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Abstract: This paper introduces a blockchain-based P2P energy trading platform, where prosumers
can trade energy autonomously with no central authority interference. Multiple prosumers can
collaborate in producing energy to form a single provider. Clients’ power consumption is monitored
using a smart meter that interfaces with an IoT node connected to a blockchain private network. The
smart contracts, invoked on the blockchain, enable the autonomous trading interactions between
parties and govern accounts behavior within the Ethereum state. The decentralized P2P trading
platform utilizes autonomous pay-per-use billing and energy routing, monitored by a smart contract.
A Gated Recurrent Unit (GRU) deep learning-based model, predicts future consumption based on past
data aggregated to the blockchain. Predictions are then used to set Time of Use (ToU) ranges using
the K-mean clustering. The data used to train the GRU model are shared between all parties within
the network, making the predictions transparent and verifiable. Implementing the K-mean clustering
in a smart contract on the blockchain allows the set of ToU to be independent and incontestable. To
secure the validity of the data uploaded to the blockchain, a consensus algorithm is suggested to
detect fraudulent nodes along with a Proof of Location (PoL), ensuring that the data are uploaded
from the expected nodes. The paper explains the proposed platform architecture, functioning as well
as implementation in vivid details. Results are presented in terms of smart contract gas consumption
and transaction latency under different loads.

Keywords: blockchain; decentralization; Ethereum; K-mean clustering; GRU prediction model;
peer-to-peer energy trading; proof of location; smart contract; dynamic Time of Use; transparency

1. Introduction

Since 2008, when Bitcoin has emerged as the first label of blockchain application for
decentralized currency [1], it has opened the eyes to a new paradigm which is decentral-
ization, and its potential as a new disruptor in various industries. After the emergence of
Ethereum and the smart contract concept, blockchain potential for enabling decentralized
applications beyond finance has been unlocked. Since then, many companies have tried
to adopt this technology in different sectors varying from e-voting, supply chain tracking,
health care, agriculture, and so on. Another sector where blockchain technology is present-
ing itself as a new revolution is the Energy market [2]. In the recent past, in traditional
centralized electric power systems, customers have been at the end of the supply chain.
With the advent of smart grids, we are witnessing the disclosure of distributed energy
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resources (DERs) based on renewable energies that can contribute to the electricity system.
This led to a paradigm shift in the energy trading architecture and the emergence of new
players in the market, where consumers are becoming “prosumers” who may sell their
surplus of energy to neighboring consumers. Power is produced using rooftop solar PV
installations, micro wind generators, and battery energy storage systems [3,4]. This new
concept of prosumers ushered in a new era of what is known as Peer-to-Peer (P2P) energy
trading, where generating nodes can enter the energy market as providers. However, it
is difficult for parties involved in the trading to trust each other without the supervision
of a central entity or any other middle broker organization. Providers cannot guarantee
being paid for the energy they supply to the client, and clients cannot guarantee being
supplied the requested energy if paying in advance. In such a scenario, the basic value
of coupling energy with cryptocurrencies and blockchain technology [5] is a staple that
enables the forcible payments and energy supply through a distributed smart contract [6].
Being embedded in the blockchain, smart contracts are reshaping the wave of innovation in
today’s technology in terms of automatic agreements between two parties, while excluding
the intervention of a trusted third party. They allow services costs saving and reduce the
risks of potential corrupt central entities [7]. In this work, we are presenting a P2P energy
trading platform where energy can be traded in a decentralized manner on an Ethereum
private blockchain. The energy traded on the platform is electrical energy, thus the two
terms energy and electricity as well as client and consumer will be used interchangeably
in this paper. The key features which the architecture of the Proposed P2P energy trading
system involve:

• Dynamic Time of Use pricing: This would maximize profit and enable consumers to
get an appropriate and accurate demand response. The tariffs are proposed ahead
of each trading period, based on energy consumption predictions using machine
learning techniques [8]. The tariffs are then implemented in the smart contract to
enable autonomous billing. A new smart contract is created ahead of each upcoming
trading round, with updated tariffs based on the trading round electricity consumption
predictions. Moreover, the tariffs are made known immediately after each trading
round and their validity can be verified by all participants, since each one would
be having his copy of the shared ledger containing the training set data. Indeed,
each participant is aware of the state history representing the energy consumption
data that is used in the prediction process. Based on the predictions, ToU ranges are
defined using the K-mean clustering algorithm, implemented on a smart contract,
and executed on the blockchain. This ensures that the ToU ranges are reliable and
bias-free, since they are defined by an independent autonomous smart third party.

• Prevention against fraudulent behavior: Considering energy is traded online, it is
critical to ensure that the same energy is not sold more than once. Clients must as
well upload valid data of their energy consumption. To achieve such a purpose, we
propose in the present paper, that the DSO plays the role of a privileged participant,
which is allowed certain credentials, making our proposed solution autonomic in
nature instead of fully autonomous. First, only approved nodes can join the trading
platform as consumers. These nodes need to be certified by the DSO before being able
to subscribe to any trading round. Any uncertified accounts have their subscription
requests automatically denied. The DSO performs random checks on consumer nodes
to detect any fraudulent or technically faulty ones. The DSO is the only agent given
the credential to decertify accounts accordingly. Moreover, a customized consensus
algorithm is proposed to spot suspicious nodes. Furthermore, a PoL protocol is
implemented to confirm the aggregated data source.

• Automatic and autonomic running: Ethereum blockchain is used to implement the
trading procedure through smart contracts, ensuring the forcible payment when
demand is supplied, the forcible balance return in case of premature un-subscription,
as well as the independent smart contract-based billing. Along with this research
work; the rest of the paper is organized as follows: In Section 2, we expand the
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related works. Section 3 highlights the motivation behind the present work and
the raised challenges while outlining some noticed gaps from the covered literature
concerning P2P energy trading and the way the proposed platform is bridging these
shortcomings. The Proposed P2P energy trading system with the machine learning-
based dynamic pricing mechanism is extensively explained in Section 4. This section
also details how ToU ranges are defined employing GRU time series forecasting
and K-mean clustering. In Section 5 we describe the implementation on a private
Ethereum blockchain, on which the platform performance is assessed and the results
are presented and discussed. Section 6 concludes this paper.

2. Related Work

The peer-reviewed related studies may be broken mainly into two parts. The first
part concerns blockchain backgrounds as a revolutionary technology that has shaped the
future of banking and IoT, with the appearance of smart contracts and several distributed
consensus protocols and beyond. In this regard, the advent of blockchain technology has
been outlined for the first time in 1991 by Stuart Haber and W. Scott Stornetta, to implement
a system that inhibits any form of tampering with document timestamps. Moreover, it has
allowed digital information to be recorded, distributed, and securely exchanged. However,
this would not be detailed more in our paper since a plethora of substantial works is
generously provided in the literature [1,2]. The second wedge, for its part, gives a fuller
insight into the most important features utilizing blockchain technology for the energy
sector [3].

