) the average
relative variance (ARV), and the index of agreement (IA) [67,68], which are given by
Equations (3)–(7), respectively:

RMSE =
1
N ∑N

t=1

(√
(x̂t − xt)

2
)

, (3)

MAPE =
100
N ∑N

t=1

∣∣∣∣ x̂− xt

xt

∣∣∣∣, (4)

MAE =
1
N

N

∑
t=1
|x̂t − xt|, (5)

ARV =
∑N

t=1(x̂t − xt)
2

∑N
t=1( x̂t − x)2 , (6)

IA = 1− ∑N
t=1( x̂t − xt)

2

∑N
t=1( |x̂t − x| − |xt − x|)2 , (7)

where N is the number of samples, xt is the observed value in time t, xt is the predicted
value, and x is the mean of the series. The percentage difference (PD), given by Equation (8),
is calculated to compare the performance of HetDS with the other approaches:

PD =
Metricmodel −MetricHetDS

Metricmodel
·100, (8)

where MetricHetDS and Metricmodel are the RMSE values attained by HetDS and the compar-
ative models used in the experimental evaluation, respectively. The higher the PD value,
the better the RMSE value obtained by HetDS with respect to the model under comparison.

5.3. Results

The performance of the forecasting models was assessed based on the test set (the last
951 samples) of each series. For the sake of simplicity, the proposed method is henceforth
referred to as HetDS(m,k), standing for a heterogeneous ensemble dynamic selection with
parameters m (best-selected models) and k (size of the region of competence). Table 3
presents the results achieved by the models described in Section 2, ARIMA, DBN, ELM,
GB, MLP, RF, and SVR, and the variations of the proposed models. The values presented
are the average of 10 independent simulations, and the best results are highlighted in bold.
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Table 3. Performance of HetDS(m,k) and literature models in terms of RMSE, MAPE, MAE, ARV
and IA for all data sets of solar irradiance. The best values attained in each data set are highlighted
in bold.

Series MODEL RMSE MAPE MAE ARV IA

Fo
rt

al
ez

a

ARIMA [32,33] 0.0824 21.21 0.0639 0.1181 0.9705
RF [69,70] 0.0742 13.06 0.0563 0.1170 0.9739
GB [37,38] 0.0746 13.63 0.0558 0.1155 0.9739

SVR [34,71] 0.0629 12.87 0.0457 0.0695 0.9830
MLP [39,72] 0.0676 14.65 0.0516 0.0853 0.9797
ELM [40,41] 0.0718 12.95 0.0528 0.1037 0.9762
DBN [42,43] 0.0660 11.89 0.0481 0.0839 0.9803
HetDS(1,5) 0.0626 11.07 0.0447 0.0689 0.9831

HetDS(1,10) 0.0617 10.73 0.0436 0.0672 0.9836
HetDS(1,20) 0.0612 10.67 0.0434 0.0660 0.9838
HetDS(3,5) 0.0607 10.77 0.0435 0.0665 0.9839

HetDS(3,10) 0.0605 10.61 0.0429 0.0659 0.9841
HetDS(3,20) 0.0600 10.57 0.0426 0.0646 0.9844
HetDS(5,5) 0.0618 11.31 0.0448 0.0715 0.9830

HetDS(5,10) 0.0616 11.23 0.0445 0.0710 0.9832
HetDS(5,20) 0.0616 11.22 0.0445 0.0708 0.9832

Hetmean 0.0644 12.80 0.0479 0.0807 0.9812
Hetmedian 0.0647 12.30 0.0477 0.0807 0.9811

Fl
or

ia
nó

po
lis

ARIMA [32,33] 0.1024 24.74 0.0746 0.2135 0.9478
RF [69,70] 0.0938 21.28 0.0671 0.1944 0.9547
GB [37,38] 0.0942 20.36 0.0663 0.1876 0.9553

SVR [34,71] 0.0962 20.43 0.0655 0.1754 0.9558
MLP [39,72] 0.0956 20.76 0.0667 0.1850 0.9548
ELM [40,41] 0.1002 22.44 0.0713 0.2067 0.9499
DBN [42,43] 0.0962 22.00 0.0693 0.1970 0.9531
HetDS(1,5) 0.0955 20.68 0.0665 0.1840 0.9550

