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Abstract: The purpose of an excavator is to dig up materials and load them onto heavy-duty dump
trucks. Typically, an excavator is positioned at the rear of the dump truck when loading. In order
to automate this process, this paper proposes a system that employs a combined stereo camera and
two LiDAR sensors to determine the three-dimensional (3D) position of the truck’s cargo box and to
analyze its loading space. Sparse depth information acquired from the two LiDAR sensors is used
to detect points on the door of the cargo box and establish the plane on its rear side. Dense depth
information of the cargo box acquired from the stereo camera sensor is projected onto the plane of
the box’s rear to estimate its initial 3D position. In the next step, the point cloud sampled along the
long shaft of the edge of the cargo box is used as the input of the Iterative Closest Point algorithm
to calculate a more accurate cargo box position. The data collected from the stereo camera are then
used to determine the 3D position of the cargo box and provide an estimate of the volume of the
load along with the 3D position of the loading space to the excavator. In order to demonstrate the
efficiency of the proposed method, a mock-up of a heavy-duty truck cargo box was created, and the
volume of the load in the cargo box was analyzed.

Keywords: autonomous excavator; 3D pose recognition; dump truck

1. Introduction

There is a shortage of new construction workers in the industry due to the trend of
laborers wanting to avoid extreme environments [1]. Particularly, due to the retirement
of older workers, there is a shortage of skilled workers. Therefore, research is being
conducted on autonomous trucks and construction robots that can replace humans at
construction sites. Excavators are considered low risk because they do not travel at high
speeds, and they perform repetitive tasks. Hence, their automation is highly feasible. For
this reason, major construction equipment manufacturers are incorporating various types
of automation [2,3]. Diverse research was carried out in line with this trend. For example,
several publications examined the automated determination of excavation spaces and
related control techniques [4–11]. An excavator digs up and transports loads into the cargo
box of heavy-duty dump trucks. Excavators feature long joints and are often positioned at
the rear of a truck to load materials. After the cargo box has been loaded sufficiently, the
process is repeated for additional trucks.

To automate this process, it is vital that the excavator acquire accurate information
about the cargo box’s three-dimensional (3D) position for analysis. Stentz introduced a
method for recognizing a truck’s cargo box after segmenting a truck from dense Lidar
data [12]. The truck’s cargo box is scanned using a dense LIDAR sensor. After segmenting
the cargo box from dense rider data, the 3D position of the dump truck is determined by the
upper plane of the cargo box. However, suppose the excavator is positioned higher than the
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truck, and the truck is parked to the excavator’s side. Stereo cameras are efficient sensors
that provide dense 3D depth maps. J. R. Borthwick introduced technology for recognizing
the location of a truck using depth information obtained from a stereo camera [13]. The 3D
pose is estimated using the 3D shape information of the truck. A truck cargo box is formed
from several faces. The 3D position of the truck is calculated by matching all cargo box
planes and the plane of the initial 3D model. Therefore, 3D shape information of the entire
truck is required. This method can be used for very large excavators, but it is difficult to
apply to general excavators with a low height.

Moreover, there is a way to load a load into a truck by using the structure after
installing a special structure [14]. Since the truck is located inside the special structure
and the excavator knows the 3D position of the special structure, the truck’s location is
naturally estimated. This method allows the excavator to locate the truck’s 3D location
reliably, but it is costly and limited in the location of the structure.

Another option is to place the sensor in a third location other than excavators and
trucks [15]. After installing the GNSS sensor that indicates the location of the truck and
excavator, the initial 3D location of the truck and excavator is expressed in a global coordi-
nate system. Next, the three-dimensional position of the truck is estimated using four lidar
sensors and fish-eye cameras installed on the excavator. This method increases the cost of
configuring the sensor.

Despite the wide variety of dump truck types available, their cargo boxes generally
resemble hexahedrons. Furthermore, the box’s door is a flat plane shape for simplified
fabrication. This paper describes a technique that enables an excavator at the rear of the
loading truck to recognize its 3D cargo box and to estimate the 3D position of the loading
space and the volume of the load inside using data obtained from a novel sensing device
assembled for this purpose.

Specifically, this research provides the following three innovations:

1. A novel dump truck cargo box sensing device;
2. A method of automatically estimating the 3D position of the loading space;
3. A method of automatically estimating the volume of the load.