2.1. Incentives and Context

The threat of rising energy bills is of significant concern for businesses, worldwide.
P2P-based energy trading represents a challenge that can mitigate the specific electricity
consumption pricing at a given site. Meanwhile, renewable and distributed energy re-
sources are definitely at the core of any business sustainability schedule to ensure high
investment return prospects [4–6]. Peer-to-peer energy trading gives prosumers a real
alternative for their electricity supply as well as the choice to decide whom they sell it to.
Prosumers are required to communicate with each other for negotiating energy prices and
payment transactions. Exporting back to the grid excess energy, for a small charge rate
has become old-fashioned as modern and future-oriented energy systems allow clients to
manage and control profitably the way their resources are distributed using microgrids and
how this can affect their electricity bills. Recorded P2P energy trade goes back to the year
2016, in Brooklyn, New York, when Ethereum blockchain was used to sell extra generation
of a few kilowatt-hours from a resident’s solar panels energy to his neighbor. Several
residential trials have followed since, whereas some companies are rushing in the P2P trade
across the world. Global enterprise companies including LO3, SonnenFlat, Power Ledger,
Grid+, Suncontract, and Eemnes Energie have tangible use cases for blockchain technology
using platforms that have drastically changed and revolutionized the way energy is shared
and distributed [7]. In addition to sustainability, suitability and profitability also play a
decisive role in any new solution, which represents an active topic of research.

2.2. Energy Trading Using Blockchains

In this subsection, we will be highlighting the major role of blockchain in the use of
energy trading [8–10]. P2P trading being a new trend in technology, requires overwhelming
adoption by a large mass to claim success. This is achieved only if the needs and the
possibilities of the individual are seriously taken into account. Using blockchain combined
with smart contracts for reliable tamper-proof transactions are catching particular interest
among the researchers’ community and industry. As far as smarter and stronger feasible
technologies with enhanced capacity and flexibility for power transmission and distribution
(T & D) systems are concerned [11], the blockchain-based technology can be identified
in two main classes of particular interest [12]; the first class, referred to as Electrical
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energy trading, comprises principally P2P energy sales where today’s energy systems
are changing in ways that make old strategies obsolete [13–15]. The second class can
be observed through the role of Certification of Renewable Energy emissions, which
enables the prosumer in an aggregation program to be granted recognition as a participant.
Additionally, Demand Response tracking, where the blockchain records the amount of
green power that is injected into the grid, manages the remuneration mechanisms and
ensures transparency. Moreover, this would allow the operating point of the power system
to be continuously adjusted. A thorough review that elucidates what blockchain can do for
power grids is found in [16]. The authors have considered an in-depth survey of the use of
blockchain-based technology in the energy sector in general and the power grid especially,
through a systematic categorization according to the field of activity, regardless whether this
is coming from start-up companies or big technology firms. Meanwhile, a comprehensive
review [3] analyzed the current trends in the energy market and how blockchain technology
can contribute to this line. The authors in [17] have reviewed the demand response in
smart electricity grids equipped with renewable energy sources. A critical survey was
carried out in [18] that spotlights the benefits and challenges of electrical demand response.
Furthermore, the work in [19] has shown how flexibility and forecasting contribute to
reducing the need for grid extension, but this would require strengthened monitoring of
the distribution grids. In other works, such as in [20], the authors have proposed a smart
contract-based P2P energy trading system with a dynamic pricing model. In reality, several
industries are investing in blockchain technology, albeit the expectations of researchers are
very high, indicating the continual challenges of blockchains’ applicability, in the energy
sector particularly. According to the literature reviewed in the context of blockchain-
enabled energy trading, it is noted that most of the p2p blockchain energy trading proposed
platforms are based on energy tokenization. Energy asset-based tokens are created upon a
defined energy amount generation. Created tokens can be traded, such as brikCoin [21], or
redeemed as energy, such as WePower [22]. This paradigm suffers from two drawbacks
that we aim to address:

• Purchased energy under consumption: When the energy is redeemed using its corre-
sponding energy token, consumers are not refunded in case of under-consumption.
This issue can be deduced from the results presented in [23], where the author laid
out the purchased energy versus its consumption using his proposed energy token,
namely ForDelToks. It is seen that in most cases, the energy purchased is not fully
consumed. Similarly, another work presented in [24] also highlights this issue. As a
matter of fact, in the result presented by the author in his proposed token-based energy
trading platform, it can be noticed that the seller tokenized surplus energy is mostly
under-consumed by its respective buyer. However, the author proposes that the excess
energy bought be accumulated to the surplus energy generated and tokenized, when
it reaches the threshold of 150 watts. This solution is not appropriate where the power
is purchased by a pure consumer. In such a case, unused energy purchased is wasted.

• Token handling gas cost: Another concern in token-based energy trading systems, is
the high gas cost of token manipulation to both deploy and transfer [25].
In this direction, we propose this work to tackle the token manipulation gas cost
overhead using an energy balance-based trading scheme, as well as a pay-per-use
smart meter-based energy trading, as a solution to the highlighted problem under
consumption.

3. Motivation and Challenges

Motivation: It is noticed through the review literature that in most of the proposed P2P
energy platforms, the trading takes part between the prosumers and consumers. Prosumers’
energy is injected into the power grid, which is metered and tokenized. Tokens are created
using an asset-based token protocol such as the ERC20 protocol in Ethereum. A token smart
contract is created with a certain amount of total supplied tokens, which are set to have an
abstracted value in terms of energy. Energy aggregated to the utility power grid (by the
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prosumers) is redeemed in the form of tokens, which are transferred to them. Tokens can
then be traded according to their value in the market [26–28]. Accordingly, the initial smart
contract defining the energy token is set with a total supply of tokens, which means, if new
tokens need to be created, then, a new smart contract needs to be deployed with additional
supply, which is very costly. The gas cost to deploy the EWT energy token is 1,274,198 with a
cost of $171.62 [29]. Moreover, transferring tokens is costly as well. In addressing such gaps,
we wish to consider in our paper that prosumers cooperate as a single provider and the
energy they aggregate to the utility grid is tracked in a smart contract deployed by the DSO.
This amount of energy is mapped to the issuer prosumer’s account as its energy balance.
Instead of a token transfer, prosumers’ energy balance is updated by a mere contract call
that updates a mapping, rather than a costlier financial token transfer. The energy balance
of the prosumers represents the amount of energy the DSO owes them. Then, consumers
can buy energy from prosumers. If the prosumer (seller) has enough energy balance to
supply the demand, the payment is made from the consumer (buyer) to the seller set
of prosumers. Consequently, the energy being sold is transferred from the DSO to the
consumer as a debt that is paid back to the respective prosumer. His energy balance is then
updated accordingly [30,31]. Mainstream token-based P2P energy trading platform bears
another main drawback. In fact, in such a situation, the client does not pay per use for the
energy he purchased. After the energy token is bought, it can be then redeemed as energy.
However, the respective corresponding energy amount is transferred to the client and he
is charged accordingly, regardless of to which extent the purchased energy is consumed.
Additionally, most of the time, purchased energy is not consumed to the fullest [23]. It is as
worth mentioning that some substantial research papers have been also conducted using
smart contract-based electricity consumption billing system, outside the context of P2P
energy trading, where household electricity bills’ computation and payment are monitored
by a smart contract in a traditional centralized DSO–client architecture [32–34]. In this
perspective, we proposed in our research paper, a platform where consumers are billed per
consumption in the same fashion the DSO bills its consumers.