HetDS(1,10) 0.0955 20.82 0.0670 0.1839 0.9550
HetDS(1,20) 0.0938 20.52 0.0655 0.1791 0.9565
HetDS(3,5) 0.0937 20.03 0.0648 0.1800 0.9564

HetDS(3,10) 0.0934 19.87 0.0645 0.1788 0.9567
HetDS(3,20) 0.0931 19.87 0.0643 0.1780 0.9570
HetDS(5,5) 0.0934 19.97 0.0646 0.1802 0.9566

HetDS(5,10) 0.0933 19.97 0.0645 0.1801 0.9566
HetDS(5,20) 0.0933 19.95 0.0646 0.1805 0.9566

Hetmean 0.0933 20.28 0.0648 0.1819 0.9564
Hetmedian 0.0936 20.30 0.0650 0.1820 0.9563

Sa
lv

ad
or

ARIMA [32,33] 0.1051 27.15 0.0788 0.2739 0.9398
RF [69,70] 0.0954 19.48 0.0657 0.2102 0.9524
GB [37,38] 0.0973 20.18 0.0668 0.2190 0.9504

SVR [34,71] 0.0902 17.12 0.0579 0.1581 0.9610
MLP [39,72] 0.0900 17.95 0.0601 0.1678 0.9599
ELM [40,41] 0.0972 20.48 0.0666 0.1866 0.9541
DBN [42,43] 0.0918 19.38 0.0632 0.1822 0.9573
HetDS(1,5) 0.0935 18.28 0.0619 0.1804 0.9568

HetDS(1,10) 0.0945 18.37 0.0626 0.1855 0.9557
HetDS(1,20) 0.0943 18.03 0.0619 0.1842 0.9559
HetDS(3,5) 0.0907 17.60 0.0599 0.1743 0.9589

HetDS(3,10) 0.0903 17.55 0.0597 0.1730 0.9592
HetDS(3,20) 0.0902 17.30 0.0592 0.1714 0.9594
HetDS(5,5) 0.0896 17.74 0.0596 0.1720 0.9597

HetDS(5,10) 0.0894 17.64 0.0593 0.1705 0.9600
HetDS(5,20) 0.0895 17.64 0.0593 0.1706 0.9599

Hetmean 0.0903 18.53 0.0609 0.1792 0.9585
Hetmedian 0.0898 18.05 0.0602 0.1740 0.9593
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Table 3. Cont.

Series MODEL RMSE MAPE MAE ARV IA

Sã
o

Pa
ul

o

ARIMA [32,33] 0.2138 61.59 0.1456 1.2968 0.7355
RF [69,70] 0.1746 55.63 0.1173 0.9224 0.8215
GB [37,38] 0.1772 53.20 0.1161 0.8342 0.8260

SVR [34,71] 0.1942 55.88 0.1211 0.8148 0.8083
MLP [39,72] 0.1849 58.32 0.1257 0.8780 0.8115
ELM [40,41] 0.1927 59.09 0.1304 0.9796 0.7919
DBN [42,43] 0.1892 57.10 0.1263 1.0258 0.7917
HetDS(1,5) 0.1864 54.57 0.1194 0.8251 0.8163

HetDS(1,10) 0.1808 52.70 0.1156 0.7878 0.8267
HetDS(1,20) 0.1797 52.28 0.1154 0.8031 0.8262
HetDS(3,5) 0.1767 52.40 0.1155 0.8335 0.8261

HetDS(3,10) 0.1726 51.90 0.1137 0.8118 0.8327
HetDS(3,20) 0.1720 51.51 0.1132 0.8144 0.8332
HetDS(5,5) 0.1777 53.80 0.1176 0.8814 0.8201

HetDS(5,10) 0.1764 53.84 0.1171 0.8748 0.8224
HetDS(5,20) 0.1762 53.85 0.1169 0.8730 0.8230

Hetmean 0.1802 55.30 0.1205 0.9473 0.8113
Hetmedian 0.1832 55.11 0.1208 0.9539 0.8070

In addition, Table 4 presents the percentage difference (PD) regarding RMSE between
single and ensemble models with the best proposed version of HetDS. It is possible to note
that HetDS obtained a superior performance in terms of RMSE when compared to the other
statistical and ML models used.