The sensing device combines two two-dimensional (2D) LiDAR sensors and a stereo
camera. The scenario includes an excavator operating in an outdoor environment. Note that
using only a stereo camera would be hazardous. Hence, two LiDAR sensors complement it
(Section 2). The distance values acquired by each sensor are projected onto one coordinate
system using a calibration board and a line laser for accuracy (Section 3). As the cargo box
door resembles a plane shape, the 3D estimation of the position of the cargo box is achieved
by determining the plane of the rear of the cargo box from the data received from the two
LiDAR sensors installed vertically on the sensing device (Section 4.1). Furthermore, the 3D
position of the box is determined by projecting the dense 3D location of the door acquired
from the camera onto a plane and matching it with the actual 3D model of the cargo box.
The 3D position of the box can be obtained by utilizing one virtual matching point and four
matching points of the rear plane (Section 4.2).

If the 3D position of the cargo box is estimated solely using the plane, errors may occur.
Therefore, points along the long shaft of the box are used for more accurate determination.
By matching the sampling of the points of the box’s long shaft to the actual 3D model, the
distance data of the shaft obtained from the stereo camera are fed to an iterative closest
point (ICP) algorithm (Section 4.3). Lastly, after the 3D position of the cargo box is estimated,
the volume of the load is calculated. Moreover, the 3D position information for the loading
space is transmitted to the excavator.

The general outline of this paper is as follows. First, Section 2 describes the sensing
device developed for this study. In Section 3, the method of calibrating the sensors of the
sensing device is discussed. Section 4 outlines the method for estimating the truck cargo
box using information acquired from the sensing device. Section 5 examines the accuracy
of the proposed method for estimating load volume and determining the loading space.
The study concludes with Section 6.
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2. Sensor Configuration

Figure 1 illustrates the sensing device used to detect the dump truck cargo box. Its
dimensions were 20 × 10 × 30 cm in terms of width, length, and height, respectively.
The device consisted of a stereo camera (ZED-1) and two LiDAR (Hokuyo UST-10LX1-CH)
sensors and was placed on top of the excavator’s driver seat to estimate the plane of the
cargo box’s rear. The stereo camera provides one color image and one 3D depth map.
The data acquired by the stereo camera were used to recognize the 3D position of the
dump truck’s cargo box, determine the loading space available, and calculate the volume
of the load. Because most excavators operate outdoors, a commercial outdoor camera
was selected. It had a resolution of 1920 × 1080 pixels and provided red green blue video
information as a depth map at a rate of 30 fps. The depth map had sufficient sensitivity
between 0.5 and 20 m.
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Figure 1. Dump truck cargo box 3D position recognition system.

An excavator’s working environment comprises dust and solar reflections. Conse-
quently, the information acquired from a camera in such an environment contains noise;
hence, errors occur in the distance estimates of the stereo algorithm. Therefore, for the
purposes of this research, it was not possible to rely solely on the information captured by
the camera. The two LiDAR sensors were attached perpendicular to the device. They are
widely used with automated driving technologies, drones, and robots. One disadvantage of
LiDAR is its price, which increases with resolution. Although LiDAR acquires sparse depth
information, it has the advantage of consistent accuracy. When combined with camera data,
superior dense depth information is acquired. The LiDAR sensor has a 270◦ angle and can
see distances between 0.02 and 10 m. It provides users with a relatively high level of depth
accuracy at ±40 mm (Table 1).

Table 1. Specifications of the proposed dump truck 3D position recognition system.

Function Component Manufacture Model Description

3D Sensing Device
LIDAR HOKUYO UST-10LX1-CH

Field of view: 270◦

Depth Range: 0.02–10 m

Accuracy: ±40 mm.

Camera STEREOLABS ZED 1
Resolution: 1920 × 1080

Depth Range: 0.5–20 m
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3. Sensor Calibration

During the scanning process, the depth information from each sensor can be retrieved
in real-time. However, the 3D depth information depends on the coordinate system of the
sensor. Therefore, it is essential to define a method for representing depth information in a
single coordinate system via sensor calibration. For ease of calibration, the line lasers and a
flat calibration object were used, as shown in Figure 2.
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Figure 2. Calibration tool to calibrate the sensor. (a) calibration object; (b) line laser.