Challenges: One can identify a few challenges in developing such a platform. The first
challenge is to be able to accurately bill the consumers for the energy they consumed.
To achieve this, prosumers need to be the only supplier from the start to the end of the
trading round. Trading rounds have a certain duration, each one is administrated by a
smart contract that sets the electricity tariffs. For this purpose, prosumers and microgrids’
owners collaborate to form a single provider, which would be a full-time supplier to the
subscribed customers for an entire trading period. The second challenge is concerned with
the prosumer’s power generation, which is based on renewable energy and low voltage
energy sources. It is a concern that it can be not sufficient to supply for consumers on a
continuous period. Yet, this could be seen as a fake problem. Actually, in a research report,
published in May 2017, by the European Commission [35], they provide the total potential
capacity of residential solar PVs, based on the proportion of available free space that can
be used for the PVs installation. A graphical representation of residential PV electrical
generation potential compared to the total national electricity generation capacity in the
EU is illustrated in Figure 1 [35–44]. It can be seen that, if exploited to its fullest, energy
generated by households using only PV solar panels can be tremendously significant.
Hence, residential electricity generation has great potential and in some countries such as
the UK, and Belgium, it can reach 50% of the total energy being generated by the respective
national provider.
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Figure 1. Residential PV electrical generation potential versus the total national electricity generation
capacity in the EU.

Further studies also showed that, if prosumers formed renewable energy cooperatives,
the amount of energy generation capacity would strongly resonate. In this vision, extensive
research that has been conducted in [45] revealed data in favor of our claim. It is stated,
that 15,000 households own shares in wind electricity generation cooperatives, which
consist of 40% of the electricity generated by wind, in Denmark. Germany as well played
an essential role in the development of the RE market within Europe. In this regard,
community ownership is estimated to have a share of almost 20% of the total onshore
wind power. Another aspect of developing a smart contract for energy trade is local
legislation and the legal framework of the country where it aspires to be implemented.
How each participant is considered from a legal point of view is inferred according to
his role and his interactions with the rest of the participants. This implies a set of rules
and regulations that they have to abide by. For example, in Germany, if a prosumer is
considered a business, he has to contribute to the balancing of the grid (the German Energy
Industry Act) [46] and add a withdrawal policy, according to the Consumer Rights Act in
the EU [47]. These regulations must be implemented and enforced by the smart contract to
ensure that each participant complies with the laws to which they are bound. A typical
example is the Enerchain project [48], which is an energy trading blockchain for peer-to-peer
transactions, specially designed to be compliant with the EU’s Regulation on Wholesale
Energy Market Integrity and Transparency (REMIT). On the other hand, some countries’
legal systems, obstruct the decentralized energy P2P market. For example, according to the
EU Renewable Energy Directive [49], a ”renewables self-consumer” consumes local energy
that is generated behind the meter. Similarly, the Dutch law requires a provider certification
for the sale of power to the electricity grid [50]. In such cases, the legislative framework
should be amended accordingly. In this direction, one can cite the BEST (Blockchain-based
decentralized energy market design and management structures) project in Germany, which
is working to establish a bidding system for the open-source electricity market supported
by the German Federal Ministry for Economic Affairs and Energy [46,51,52].
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On the other hand, reliability is also given priority as the third challenge. Ensuring
the electricity consumption data committed by the consumers be secure, remains of consid-
erable importance. In the following subsection, the design of the proposed platform and its
architecture is vividly explained, so that the approach that is adopted in our research to
solve this challenge is made clearer.

Lastly, we believe it would no doubt be useful to conclude this section with another
challenge pertinent to blockchain and its applications as well as the technologies relying
on current cryptographic algorithms in general, to outline future trends. Indeed, it is
constructive to mention quantum computation as one of the promising directions for future
development. With the expected emergence of quantum computers, current Blockchain net-
works would become vulnerable and need to transition to methods using quantum-resistant
cryptography and quantum networks [53–55]. Current blockchain relies on cryptographic
algorithms for Key-pair generation such as RSA and Elliptic-curve cryptography. The Key
pair consists of a private key used by its owner to sign the transactions he issues, and the
public serves to verify the digital signature by the rest of the network. Cryptographic
algorithms are one-way functions, which means that current computers cannot be used to
derive the private key from its matched public key. However, using a quantum computer,
any current cryptographic algorithms can be broken. The generation of RSA cryptographic
key pairs can be broken using Shor’s quantum computing algorithm [56]. Quantum com-
puters are still at an early stage of research, a technology that is expected to be operational
over the next decade [57]. In the meantime, researchers are working to develop quantum
cryptography, since the current one would not be relevant in the presence of quantum
computers. This cryptography which is immuned against quantum computing is called
Post-Quantum Cryptography PQC. In the context of blockchain, PQC involves the de-
velopment of a quantum-resistant cryptographic signature. PQC is intended to be safe
against quantum computers while being implementable on a conventional computer. Many
proposals have been submitted to the National Institute of Standards and Technology NIST.
However, after 3 rounds of preselection, only three finalist post quantum cryptographic
digital signature algorithms remain, with one only to be selected as the new standard [58].
The three finalist are CRYSTALS-Dilithium [59], Falcon [60] and Rainbow [61].

4. Platform Design

In this section, the design of the proposed P2P energy trading platform is delineated. It
first details the proposed model defining the ToU ranges using GRU time-series predictions
and K-mean clustering. Then, the key entities that are involved are described, their roles
underlined, and how they possibly interact with each other, as well as the set of rules
governing these interactions. This section also presents the entities (Smart Contracts) that
ensure that all interactions are bound by the agreed-upon rules and that each interaction
results in the appropriate consensual outcome.

4.1. ToU Ranges Using GRU Model Predictions and K-Mean Clustering

The aim is to dynamically set the ToU peak and off-peak ranges. Based on past
consumers’ electricity consumption data available on the shared ledger blockchain, future
electricity consumption predictions are then made, using the GRU model, subsequently,
the ToU ranges for the next trading round are set by performing K-mean clustering on
the blockchain as illustrated in Figure 2. The purpose behind it is to have a transparent,
decentralized dynamic demand response.
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Figure 2. The proposed model defining TOU peak and off-peak ranges.

4.1.1. Energy Consumption Time Series Forecasting Using GRU

Our forecasting model is using an open-source dataset from PJM, in Megawatts [62].
The data consist of hourly records of electricity consumption in the USA for a period of
time ranging from 31 December 2004 to 1 February 2018. They are structured into double
columns of 121,274 values with no empty values. The energy consumption histogram
provided in Figure 3 shows a normal distribution and hence, normalization of the dataset
is not required.

Figure 3. Distribution of the observations in the dataset.