Table 4. Percentage difference (%) regarding RMSE between single and ensemble models with the
best proposed version of HetDS.

MODEL
SERIES

Fortaleza Florianópolis Salvador São Paulo

ARIMA [32,33] 14.97 27.28 19.55 9.11
RF [69,70] 6.38 19.16 1.5 0.72
GB [37,38] 8.21 19.67 2.96 1.18

SVR [34,71] 0.89 4.67 11.45 3.18
MLP [39,72] 0.75 11.29 6.97 2.62
ELM [40,41] 8.11 16.55 10.74 7.03
DBN [42,43] 2.72 9.16 9.08 3.23

Hetmean 4.43 4.23 7.76 2.46
Hetmedian 5.43 2.88 4.86 2.47

Figures 4–7 show the dispersion of the results considering the 10 independent simula-
tions by means of a boxplot graphic.
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5.4. Discussion

Due to the number of computational results presented in Table 3, it is possible to
discuss many aspects regarding the performance of the models. One can observe that the
best RMSE value does not necessarily correspond to the best values for the other error
metrics for a given method [73]. Previous works on time series forecasting have indicated
such a behavior, which can occur when using distinct error metrics [56,74].

In two scenarios, a single model achieved the smallest error. Precisely, the smallest
MAPE for Salvador, and the smallest MAPE, MAE, ARV, and IA for Florianópolis were
achieved by SVR. In all other cases, the proposed model stood out. In terms of RMSE,
Table 4 reveals the proposed approach overcame the single propositions, and Hetmean and
Hetmedian.

After the application of the Friedman–Nemenyi [26] statistical test using 95% con-
fidence, it is observed that the proposed method (HetDS(m,k)) achieved the best overall
results in almost all comparisons, outperforming the single methods considering the f4our
datasets, as highlighted in Figure 8.
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The analysis of the boxplot graphics in Figures 4–7 leads to some interesting remarks.
As expected, the ARMA and SVR do not present dispersion since their training processes
are performed using closed-form solutions. In general, the proposed approach achieved
the best solutions and relatively small dispersion. Moreover, it did not find the best general
solution for Salvador.

It is clear that the linear ARIMA model did not overcome any machine learning
approach. One possibility of enhancing its prediction capability is to use bio-inspired
metaheuristics [75]. Regarding the other single models, we observe high variability in
terms of the performance or dispersion. It indicates how difficult it is to solve solar
irradiation forecasting problems.

Finally, Figures 9–12 present the predictions provided by the best models in compari-
son with the original series in the test set. It is important to observe the performance on the
peaks of the solar irradiance, where most of the deviation occurs.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 19 
 

The analysis of the boxplot graphics in Figures 4–7 leads to some interesting remarks. 

As expected, the ARMA and SVR do not present dispersion since their training processes 

are performed using closed-form solutions. In general, the proposed approach achieved 

the best solutions and relatively small dispersion. Moreover, it did not find the best gen-

eral solution for Salvador. 

 

Figure 8. Friedman–Nemenyi test over all datasets and methods. 

It is clear that the linear ARIMA model did not overcome any machine learning ap-

proach. One possibility of enhancing its prediction capability is to use bio-inspired me-

taheuristics [75]. Regarding the other single models, we observe high variability in terms 

of the performance or dispersion. It indicates how difficult it is to solve solar irradiation 

forecasting problems. 

Finally, Figures 9–12 present the predictions provided by the best models in compar-

ison with the original series in the test set. It is important to observe the performance on 

the peaks of the solar irradiance, where most of the deviation occurs. 

 

Figure 9. Solar irradiation forecasting obtained by the proposed model for Fortaleza series (first 150 

test set points). 

 

Figure 10. Solar irradiation forecasting obtained by the proposed model for Florianópolis series (first 

150 test set points). 

Figure 9. Solar irradiation forecasting obtained by the proposed model for Fortaleza series (first 150
test set points).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 19 
 

The analysis of the boxplot graphics in Figures 4–7 leads to some interesting remarks. 