Generally, low-cost, mass-produced LiDAR sensors have a bandwidth of 905 nm.
The scanning area with the infrared (IR) filter removed captures the laser lines [16]. Hence,
when the line laser and LiDAR scan areas are matched, the area to be scanned by LiDAR
can also be determined from the stereo camera image, as shown in Figure 3.
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Figure 3. Example of data acquisition process using a calibration plate. (a) Depth information
obtained from LiDAR; (b) Image information obtained from stereo camera.

With T defined as the Euclidean transformation relation between two coordinate
systems, the transformation matrix, T, is represented by a single (3 × 3) rotation transfor-
mation matrix, R, and a (3 × 1) translation transformation vector, t. When the 3D matching
points obtained from the stereo camera and the LiDAR sensor are expressed as Qi and
Pi, respectively, and three matching points theoretically exist, the transformation matrix,
T(L→C), between the two coordinate systems can be obtained as follows:

Qn = TL→CPn (1)

If there are more than three matching points, the transformation matrix between the
two points in time can be obtained using the singular value decomposition (SVD) or the
Levenberg–Marquardt (LM) algorithm to minimize the error [17], as shown in Equation (2):

ε = ∑
n
|| Qn − TL→CPn||. (2)

In order to facilitate calibration, the LiDAR sensors were positioned so that they
sensed the calibration board, and the center point of the line was detected by each LiDAR
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sensor and camera as a match point, as shown in Figure 4. The distance information of
the calibration board scanned by the LiDAR sensor was segmented as a distance value for
detection, and the stereo camera used the images to detect the calibration board. Based on
the random sample consensus algorithm (RANSAC), the detected lines were fitted more
precisely, and the center point was determined [18].
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Figure 4. Example of detecting the center point from the depth information acquired by LIDAR and
stereo. (a) A center point of the line in LIDAR data; (b) A center point of the line in the camera data.

After placing the calibration board at various positions and obtaining the transforma-
tion matrices using Equation (2), an accurate projection of the data obtained from the LiDAR
sensor onto the position of the line laser was available, as shown in Figure 5. The accuracy
of calibration becomes greater with the increasing number of match points, but this study
confirmed that six were sufficient. Figure 6 shows the results when inter-device calibration
was performed and when it was not.
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Figure 5. The result of calibrating the LIDAR and stereo camera using the center points. (a) 3D point
cloud obtained from the stereo camera; (b) The result of superimposing the information scanned
from the LIDAR on the stereo 3D point cloud.

With the calibrated device in the outdoors scan experiment, it is possible to obtain
three-dimensional depth information expressed in one coordinate system. In this
study, the reference coordinate system of the device was defined as the stereo camera’s
coordinate system.



Appl. Sci. 2022, 12, 3471 6 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 6 of 17 
 

 
(a) (b) 

Figure 6. The result of projecting data from two LiDAR sensors on a dense 3D point cloud obtained 
from a stereo camera. The red line is the left LIDAR sensor, and the yellow line is the right LIDAR 
sensor. The left side of the sensor: (a) the result before correction; (b) the result after correction. 

With the calibrated device in the outdoors scan experiment, it is possible to obtain 
three-dimensional depth information expressed in one coordinate system. In this study, 
the reference coordinate system of the device was defined as the stereo camera’s coordi-
nate system. 

4. Location Estimation of Truck Cargo Box 
In order to load the excavator’s content into the truck’s cargo box, it is first necessary 

to determine its 3D position. Heavy-duty dump truck cargo box doors are flat and gener-
ally mounted on the rear of the box. It is characterized by a long shaft emerging from its 
edge. In this research, the accuracy of the location of the plane was prioritized, assuming 
the device senses the cargo box door of the truck and that the rear of the cargo box is flat. 

In Figure 7, a flowchart of the method of estimating the 3D position of the truck cargo 
box is presented. After the rear of the cargo box is scanned by the device, a dense and 
sparse 3D point cloud is generated by the stereo camera and the two vertically mounted 
LIDARs, respectively. Based on the feature points associated with the images on the left 
and right, the stereo algorithm generates the 3D depth value. Thus, the more distinct fea-
ture points detected by the left and right cameras, the more accurate the 3D depth [19]. 
Meanwhile, the depth value of a single-color object with few features will have a larger 
error because of inaccurate matching. It is possible to scatter random patterns to overcome 
this problem, but they are ineffective in the presence of strong wavelengths of light, such 
as sunlight [20,21]. 