The model is trained by utilizing the GRU network. Numerous research works
including [63,64] have successfully applied the GRU network for predicting electricity
consumption. The aforementioned studies have investigated the performance of several
machine learning predictive models to forecast electricity consumption. Results have
shown that the GRU-based method achieves more accurate predictions, making it the reason
behind our choice. The implementation of the standard GRU prediction model is conducted
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under the Keras framework with Tensorflow2 as the back end, using Python language.
The prediction of the electricity consumption in the next defined time steps should only
use the historical electricity consumption data and the date-time as predicting features.
Despite the availability of other datasets containing other metrics such as consumers’
household temperature and humidity, we stick only to date and time as extracted features
for prediction. The reason behind it is that the prediction is meant to be performed by the
electricity provider who is not supposed to have access to such private data of his clients.
The predictions should solely be based on the electricity consumption data uploaded to
the blockchain by the respective clients. During each new trading round, the GRU model
adds the previously collected electricity consumption data to its training set. The model is
evaluated by its accuracy. As a consequence, the more rounds go by, the more data available
to train the model and thus the more precise the prediction should be. To assess that, we
defined the trading round to be 100 days, i.e., we would be using 2400 rows to forecast
the next 2400 rows. Then the number of rows R(n) that is used to predict the upcoming
2400 rows in the n-th round is defined according to the expression in Equation (1):

R(n) = 2400 · n, n > 0 (1)

The performance of the model is assessed in terms of the Mean Average Percentage
Error (MAPE) given in Equation (2), and the results are depicted in Figure 4.

MAPE =
100
n

n

∑
i=1

∣∣∣∣ (Yi − Pi)

Yi

∣∣∣∣ (2)

where Yi is the i-th real electricity consumption reading and Pi is the i-th reading of the pre-
dicted electricity consumption, in a test set of size n. Figure 5 also provides the real energy
consumption with respect to predicted energy consumption for the 50th trading round
As shown in Figure 4, there are two jumps in the performance of the model. The first one
occurs after nine trading rounds, which is equivalent to 9000 days and 90,000 observations,
and the MAPE drops from 3% to 2.42%. Then, after the 16th round, the MAPE drops from
2% to less than 1%. Past the 20th round, there is no more steady decrease in the MAPE,
however, it fluctuates approximately in the range [0.39%, 0.61%]. The advantage of this
kind of prediction is that it uses on-chain data to perform the prediction. Since each node
has a copy of the ledger containing the dataset that is used to train the model, this ensures
the transparency of the prediction that can be verified by any node in the network.

Figure 4. GRU prediction model performance evolution as the trading rounds go by.
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Figure 5. Real energy consumption versus predicted energy consumption for the 50th trading round.

4.1.2. Definition of ToU Ranges Using On-Chain Clustering

What is proposed, is that the energy ToU ranges and tariffs are defined ahead of each
trading round; the tariffs are then defined accordingly in the smart contract arbitrating the
interactions between the provider and the set of consumer clients. The novelty is that the
clustering is implemented and performed on a smart contract. Interestingly, smart contracts
are seen not to be suitable for implementing heavy computational algorithms due to code
execution cost, which is abstracted in terms of gas. However, implementing a clustering
algorithm to define ToU ranges on a smart contract is interesting in the sense that this would
permit further decentralization, where ToU ranges are defined by a smart independent
entity, ensuring their integrity and transparency. For this purpose, the K-mean clustering
algorithm was implemented with K = 2 for two clusters, which are the electricity demand
peak and off-peak, on a Solidity smart contract. It was compiled and tested on a Remix
IDE platform to define ToU ranges on both predicted and real electricity consumption,
for each round. The smart contract execution cost was also assessed and benchmarked to
the execution cost of other decentralized applications’ smart contracts presented in other
published works. The aim is to assess if performing K-mean clustering on a smart contract
is realistic in terms of gas consumption. The K-mean algorithm flowchart is illustrated in
Figure 6.

So, the clustering is performed on a set of points within coordinates (x,y), where x
designates the time of the day, ranging from 00:00 h to 23:00 h and y is the mean average of
the electricity consumed on a particular hour of the day, during 100 days. For each hour of
the day, the corresponding y value is computed from both predicted and real consumption
data for each trading round according to the pseudocode in Algorithm 1.

Once the arrays X and Y are both defined, the clustering is performed according to
pseudocodes in Algorithms 2 and 3.
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Algorithm 1 Hourly mean average electricity consumption for one trading round
1: Sum← 0
2: size← 0
3: for i← 0 to 24 do
4: for j← i to 100 do
5: Sum← dataset[j]
6: j← j + 24
7: size← size + 1
8: end for
9: y[i]← sum/size

10: end for

Figure 6. The K-mean algorithm flowchart.

The functions in Algorithms 2 and 3 are internal and can only be called in the main
function, which is made public. In Algorithm 2, peaks and off-peak clusters are set for
each hour of the day, according to the distance of the points from the centroids, passed as
parameters. The function of Algorithm 3 calculates the new centroid for the next iteration.

Algorithm 2 SetCluster(centroid C1,centroid C2)
1: for i← 0 to size(X) do

2: d1←
√

X[i]− C1.x2 + Y[i]− C1.y2

3: d2←
√

X[i]− C2.x2 + Y[i]− C2.y2

4: if d1 ≤ d2 then
5: clusters.push(1)
6: else
7: clusters.push(2)
8: end if
9: end for

10: return clusters

To compute the clusters, X and Y arrays are defined in the smart contract as well as
the two initial centroids. The initial off-peak cluster centroid is set to be the point of the
set with the lowest consumption, whereas the initial peak cluster centroid is set to be the
point in the dataset with the highest electricity consumption. The main function defined in
Algorithm 4 invokes the functions of Algorithms 2 and 3 through a loop until convergence
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according to the flowchart in Figure 6. A decentralized P2P purchase and rental application
based on blockchain has been presented in [65]. This has served to make a comparison
with the implemented K-mean clustering smart contract, both deployment and invoking
gas consumption.

Algorithm 3 SetNewCentroids
1: sumX1← 0
2: sumX2← 0
3: sumY1← 0
4: sumY2← 0
5: TempArray← 0
6: Cluster1Size← 0
7: Cluster2Size← 0
8: Centroid NewC2
9: for i← 0 to 24 do

10: if clusters[i] = 1 then
11: sumX1←X[i]
12: sumY1←Y[i]
13: Cluster1Size← Cluster1Size + 1
14: else if clusters[i] = 1 then
15: sumX2←X[i]
16: sumY2←Y[i]
17: Cluster1Size← Cluster1Size + 1
18: end if
19: end for
20: NewC1←

{
sumX1

Cluster1Size , sumY1
Cluster1Size

}
21: NewC2←

{
sumX2

Cluster2Size , sumY2
Cluster2Size

}
22: tempArray.push(NewC1)
23: tempArray.push(NewC2)
24: return TempArray

Algorithm 4 Main

1: TempArray1← SetCluster(InitC1, InitC2)
2: TempArray2← []
3: NewC1← GetNewCentroids()[0]
4: NewC1← GetNewCentroids()[1]
5: Exit← False
6: while !Exit do
7: TempArray2← SetCluster(InitC1, InitC2)
8: if TempArray2! = TempArray1 then
9: Exit← true

10: else
11: TempArray1← TempArray2
12: NewC1← GetNewCentroids()[0]
13: NewC2← GetNewCentroids()[1]
14: TempArray2← SetCluster(NewC1, NewC2)
15: end if
16: end while

As can be observed from Table 1, there is a slightly higher value in deploying K-mean
smart contract, and a much bigger gas consumption in calling K-mean Smart Contract main
function compared to calling purchase function [65]. Calling K-mean Smart Contract is
160 times costlier. However, K-mean clustering is only called once in each trading round,
which makes its gas cost reasonable and its implementation feasible and practical, due to
its low invoking frequency.
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Table 1. Gas consumption.