As expected, the ARMA and SVR do not present dispersion since their training processes 

are performed using closed-form solutions. In general, the proposed approach achieved 

the best solutions and relatively small dispersion. Moreover, it did not find the best gen-

eral solution for Salvador. 

 

Figure 8. Friedman–Nemenyi test over all datasets and methods. 

It is clear that the linear ARIMA model did not overcome any machine learning ap-

proach. One possibility of enhancing its prediction capability is to use bio-inspired me-

taheuristics [75]. Regarding the other single models, we observe high variability in terms 

of the performance or dispersion. It indicates how difficult it is to solve solar irradiation 

forecasting problems. 

Finally, Figures 9–12 present the predictions provided by the best models in compar-

ison with the original series in the test set. It is important to observe the performance on 

the peaks of the solar irradiance, where most of the deviation occurs. 

 

Figure 9. Solar irradiation forecasting obtained by the proposed model for Fortaleza series (first 150 

test set points). 

 

Figure 10. Solar irradiation forecasting obtained by the proposed model for Florianópolis series (first 

150 test set points). 

Figure 10. Solar irradiation forecasting obtained by the proposed model for Florianópolis series (first
150 test set points).



Appl. Sci. 2022, 12, 3510 15 of 19Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

Figure 11. Solar irradiation forecasting obtained by the proposed model for Salvador series (first 150 

test set points). 

 

Figure 12. Solar irradiation forecasting obtained by the proposed model for São Paulo series (first 

150 test set points). 

6. Conclusions 

At present, solar energy has a significant role due to the current concerns about green 

energy around the world. Thus, to improve the quality of energy generation processes, 

accurate forecasting systems are desirable. Solar irradiation data can present dynamic 

characteristics due to weather conditions. Therefore, single models (linear or nonlinear) 

may not achieve the best results. In this work, a heterogeneous dynamic ensemble (HetDS) 

approach was used to perform solar irradiation forecasting. Static ensemble approaches 

employ a group of models to predict future values. However, since the characteristics of 

the data may change over time, a dynamic approach could improve the results. In this 

sense, a dynamic ensemble composed of a pool of heterogeneous models was selected for 

each test pattern. 

As stand-alone approaches, we considered the linear ARIMA from the Box and Jen-

kins methodology, and a pool of machine learning models: DBN, ELM, GB, MLP, RF, and 

SVR. The databases considered were from four major Brazilian cities. The experimental 

evaluation showed that the proposal can overcome the single models in almost all scenar-

ios with a small dispersion, revealing its high approximation capability. The dynamic se-

lection ensemble of the forecasting models increased the accuracy of the system, showing 

its competitiveness. 
Regarding future work, we highlight the possibility of using recurrent neural net-

works and deep learning approaches. In addition, deeper analysis of the selection of the 
best lags can be considered, and the use of exogenous variables, such as precipitation, 
pressure, and temperature, or synthetic data, aiming to attain more accurate forecasts. 

Author Contributions: Conceptualization, D.S.d.O.S.J., P.S.G.d.M.N. and J.F.L.d.O.; methodology, 

D.S.d.O.S.J., P.S.G.d.M.N., J.F.L.d.O. and H.V.S.; software, D.S.d.O.S.J. and T.M.B.; validation, 

A.R.L., M.H.N.M. and F.M.; formal analysis, P.S.G.d.M.N., J.F.L.d.O. and A.C.; investigation, 

D.S.d.O.S.J. and T.M.B.; resources, D.S.d.O.S.J., P.S.G.d.M.N. and J.F.L.d.O.; data curation, 

P.S.G.d.M.N., J.F.L.d.O. and A.C.P.; writing—original draft preparation, D.S.d.O.S.J., T.M.B., 

P.S.G.d.M.N., J.F.L.d.O., A.R.L., H.V.S. and A.C.P.; visualization, D.S.d.O.S.J., T.M.B., P.S.G.d.M.N. 

Figure 11. Solar irradiation forecasting obtained by the proposed model for Salvador series (first 150
test set points).

Appl. Sci. 2022, 12, x FOR PEER REVIEW 15 of 19 
 

 

Figure 11. Solar irradiation forecasting obtained by the proposed model for Salvador series (first 150 

test set points). 