Figure 6. The result of projecting data from two LiDAR sensors on a dense 3D point cloud obtained
from a stereo camera. The red line is the left LIDAR sensor, and the yellow line is the right LIDAR
sensor. The left side of the sensor: (a) the result before correction; (b) the result after correction.

4. Location Estimation of Truck Cargo Box

In order to load the excavator’s content into the truck’s cargo box, it is first necessary
to determine its 3D position. Heavy-duty dump truck cargo box doors are flat and generally
mounted on the rear of the box. It is characterized by a long shaft emerging from its edge.
In this research, the accuracy of the location of the plane was prioritized, assuming the
device senses the cargo box door of the truck and that the rear of the cargo box is flat.

In Figure 7, a flowchart of the method of estimating the 3D position of the truck cargo
box is presented. After the rear of the cargo box is scanned by the device, a dense and
sparse 3D point cloud is generated by the stereo camera and the two vertically mounted
LIDARs, respectively. Based on the feature points associated with the images on the left
and right, the stereo algorithm generates the 3D depth value. Thus, the more distinct
feature points detected by the left and right cameras, the more accurate the 3D depth [19].
Meanwhile, the depth value of a single-color object with few features will have a larger
error because of inaccurate matching. It is possible to scatter random patterns to overcome
this problem, but they are ineffective in the presence of strong wavelengths of light, such
as sunlight [20,21].
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Commercial dump trucks usually have a single-color cargo box, making it difficult for
left and right cameras to identify similar features. Consequently, the distance information
on the rear side of the dump truck cargo box will be inaccurate. To overcome this issue,
two LiDAR sensors that provide constant depth information were used to identify points
on the cargo box’s door. The normal vector of the 2D point first obtained from the lidar
sensor is calculated using the surrounding points. The points on the door are determined
by the distance information between the normal vector and the two LiDAR sensors, and
the noise points are removed using a line fitting algorithm. They are then formulated into a
plane corresponding to the rear of the cargo box.

A stereo camera provides a dense 3D point cloud. Points close to the plane are
points on the door. These points are projected onto a plane and represented as a 2D ROI.
Conversely, points that do not exist on the plane are considered noise. These 3D points
exist on the ground and are removed using ground plane fitting. As a result, a 3D point
cloud of the truck cargo box is obtained.

In the next step, we create one 3D hexahedron model with the same dimensions as the
cargo box. The initial 3D position of the cargo box is determined by matching the planes of
the two models. After estimating the initial 3D position of the box, the estimation error is
corrected by using the long axis of the cargo box. A detailed description of each step can be
found in the detail section.

4.1. Cargo Box Rear Detection Using a LiDAR Sensor

Due to the vertical placement of the two LiDAR sensors, data from the cargo box door
and the ground are merged, and the point cloud for the cargo door is separated. In theory,
a 3D point cloud on a plane can be described by an identical normal vector. Furthermore,
when a sensing device is constructed, the index, i, of the point cloud obtained from the two
LiDAR sensors may be considered identical if both identical LiDAR sensors are located
on the same plane. Therefore, a simple method was used to detect the point cloud on the
cargo box door using two LiDAR sensors.

Figure 8 illustrates the process of obtaining the point cloud on the cargo box door.
Three-dimensional point clouds acquired from the left and right LiDAR sensors are denoted
as PL

i and PR
i And their normal vectors are P̂L

i and P̂R
i , respectively. The normal vector,

P̂L
i is determined by the cross product of the two vectors after obtaining the direction

vector, B PR
i of PL

i and PL
i+k (k is 3–5), after the direction vector, A of PR

i , is ascertained from,

PL
i . The normal vector, P̂R

i , of the right-side LiDAR data, PR
i , is obtained using the same

method. When the normal vector of all point clouds is determined, the dot product and the
z-axis (0, 0, 1) of the stereo camera coordinate system are obtained.
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As the sensor mounted on the excavator is placed on the rear side of the cargo box,
an inner product value closer to −1 is considered to be the point cloud on the cargo box
door. The point cloud is filtered using the magnitude of the direction vector, A. Points with
significant differences in the distance cannot be considered part of the point cloud and
are therefore removed, as they are considered noise. Because the points are discriminated
using only the normal vector and the distance between the point clouds, there may be
outliers that are not removed from the filtering.