Deploy Call Contract Function

K-mean smart contract 801,911 1,334,160
Smart contract in [65] 760,550 82,721

4.2. Trading Platform Interacting Entities

The Provider: which represents the set of prosumers cooperating in generating energy
that is injected into the power grid owned by the DSO, and transferred to the requesting
consumers, on demand.

The Consumer: being the entity that purchases energy by subscribing to the provider
through a smart contract for a certain duration of time called a trading round, prepays
for his consumption and is supplied until exhaustion of the prepaid amount, or billed
according to his energy consumption in case of unsubscribing prematurely.

The DSO: also referred to as a utility owner company. The abstraction of the interacting
entities is illustrated using the Entity Relationship Diagram ERD in Figure 7. However,
these entities are not stored in a traditional database, but rather, they are represented by
the state of the smart contract in which they are defined. The state of the smart contract
is modified upon a successful call of its functions and is stored in the blockchain shared
ledger. Each entity is assigned to its corresponding field through an appropriate mapping.

Figure 7. ERD diagram of the proposed platform.

Smart contract 1 (DSO): As its name indicates, DSO smart contract is deployed and
owned by the DSO. It stores the list of certified consumer nodes as well as the energy
balance of the providers. Only the DSO has the credentials to add, remove or update
the certified nodes list. Providers’ balance is updated by calling the appropriate smart
contract function upon a new aggregation of a defined amount of energy or its consumption.
The provider’s energy balance is abstracted using a simple structure representing a defined
amount of energy called an energy token. New instances of this data structure are mapped
to prosumers accordingly upon the appropriate aggregation of energy. Consumed tokens
are set to spent state. The global variables for the DSO smart contract are defined in
Algorithm 5.
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Algorithm 5 DSO Smart Contract: Global Variables
1: ProviderSmartContractAddresses : address[] . /* Addresses of all providers’ deployed

smart contracts */
2: DsoAddress : address . /*DSO account’s address*/
3: Certi f ied : Mapping (address: bool) . /* Check if an account is certified or not.

By default, accounts are not certified. Certifying an account is restricted to the DSO */
4: Structure
5: TimeStamp : uint256
6: Spent : Bool
7: EndStructure
8: ProviderEnergyTokens : Mapping (address: EnergyToken[]) . Keep track of

EnergyToken instances owned by each Provider account

The energy balance of the prosumer is defined by the number of unspent token
instances and is publicly accessible by the function defined in Algorithm 6.

Algorithm 6 DSO Smart Contract: ProviderEnergyBalance
1: . /* This function returns the energy balance of a given address’ account. */
2: Input: addr : address
3: Output: uint256
4: CountO f UnspentEnergyToken : uint256,
5: CountO f UnspentEnergyToken←
6: for i← 0 to ProviderEnergyTokens[addr].Length do
7: if !ProviderEnergyTokens[addr][i].spent then
8: CountO f UnspentEnergyToken← CountO f UnspentEnergyToken + 1
9: end if

10: end for
11: Return: CountO f UnspentEnergyToken

Updating the provider’s balance per consumed or redeemed token is done exclusively
through the provider’s smart contract, by calling the DSO smart contract functions defined
in Algorithms 7 and 8, respectively.

Algorithm 7 DSO Smart Contract: UpdateProviderBalance1
1: Comment/* This function is called to consume N tokens, it takes two inputs, an integer

N and an address addr. It sets N unspent tokens from the tokens owned by addr to
spent. It is a restricted function which can only be called by the providers’ deployed
smart contracts */

2: Input: addr : address, N : uint256
3: i← 0
4: k← 0
5: while i ≤ N do
6: if !ProviderEnergyTokens[addr][k].spent then
7: ProviderEnergyTokens[addr][k].spent← true
8: i← i + 1
9: end if

10: k← k + 1
11: end while

Energy tokens have been used to represent the providers’ energy balance instead of a
simple numerical abstraction, to keep track of the history of the providers’ contributions to
the utility grid. The relevance of keeping track of prosumers’ energy contributions in a P2P
energy trading platform can be found in [66].
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Algorithm 8 DSO Smart Contract: UpdateProviderBalance2
1: . /* This function is called to redeem N tokens, it takes two inputs, an integer N

and an address addr. It sets N spent tokens from the tokens owned by addr to unspent.
It is a restricted function which can only be called by the providers’ deployed smart
contracts */

2: Input: addr : address, N : uint256
3: i← 0
4: k← 0
5: while i ≤ N do
6: if ProviderEnergyTokens[addr][k].spent then
7: ProviderEnergyTokens[addr][k].spent← f alse
8: i← i + 1
9: end if

10: k← k + 1
11: end while

Smart contract 2 (Provider): The contract is deployed by the provider ahead of each
trading round; it contains the ToU pricing for electricity consumption. Once deployed, con-
sumers have to subscribe to the trading round during a defined period of time, by deposit-
ing money corresponding to the amount of electricity they wish to consume. The reason a
deadline for subscription is defined, is that receiving a new subscription at any time can
prolong the trading round indefinitely, which is not following the proposed scheme since
electricity pricing is set according to prediction based on data collected during trading
rounds. Each time a new subscription occurs, the smart contract checks the subscribing
consumer account by calling Smart Contract 1; in case this is later certified and the provider
still has enough energy balance to supply the new coming demand, the provider balance is
updated accordingly, otherwise the subscription is denied. The smart contract stops accept-
ing upcoming subscription requests if the subscription-defined time has elapsed, or if the
provider has exhausted all his energy balance. The trading round then starts; it ends when
all subscribing consumer deposit balance in the smart contract is zero. This time-dependent
smart contract state is illustrated in Figure 8. Consumers’ electricity consumption data
are uploaded to the smart contract. It is used to charge consumers as well as being added
to the energy consumption dataset serving to train the prediction model as discussed in
Section 4.1 above.

Figure 8. Time dependency of the Provider smart contract state.
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To test the deployed smart contract, one Ether is set to correspond to 100 kWh.
Although this is not realistic, it is simpler for the sake of testing. However, other se-
curity tokens, and even stable coins linked to the country’s actual currency asset, can
serve as a payment method rather than Ether cryptocurrency, which has a very fluc-
tuating value. The global smart contract variables and events are presented below in
Algorithms 9 and 10, respectively.