 

Figure 12. Solar irradiation forecasting obtained by the proposed model for São Paulo series (first 

150 test set points). 

6. Conclusions 

At present, solar energy has a significant role due to the current concerns about green 

energy around the world. Thus, to improve the quality of energy generation processes, 

accurate forecasting systems are desirable. Solar irradiation data can present dynamic 

characteristics due to weather conditions. Therefore, single models (linear or nonlinear) 

may not achieve the best results. In this work, a heterogeneous dynamic ensemble (HetDS) 

approach was used to perform solar irradiation forecasting. Static ensemble approaches 

employ a group of models to predict future values. However, since the characteristics of 

the data may change over time, a dynamic approach could improve the results. In this 

sense, a dynamic ensemble composed of a pool of heterogeneous models was selected for 

each test pattern. 

As stand-alone approaches, we considered the linear ARIMA from the Box and Jen-

kins methodology, and a pool of machine learning models: DBN, ELM, GB, MLP, RF, and 

SVR. The databases considered were from four major Brazilian cities. The experimental 

evaluation showed that the proposal can overcome the single models in almost all scenar-

ios with a small dispersion, revealing its high approximation capability. The dynamic se-

lection ensemble of the forecasting models increased the accuracy of the system, showing 

its competitiveness. 
Regarding future work, we highlight the possibility of using recurrent neural net-

works and deep learning approaches. In addition, deeper analysis of the selection of the 
best lags can be considered, and the use of exogenous variables, such as precipitation, 
pressure, and temperature, or synthetic data, aiming to attain more accurate forecasts. 

Author Contributions: Conceptualization, D.S.d.O.S.J., P.S.G.d.M.N. and J.F.L.d.O.; methodology, 

D.S.d.O.S.J., P.S.G.d.M.N., J.F.L.d.O. and H.V.S.; software, D.S.d.O.S.J. and T.M.B.; validation, 

A.R.L., M.H.N.M. and F.M.; formal analysis, P.S.G.d.M.N., J.F.L.d.O. and A.C.; investigation, 

D.S.d.O.S.J. and T.M.B.; resources, D.S.d.O.S.J., P.S.G.d.M.N. and J.F.L.d.O.; data curation, 

P.S.G.d.M.N., J.F.L.d.O. and A.C.P.; writing—original draft preparation, D.S.d.O.S.J., T.M.B., 

P.S.G.d.M.N., J.F.L.d.O., A.R.L., H.V.S. and A.C.P.; visualization, D.S.d.O.S.J., T.M.B., P.S.G.d.M.N. 

Figure 12. Solar irradiation forecasting obtained by the proposed model for São Paulo series (first 150
test set points).

6. Conclusions

At present, solar energy has a significant role due to the current concerns about green
energy around the world. Thus, to improve the quality of energy generation processes,
accurate forecasting systems are desirable. Solar irradiation data can present dynamic
characteristics due to weather conditions. Therefore, single models (linear or nonlinear)
may not achieve the best results. In this work, a heterogeneous dynamic ensemble (HetDS)
approach was used to perform solar irradiation forecasting. Static ensemble approaches
employ a group of models to predict future values. However, since the characteristics of
the data may change over time, a dynamic approach could improve the results. In this
sense, a dynamic ensemble composed of a pool of heterogeneous models was selected for
each test pattern.

As stand-alone approaches, we considered the linear ARIMA from the Box and Jenk-
ins methodology, and a pool of machine learning models: DBN, ELM, GB, MLP, RF, and
SVR. The databases considered were from four major Brazilian cities. The experimental
evaluation showed that the proposal can overcome the single models in almost all sce-
narios with a small dispersion, revealing its high approximation capability. The dynamic
selection ensemble of the forecasting models increased the accuracy of the system, showing
its competitiveness.

Regarding future work, we highlight the possibility of using recurrent neural networks
and deep learning approaches. In addition, deeper analysis of the selection of the best lags
can be considered, and the use of exogenous variables, such as precipitation, pressure, and
temperature, or synthetic data, aiming to attain more accurate forecasts.
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