Lastly, outliers are eliminated by line modeling the 3D point cloud sorted using the
random sample consensus algorithm, and the final 3D point cloud existing on the cargo
box door is sorted. Figure 9 shows a LiDAR point cloud with outliers removed from a
three-dimensional point cloud of a stereo camera. Point clouds that are not line-fitted are
considered noise.
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This point cloud is used to define the plane of the rear of the cargo box, πL, as in
Equation (3), and the plane equation is obtained using the least-square method shown in
Equation (4):

ax + by + cz + 1 = 0. (3)
x1 y1 z1 1
x2 y2 z2 1
x3 y3 z3 1
...

...
...

xi yi zi 1




a
b
c
1

 =


0
0
0
...
0

. (4)

The matrix form is a linear equation, AX = 0. Therefore, the general solution, X, is
computed using SVD, as in Equation (5). Finally, the back plate plane is computed with
Equation (6):

A = U ∑ VT., (5) a
b
c

 = VT ·

 0
0
1

, πL =
[

a b c 1
]T . (6)

4.2. Recognition of Initial 3D Position Using a Stereo Camera

Although the box is plane-shaped, the 3D distance provided by the stereo camera
does not provide an accurate representation of the shape if the box is single-colored.
Consequently, the plane data obtained by the LiDAR sensor on the rear of the cargo box
are used to correct the acquired depth value. In the dense depth map obtained from the
stereo camera, the 3D point cloud is expressed as Qi(xi, yi, zi). Hence, the points closer
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to the cargo box plane must be sorted in advance as they are likely to be situated on the
cargo box door. It is possible to calculate the distance between point Qi and plane πL using
Equation (7):

d =
|axi + byi + czi + d|√

a2 + b2 + c2
, d < 30 (7)

Generally, only points with a difference in distance within 30 cm are considered cargo
box door points; all other points are regarded as noise and are eliminated. The sorted points
can also be projected onto plane πL using Equation (8):

Q′ i = Qi − d× πL . (8)

Figure 10 shows a projection of the dense 3D point cloud acquired by the stereo camera
on the cargo box plane obtained by LiDAR sensors. The distance errors are calibrated as
the LiDAR sensor measurement values are projected onto the plane. The projected 3D
points can be used to estimate the initial 3D position of the excavator cargo box. The 3D
hexahedron model based on the actual dimensions of the box is generated, as shown in
Figure 11. Next, four points near the vertex in the projection points cloud are detected
to match the hexahedron model to the actual cargo box plane, as shown in Figure 12.
The points corresponding to the hexahedron model are determined in the same order.
Figure 13 illustrates the method of matching the 3D hexahedron model and the truck
cargo box.
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Figure 13. A method to match the plane between two models.

First, the four vertices (M1, M2, M3, M4) on the 3D hexahedron model and the four ver-
tices (Q′1, Q′2, Q′3, Q′4) on the cargo box plane are set as points of convergence. (Q′5, M5)
is a virtual point of convergence used to eliminate the symmetry ambiguity. The cargo box
has a rectangular parallelepiped form, and its calculation is subject to errors. The virtual
point of convergence is determined from the cross-product of each point cloud unit vector,
|A| and ˆ|B|, which become direction vectors of identical magnitude. When the five points
of convergence are defined, the 3D transformation matrix, TM→C, is obtained with its error
minimized, as in the following equation. Figure 14 shows the result of matching the cargo
box to the hexahedron model using the transformation matrix. The figure shows errors,
but a match was made based on the cargo box plane.
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4.3. Pose Estimation Refinement

The truck cargo box position was estimated with only five points of convergence
results in the errors presented in Figure 14. This is caused by differences in the distance
information estimated by the stereo camera and the generated 3D hexahedron model.
The initial matching results show that more errors occurred at the longitudinal corner than
at the rear of the cargo bed. Therefore, to minimize error, the points of convergence are
sampled at regular intervals from the two corners along the longitudinal axis of the 3D
hexahedron model, as shown in Figure 15. An iterative algorithm is used so that these
points of convergence and the longitudinal axis of the cargo box obtained by the camera
will match.
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Figure 15. Example of 5 3D points sampled for each corner along the long axis of a cargo box.