Algorithm 9 Provider Smart Contract: Global Variables
1: Deposits : Mapping (address:uint256) . Keep track of each consumer deposit balance
2: Consumption : Mapping (address:uint256) . Keep track of each consumer total

consumption
3: EnergyRequested : Mapping (address:uint256) . Access each consumer requested

energy
4: SubscriptionTime : uint256 . Defined time span to accept new subscriptions after

contract deployment
5: DsoSmartContract : address . DSO smart contract address
6: Subscribers : address[] . Keep track of subscribers’ accounts
7: DeployementTime: uint256 . This variable is set to contract deployment time, it is set

inside the smart contract constructor called when contract is deployed
8: EnergyTari f : uint256

Algorithm 10 Provider Smart Contract Events
1: event : SendEnergy(addressindexed) . Notify the DSO to supply energy to the address

passed through the event
2: event : eventSubscriptionTimeStart() . Notify consumers that subscription is now

open after the smart contracts have been deployed
3: event : StartTradingRound() . Notify all parties that the trading round has started
4: event : eventBalanceExhausted(address) . Notify the DSO to stop supplying energy to

the address passed through the event

Algorithm 11 defines the function consumers call to upload their energy consumption
data through their certified nodes.

Algorithm 11 send_consumption_data
1: Input: c : uint256
2: consumptionBalance : uint256
3: consumption[msg.sender]← consumption[msg.sender] + c
4: consumptionBalance← consumption[msg.sender]× energy_tari f
5: deposits[msg.sender]← deposits[msg.sender]− consumptionbalance
6: if deposits[msg.sender] ≤ 0 then
7: emitBalanceExhausted(msg.sender)
8: end if

Algorithm 12 defines the function called by consumers to subscribe to the trad-
ing round.

Algorithm 13 defines the function called by consumers to unsubscribe prematurely
and exit the trading cycle.
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Algorithm 12 Provider’s Smart Contract: Subscribe

1: Time : uint256
2: TotalEnergyRequested : uint256
3: ProviderEnergyBlance : uint256
4: time← block.timestamp
5: TotalEnergyRequested← TotalEnergyRequested + msg.value

1018

6: EnergyRequested[msg.sender]← msg.value
7: ProviderEnergyBlance← CallDSOContarct1(addressDsoContract, addressProvider)
8: . /* Call DSO smart contract ProviderEnergyBalance function, to get Provider’s

energy balance */
9: deposits[msg.sender]← deposits[msg.sender]− consumptionbalance

10: if TotalEnergyRequested > ProviderEnergyBlance ∨ TimeSubscriptionTime ≤ Time−
Deployement∨!CallDsoContract2(addressDsoContract, msg.sender) then

11: Revert()
12: for i← 0 to Subscribers.Length do
13: emit SendEnergy(Subcribers[i])
14: end for
15: emit StartTradingRound()
16: else
17: Deposits[msg.sender]← Deposits[msg.sender] + msg.value
18: subsribers.push(msg.sender)
19: CallDsoContract3(addressDsoContract, addressProvider, msg.value

(1018)
) . /* Call

DSO smart contract UpdateProviderBalance1 function to update the provider’s energy
balance according to the subscribers’ energy demand that needs to be supplied to them
*/

20: end if

Algorithm 13 Provider Smart Contract: Unsubscribe

1: BillAmount : uint256
2: TotalEnergyRequested : uint256
3: BillAmount← consumption[msg.sender] ∗ EnergyTari f
4: Provider.Trans f er(BillAmount)
5: msg.sender.Trans f er(deposits[msg.sender]− billamount)
6: Deposits[msg.sender]← 0
7: EnergyRequested[msg.sender]← msg.value
8: . // Call DSO smart contract UpdateProviderBalance2 function to re-update the

provider’s energy balance accordingly after consumer unsubscribing:
9: CallDSOContarct1(addressDsoContract, addressProvider, deposits[msg.sender] −

billamount/1018)
10: emit BalanceExhausted(msg.sender)

4.3. Agents’ Interactions and Workflow in the Proposed Platform

Different agents interact with the pair of smart contracts, according to the defined
credentials granted. On the one hand, the provider, consumer, and DSO interact with
the smart contract by calling authorized functions. On the other hand, smart contracts
also interact with the rest of the platform agents through events, as shown in Table 2.
The event trigger is defined within the smart contract. Agents subscribe to a particular
event through their back-end application and get systematically notified whenever the
event is fired during the smart contract execution, with parameters being passed by the
smart contract to the subscribing application. Moreover, an event handler is set within
the agents’ applications to respond accordingly to the particular event and process the
parameters passed along. The pseudocode of the functions in the provider’s smart contract
is given below. Along with these functions, calls to functions of the DSO smart contract are
also defined within the provider’s smart contract as procedures; they take as parameters
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the DSO smart contract address beside the parameter to pass to the DSO smart contract
function to call.

Moreover, the interaction and workflow between the platform agents are highlighted
in Figures 9 and 10. The respective responses are given in chronological order in Figure 9.
When the trading round starts, all subscribers’ energy demand is supplied until prepaid
amount exhaustion. In the case of a client’s premature un-subscription, he is charged
according to his actual consumption and the change from his prepaid deposit is returned to
him. The provider’s balance is updated as well, by setting back n spent tokens to unspent,
where n represents the number of tokens corresponding to the change amount returned to
the consumer.

Figure 9. The proposed P2P Energy trading sequence diagram.
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Table 2. Smart contracts’ events in the proposed platform.

Event Source of Emission Event Trigger Event Subscribers Event Handler

Event 1:Subscription-
TimeStarted

()
Smart Contract 1 Smart Contract 1 is

deployed Consumer
Get notified by

subscription
starting time

Event 2:Subscription-
TimeEnded

()
Smart Contract 1 Subscription time

elapses Consumer
Get notified that
subscription time

has ended.

Event 3:TransferEnergy
(Address add); Smart Contract 2

Provider energy
balance is verified to be

enough
DSO Supply energy to

the consumer.

Event
4:StartTradingRound (); Smart Contract 1

Smart Contract 2
confirms that the

provider has energy
balance

Consumer

The Consumer starts
uploading his energy

consumption readings
to Smart Contract 1.

Event
5:BalanceExhausted Smart Contract 2

Consumer
unsubscribes,

or balanceExhausted
DSO Stop supplying

the Consumer.

Figure 10. Interactions between the entities of the proposed P2P trading Platform.

4.4. The State Diagram Representation

Each time a smart contract is called, it is executed on the Ethereum virtual machine
and its new state is stored on the blockchain. Thus, is suitable to represent the smart
contract as a finite state machine as depicted in the diagram of Figure 11. Inputs represent
the different function calls that modify the state of the smart contract.
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Figure 11. State diagram.

4.5. Consensus Protocol

Blockchain is principally a distributed architecture with no central authority, the va-
lidity of the shared ledger is agreed upon consensus held between nodes in the network.
Thus, consensus protocol stands as a key feature in such an architecture-based applica-
tion. It ensures the integrity of the data, which is uploaded to the blockchain without a
central trusted authority. Ethereum private blockchain proposes two options for consensus
protocols. Ethash, which is a Proof of Work-based protocol and Clique Proof-of-Authority
consensus protocol. Moreover, in this work, we preferred to use Ethash to keep the plat-
form decentralized, since PoA tends toward centralization by having a set of predefined
validators. What is suggested is to use Ethash with a fixed difficulty and no mining rewards.
All consumer nodes in the network are potential miners. All miner nodes would be having
the same hashing power, thus, if a node attempts to tamper with the ledger, it would have
to find new valid hashes for all the blocks preceding the blocks tampered with, and will be
certainly leftover in the mining race. The only scenario where a node can successfully be
fast enough to tamper with the already committed ledger is to use hardware having higher
hashing power, which is supposedly not allowed, given that the nodes’ hardware need
to be certified. For that purpose, the proposed consensus algorithm for this architecture
is that blocks are not accepted if the time difference between the last block mining time
and the time of proposing a new valid block is less than a defined threshold. To define
the threshold time, a PoW algorithm is developed in Java and run on a four (4) cores CPU:
Intel(R) Core(TM) i5-9300H CPU @ 2.40 GHz and a GPU: NVIDIA GeForce GTX 1650
with Max-Q Design. The mining function is called in a loop for several iterations. In each
iteration, the mining time is pushed in an array then the median of the set is deduced.
M = M0, . . . , Mk is the set of mining times where the mining function has been called for
k times with a fixed difficulty and a random string of fixed size to be hashed. Tthreshold
represents the minimum threshold time for accepting a new block. It is defined to be
the median of the set M. Tthreshold is computed for several sets M of different sizes.
Tthreshold is picked when convergence is met, as illustrated in Table 3.

Table 3. Tthreshold for different sizes of mining sets.

Set Size Median of the Set [ms]

50 69
100 49
150 39
200 39

According to Table 3, the deduced Tthreshold is 39 ms. To test the proposed min-
ing protocol and assess its performance, it is executed on 10 different threads running
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concurrently on the same machine, as depicted in Figure 12. Each thread represents a
miner. Fraudulent miners’ nodes are represented by threads running mining protocol
with less difficulty, to act as nodes having more hashing power. In the testing experiment,
the certified miners are represented by threads mining with difficulty 5, whereas fraudulent
miners are represented by threads mining with difficulty 4. The experiment consists of
running the threads for 100 rounds corresponding to 100 blocks. The number of fraudulent
miner nodes goes from a single node to 6 nodes representing more than 50% of the network.
Threads with the shortest execution time in a round represent nodes successfully mining
the new block for that particular round. If thread execution time is less than the accepted
minimum threshold, its execution time is set to be Tthreshold.

Figure 12. Threads running concurrently on CPU cores, simulating miners competing to add a
new bloc.

Miners for each round are defined according to the pseudocode of Algorithm 14. The
obtained results showed that in each mining round there are always at least two successful
miners, which corresponds to a fork situation. This is expected, since all miners are
supposed to have the same hashing power. Results in Figure 13 describe miner involvement
in forks given a different number of fraudulent nodes.

Algorithm 14 Miner threads.
1: for i← 0 to NumberO f (threads) do
2: if thread.ExecutionTime ≤ Threshold then
3: t← Ttreshold
4: else
5: t← thread.ExecutionTime
6: end if
7: end for
8: Min← Math.min(array)
9: for i← 0 to Size(array) do

10: if array[i] ≤ Min then
11: MinerIndexes.push(i)
12: end if
13: end for
14: return MinerIndexes
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Fraudulent nodes are threads given less difficulty than the rest, to emulate nodes that
have higher hashing power than allowed. It can be seen that fraudulent nodes are always
ahead of others in the number of blocks mined successfully, even when the number of
fraudulent nodes exceeds half of the total network. Hence, a fraudulent node can be easily
spotted. Since the nodes in the proposed architecture are not anonymous, they can be held
accountable for any proven fraudulent behavior.

Figure 13. Miners involvement in forks using the proposed consensus protocol.

To implement the proposed consensus protocol on an Ethereum private blockchain,
the go-Ethereum source code needs to be slightly overwritten. This can be done by per-
forming minor additions to the source-code in the file: “https://github.com/ethereum/
go-ethereum/blob/master/consensus/ethash/consensus.go” accessed on 23 March 2022

https://github.com/ethereum/go-ethereum/blob/master/consensus/ethash/consensus.go
https://github.com/ethereum/go-ethereum/blob/master/consensus/ethash/consensus.go
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The following Algorithm 15 is a code snippet with the original line members from go-
ethereum source code on Github; the applied additions are highlighted.

Algorithm 15 Modifications performed on PoW consensus in Go-Ethereum
// Various error messages to mark blocks invalid. These should be private to prevent
engine specific errors from being referenced in the remainder of the codebase, inherently
breaking if the engine is swapped out. Please put common error types into the consensus
package.
var (

errOlderBlockTime = errors.New("timestamp older than parent")
errTooManyUncles = errors.New("too many uncles")
errDuplicateUncle = errors.New("duplicate uncle")
errUncleIsAncestor = errors.New("uncle is ancestor")
errDanglingUncle = errors.New("uncle’s parent is not ancestor")
errInvalidDifficulty = errors.New("non-positive difficulty")
errInvalidMixDigest = errors.New("invalid mix digest")
errInvalidPoW = errors.New("invalid proof-of-work")
errInvalidMininegTime = errors.New("invalid mining time")

func (ethash *Ethash) verifyHeader(chain consensus.ChainHeaderReader, header, parent
*types.Header, uncle bool, seal bool, unixNow int64) error {
// Ensure that the header’s extra-data section is of a reasonable size
if uint64(len(header.Extra)) > params.MaximumExtraDataSize {

return fmt.Errorf("extra-data too long: %d > %d", len(header.Extra),
params.MaximumExtraDataSize
// Verify the header’s timestamp

if header.Time > uint64(unixNow+allowedFutureBlockTimeSeconds) {
return consensus.ErrFutureBlock

}
}
if header.Time <= parent.Time {

return errOlderBlockTime
}
if header.Time - parent.Time < Tthreshold {

return errInvalidMininegTime
}

4.6. Proof of Location (PoL)

Consumer node deployment and setting need to be supervised and certified by the
DSO so that the nodes are allowed to join the trading network. Consumer node transactions
are identified by their digital signature. However, since consumers are billed according to
the consumption data uploaded by their respective assigned nodes, which are set to upload
the consumer’s consumption reading from the respective smart meter to the smart contract,
it is crucial to ensure that the data uploaded is indeed coming from the certified nodes and
not from any malicious clone or identity thief who could gain access to the consumer node
private key. What is proposed is to add a proof of location (PoL) that must be included in
every transaction issued by the consumer node to prove the transaction is coming from the
known location of the certified node. Outdoor localization mainly uses Global Positioning
System (GPS) as the main localization technique. However, GPS is not suitable for trustless
decentralized scenarios. What is suggested is to use trilateration to localize the consumer
nodes. Trilateration is a technique for node localization that determines object position,
knowing its distance from at least 3 reference points.