A 3D transformation matrix, TM→C, is used to project the sampled 3D point, Mi, of
the corner onto the camera’s 2D image using Equation (9):

mi = k TM→C Mi. (9)

Here, k is the internal parameter of the stereo camera, and mi is the point pro-
jected onto the 2D camera image, as shown in Figure 16. If the initial position trans-
formation matrix, TM→C, is accurate, the projected points are identical to the box cor-
ner. Otherwise, they do not match, as shown in Figure 16. Thus, the longitudinal axis
of the cargo box is used to solve this issue. Figure 17 presents the method for detect-
ing points of convergence. When they are projected onto the 2D image, the left corner
of the cargo box is searched from the right side of the x-axis, and the right corner is
searched from the left side. When a 3D value exists on the searched point, it is desig-
nated as the point of convergence. The initial transformation matrix, TM→C, is refined
after the ICP algorithm iteratively minimizes the errors of the points added to the cor-
ner and the plane [22,23]. The pseudocode of the iterative refinement is shown below:

TM→C = InitializeMatrix
While(ε > Tε )

// Find the corresponding points m′ i where the distance between
mi and m′ i is minimum.
m′ i = ProjectionPoint(T′M→C, Mi)

// Find the T matrix that minimizes the error.
ε = ∑n|| m′ i − k T′M→C Mi ||
T′M→C = TM→CT′M→C

// convert Mi to global coordinate system.
Mi = T′M→C Mi
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5. Results and Analysis

In order to validate the performance of the proposed system, a model of the
cargo box of a common heavy-duty dump truck was developed, followed by outdoor
experiments. The excavator sensor was installed on the upper section of the driver’s
seat of the excavator as shown in Figure 18, and the loading procedure was repeated
20 times as the sensor sensed the cargo box while the excavator was moving. The data,
as shown in Figure 19, were obtained each time, and the distance values were derived
from the stereo sensor.
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The sensor is placed on the top of the excavator.
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Figure 19. Sensing data obtained from the sensor: (a) RGB Image; (b) Depth Map; (c) LIDAR data.

Figure 20 illustrates the detectability of the truck cargo box door based on distance
measurements from the LiDAR sensor. When the distance data obtained by the LiDAR
sensor and the stereo camera were visualized, only those points that were estimated to
represent the cargo box door were visible. Notably, the widely used dump truck cargo boxes
of Volvo and Scania were sensed, excluding the experiment model, and an experiment for
detecting the cargo box door was conducted [24,25]. Using the plane data obtained from
the LiDAR sensor, the 3D point cloud obtained from the camera was projected. The cargo
box doors of two regular trucks are also detected
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Figure 20. The result of detecting the doors of two commercial dump trucks with LiDAR data.
The green point cloud is the point cloud obtained from the stereo camera projected onto the dump
truck door plane.

Figure 21 shows the experimental results of 3D location estimation using the experi-
mental model. The initial results are indicated in blue, and the more precise results using
a refined transformation matrix are expressed in yellow. When the initial position was
estimated only using plane data, numerous differences were found in the longitudinal axis
of the cargo box. The 3D position estimation using the values obtained by the refined trans-
formation matrix showed that the longitudinal axes of the cargo box and the hexahedral
model were similar, indicating that the 3D location estimation was successful. Estimation of
cargo space volume can increase work efficiency [26,27]. The 3D location of the estimated
cargo box enabled the provision of data of the loading space of the cargo box. Figure 22
illustrates the visualized results of normalized data based on box height. The load can be
placed in the cargo box, excluding the part in red.



Appl. Sci. 2022, 12, 3471 14 of 17Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 17 
 

 
Figure 21. The result of precisely finding the three-dimensional position of the truck cargo box using 
the proposed method. Blue is the initial 3D position of the cargo box, and yellow is the result of a 
more precise 3D position. The side corners of the cargo box are more precisely matched. 

 
Figure 22. Visualization of the inside of the loader analysis. The excavator can load loads in areas 
other than the red area. 