Considering 2-dimensional trilateration, a 2-dimensional frame needs to be set with an
origin O (0,0) and three reference points, Rp1, Rp2 and Rp3 with known coordinates (x1,y1 ),
(x2,y2) and (x3, y3 ), knowing the distances d1, d2 and d3 between a target point Tp(xT , yT)
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and Rp1, Rp2 and Rp3, respectively, the couple (xT , yT) can be deduced by solving the set of
three expressions of Equation (3), as illustrated in Figure 14.

d2
1 = (xt − x1)

2 + (yt − y1)
2

d2
2 = (xt − x2)

2 + (yt − y2)
2

d2
3 = (xt − x3)

2 + (yt − y3)
2

(3)

Figure 14. Trilateration technique.

In the proposed PoL model, three anchor nodes are deployed to cover a defined
area with a defined number of consumer nodes. Consumer nodes send a PoL request
to the 3 anchor nodes; each anchor node computes the distance separating him from
the consumer node, then sends back the measured distance signed using his private key
KPr

j . Consumer nodes need to include the three signed locations they received from the
3 anchors as a PoL. Given a defined geographical location with a set of n Consumer
nodes CNi = CN0, CN1, . . . , CNn and a set of 3 anchor nodes Anj = An0, An1, An3 each
consumer node i should send a PoL request Pol_Reqi→j to the anchor j and receive Pol
response Pol_Resj→i, accordingly, as in Equation (4).

PolResj→i :
{

Distance between Anj and CNi
Timestamp

}
KPr

j (4)

There are two main techniques to measure the distance between a reference anchor and
a target node, which use either the Time of Arrival (ToA) or the Received Signal Strength
Indicator (RSSI). Although assessing the most suitable distance measurement technique
is not within the scope of our paper, we found some reference papers proposing RSSI
techniques for outdoor localization as in [67–70] and we aimed to present a blueprint for
Wi-Fi RSSI-based node localization, that potentially can be used for PoL in blockchain-
based decentralized P2P energy trading. Given the RSSI of a received signal, the distance
between the transmitter and the receiver nodes can be deduced according to the expression
in Equation (5).

d = 10−(RSS−Pt+Pl0−δ)/10γ (5)

where Pl0 is the path loss at a reference distance of (1 m) measured using the expression in
(6), λ is the wave length of the emitted signal and γ is the path loss exponent and depends
on the environment.

Pl0 = 20log10
(

4π

λ

)
(6)
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δ is the standard deviation and depends on the hardware and antenna used as well as
on the noise. We tried to define the location of 2 smartphones through Wi-Fi RSSI. RSSI
values of a hotel Wi-Fi access point were measured in an urban area of Kuala Lumpur using
two different smartphones, a SAMSUNG GALAXYAS30 and an OPPO F11. RSSI readings
were recorded each 2-meter interval walking from the hotel main entrance following the
itinerary illustrated in Figure 15 for 50 times, to deduce the standard deviation model:

Figure 15. The itinerary followed.

Since there is no standard industrial norm for computing RSSI, its measurement for
the same distance is different in the two phone devices. In such an architecture with no
unified protocol in RSSI measurement, the anchor node needs to have a reference database
with a d(RSSI) model for each device. We kept the same distance function as in Equation (1)
with personalized λ and δ and for each device as shown in Figure 16.

Figure 16. Mapping diagram illustrating how each consumer node is mapped to its own distance
computation model in the Anchor server node.

The Wi-Fi access point is of 5 GHz with a wavelength of 6 cm, the PoL is deduced
according to Equation (3), the access point Wi-Fi signal power transition is PT = 25 dBm.
The measured RSSI corresponding to each distance in the entire 50 testing sets was used to
compute the distance standard deviation for each device. In our case, the RSSI in a given
position varies randomly over time from one test set to another, the values that are measured
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for each distance in each training set are provided in Equation (7). The corresponding
results are reported in Figures 17 and 18.

σ =

√√√√ 1
N

N=50

∑
i=1

RSSIi − u (7)

where, u = 1
N

N=50
∑

i=1
RSSIi

Figure 17. Standard deviation for device 1.

Figure 18. Standard deviation for device 2.

The mean standard deviation for device 1 is 2.2625, whereas it is 2.6500 for device 2.
By fixing δ for each device, the next step is to deduce γ for each one of them using best
fitting curve method between the set of distances d1, d2, . . . , d15 and the set of corresponding
RSSI mean averages RSSIav0, RSSIav1, . . . , RSSIav15, using Equation (5). This is depicted in
Figures 19 and 20.
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Figure 19. Pathloss exponent for device 1 deduced using best fitting curve.

Figure 20. Pathloss exponent for device 2 deduced using best fitting curve.

5. Experiment Results and Analysis

To assess the performance of the Proposed platform, an Ethereum private blockchain
has been set on a machine having 4 cores CPU: Intel(R) Core(TM) i5-9300H CPU @ 2.40 GHz
and a GPU: NVIDIA GeForce GTX 1650 with Max-Q Design. It is worthy to mention that
the purpose of the experiment is not to validate the functioning of the platform, since it has
been already accomplished during the development stage on Remix IDE. We decided to
put the focus on evaluating its performance when increasing subscribing consumers as well
as their consumption data sending rate. Accordingly, blockchain nodes are created running
on different ports and are connected to each other as peers. The created nodes represent,
as a whole, subscribing consumers uploading their electricity consumption data on the
provider’s smart contract. The evaluated metric is transactions latency, which consists of
time in seconds between the transaction being issued by the node calling the smart contract
and when being committed to the ledger. As this is illustrated in Figure 21, transaction
latency increases with the increase of the sending rate. This is due to the block mining
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time, as well as to the fact that block size in Ethereum blockchain is limited to a maximum
of 20 million gas and thus to a limited number of transactions in a single block. The less
gas a transaction consumes, the more transaction can be contained in a single block and
consequently, the less transaction latency. The slope of latency increase varies according to
the block mining time. Figures 22 and 23 show gas consumption for each function in both
smart contracts.

Figure 21. Transaction’s latency with increasing send rates for different numbers of consumer node.

Figure 22. Gas consumption for Provider Smart Contract.
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Figure 23. DSO Smart Contract Gas consumption.

6. Conclusions

In this paper, an Ethereum-based energy platform has been introduced where pro-
sumers cooperate to form a single provider supplying client consumers with a prepaid
blockchain-based billing system. The potential and the feasibility of such a platform have
been presented in this paper as well as its assets over the traditional energy tokenization
energy trading scheme present in the literature. An extensive description of the architec-
ture and functioning of this platform as well as its implementation have been carried out
throughout this study. Moreover, a ToU pricing model based on machine learning and
autonomous clustering performed on a smart contract are presented. The present work
aimed to spotlight the relevance of the proposed platform, as well as evaluate it based on
pertinent metrics.
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