In this study, the load was loaded five times to the cargo box interior using the exca-
vator, as shown in Figure 23, and volume estimations were made using the image data 
obtained from the camera. The cargo box interior was detected using the image data when 
the 3D hexahedral model was projected onto the image, as shown in Figure 24. As such, 
the outcome of the projected 3D points was expressed in the shape of a trapezoid (near–
far effect), for which the distance per pixel was considered to estimate an accurate value. 
The distance per pixel, 𝑝 , is calculated using Equation (10): 𝑝 = 𝑟𝑒𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑚𝑚)/ 𝑝𝑖𝑥𝑒𝑙.                  (10) 

The internal volume of cargo box A obtained from the 2D image is determined using 
Equations (11)–(13): 𝐴 =  ∑ (𝑃 ( ) × 𝑃 ( ) × 𝑃 ( )), (11) 

𝑃 ( ) =  𝑃  + (𝑃 − 𝑃 ) × 𝑃 ( )𝑌(𝑚𝑎𝑥) , (12) 

𝑃 ( ) =  𝑃 ( ).                 (13) 

Figure 21. The result of precisely finding the three-dimensional position of the truck cargo box using
the proposed method. Blue is the initial 3D position of the cargo box, and yellow is the result of a
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Figure 22. Visualization of the inside of the loader analysis. The excavator can load loads in areas
other than the red area.

In this study, the load was loaded five times to the cargo box interior using the
excavator, as shown in Figure 23, and volume estimations were made using the image
data obtained from the camera. The cargo box interior was detected using the image data
when the 3D hexahedral model was projected onto the image, as shown in Figure 24. As
such, the outcome of the projected 3D points was expressed in the shape of a trapezoid
(near–far effect), for which the distance per pixel was considered to estimate an accurate
value. The distance per pixel, pd, is calculated using Equation (10):

pd = real distance(mm)/ pixel. (10)
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Figure 24. Area detection for the part to measure the internal volume of the loading box in the
2D image.

The internal volume of cargo box A obtained from the 2D image is determined using
Equations (11)–(13):

A = ∑i

(
Pi(x) × Pi(y) × Pi(h)

)
, (11)

Pi(x) = Pmin + (Pmax − Pmin)×
Pi(y)

Y(max)
, (12)

Pi(y) = Pi(y). (13)

Here, Pi(x) is the height value from the model’s floor. The volume of the load was
measured using the data from five sets of experiments. The quantitative values were
estimated for each loading operation using the difference in volume between frames.
The volume of the excavator’s bucket was 0.8 m3; hence, load volume was estimated with
the difference in volume estimated from one experiment among the accumulated volume
of the load over five sets of experiments.

Table 2 summarizes the measurement results of load volume. Accuracy was deter-
mined by the proximity of the value to the ground truth, and the experiment results showed
large errors.
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Table 2. Volume measurement result of load.

Number of Experiments Volume Estimation Result (m3) Ground Truth (m3)

2rd −0.04 0.8
3rd 0.13 1.6
4th 0.13 2.4
5th 1.35 3.2

The sensing device mounted on the excavator was positioned diagonally rather than
accommodating a top view. However, as the cargo box is filled with load, more accurate
results are possible if the loads are closer to the sensing device and a more precise camera
is used.

6. Conclusions

This study applied vision technology that combines 3D LiDAR and stereo distance
sensors to estimate a heavy-duty dump truck’s cargo box location and volume. The sensing
device was installed on the upper section of the excavator’s driver seat. First, the plane
information for the door of the dump truck’s cargo box was extracted, and stereo distance
data were combined to obtain the 3D plane data of the rear of the cargo box. Next, a
3D model of the cargo box was generated identically to actual measurements, followed
by the determination of the initial 3D position of the box so that the two planes would
match. The 3D model was initially adjusted, after which the 3D coordinate value of the
longitudinal axis corner was detected iteratively for more precise position estimation.
Lastly, the estimated location data were used to convert the stereo distance values into a
3D cargo box model so that the height of the 3D model from the floor surface could be
measured. The cargo box interior was then visualized so that loading space data could be
delivered to the excavator. Significant errors were detected during the load analysis owing
to the distance estimation errors of the stereo camera. Thus, a camera with higher precision
is necessary to improve the outcome.
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