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Abstract: We used molecular dynamics to investigate the stability of graphene oxide (GO) layers
supported on three polymeric materials, namely a polyvinylidene fluoride (PVDF), a pristine and
a crosslinked polyamide–imide (PAI and PAI-cr). The membrane configurations consisted of a few
layers of GO nanosheets stacked over the specified polymeric supports and submerged in water.
We monitored the position, the tilt angle, and the radial distribution function of the individual GO
nanosheets in respect to the plane of the supports. We showed that the outermost GO nanosheets were
more distorted than those attached directly on the supports. The greatest distortion was observed
for the GO nanosheets of the PVDF-supported system. Next, we recorded the density profiles of
the water molecules across the distance from the layers to the polymer and discussed the hydrogen
bonds between water hydrogens and the oxygen atoms of the GO functional groups.

Keywords: molecular simulation; computational chemistry; GO; supported GO polymeric sys-
tems; stability

1. Introduction

Carbon-based membranes are considered promising alternatives to membrane ma-
terials currently applied in water treatment and nanofiltration technology [1–4]. This is
due to the unique properties of a miscellany of carbon nanoparticles and carbonaceous
frameworks, which exhibit different textures and nanosized pore networks, having large
surface areas, excellent thermal and mechanical strengths, competitive antibacterial per-
formances, and adequate adsorption/selectivity capacities. Specifically, graphene oxides
(GOs) are two-dimensional (2D) layered materials, with oxygen-containing functional
groups (epoxy, hydroxyl, and carboxyl) grafted on the basal plane and the periphery of
graphene nanosheets. The GO sheets pile up in multilayer formations via π-complexation
interactions with tunable interlayer distances [5,6]. The π complexes involve the non-
covalent bonding of the sp2 carbons of the adjoining GO sheets. Multilayer formations
of GOs can operate like molecular sieves [7–10], likely letting only the water molecules
pass through their nanosized spacings, while excluding the metal ions from an aqueous
solution. In this regard, GO materials are widely applied in seawater desalination and
purification [5,7–11], energy storage and conversion [12], solvent dehydration, and gas
separation [13].

Free-standing graphene oxides suffer from poor mechanical strength and swelling
defects in polar and aqueous environments [14,15]. The reason is that the oxygen groups
make the graphitic surface hydrophilic. Water molecules may access the inner core of the
GO matrix and be adsorbed by the functional groups between the layers. Water loading
may limit the strength of the π interactions of the adjoining nanosheets and, locally, increase
the interlayer distance. This may cause the GO layers to detach from the initial columnar
structures producing few-layer GO assemblies [15,16].
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The tendency of GOs to delaminate in aqueous solvents reduces the applicability
of GO membranes in water-related processes. Several methods have been suggested
to overcome this hurdle, such as chemical crosslinking [17–19], molecular bridging [20],
physical confinement using polymer matrix [6], cationic bonding and intercalation [7,21],
and the formation of a graphene–polyelectrolyte multilayer [22].

Recently, our group produced a water-stable GO membrane [23]. The sample was pre-
pared using solvent evaporation of dispersed GO deposited on a crosslinked co-poly(amide-
imide) film (PAI-cr) [24]. Different supports were also tried for comparison. In this respect,
hydrophilic supports were used such as polyether sulfones (PES), cellulose acetate (CA),
co-poly(amide-imide) Torlon® (PAI), and its crosslinked derivative (PAI-cr). Hydrophobic
polymeric films were also used, such as polyvinylidene fluoride (PVDF), polypropylene
(PP), and polytetrafluoroethylene (PTFE). It was demonstrated that the hydrophobic sup-
ported systems were unstable due to the unfavored interactions between the films and
the dispersed GOs. For instance, Figure 1a shows that the GO-PVDF sample appeared
fragmented and crushed on contact with water, whereas other systems having a hydrophilic
support such as GO-PAI (Figure 1b) and GO-PAI-cr (Figure 1c) appeared rather compact
and uniform. We noticed some cracks on the edge of the GO-PAI sample, whereas the
rest of the structure appeared condensed. Evidently, the crosslinked GO-PAI-cr membrane
remained stable after prolonged contact time with water (>30 days). Figure 1d,e show
the cross section of a membrane in which the GO was deposited on a PVDF support. The
GO layer immediately detached from the support on contact with water (the red arrow
indicates the GO layer detached form the support). On the contrary, when the GO was
deposited under similar conditions on a PAI-cr membrane, good adhesion between the
GO and the support was observed thanks to the electrostatic interaction between the two
oppositely charged materials. Figure 1f shows the cross section of GO-PAI-cr membrane
after more than 30 days in water.

Complementary to the experimental characterization and analysis of the pristine and
the crosslinked polyamide–imide GO composites (GO-PAI and GO-PAI-cr) and the GO-
PVDF, it is useful to investigate the binding affinity of the specified hybrid membrane
structures at the molecular level using computer simulation.

In the literature, many theoretical studies have shown the transport and selectivity of
water and salt solutions inside GO layered membranes [25–31]. The growth in computa-
tional power has now made it possible to simulate large GO and polymeric structures with
characteristics closer to the real material, providing novel insights into the structural and
transport behavior (water flux) relationship [32–36].

However, the phenomenon of the stability of GO composite membranes has not yet
been visualized; it remains a challenge for which theoretical approaches can provide a
useful insight. This is also due to the lack of possibility of a direct comparison between
laboratory data and the models: the laboratory systems are made of a thousand of layers of
GO, whereas, for the sake of computational efficiency, model configurations are constrained
to be comprised of few layers with finite area sizes. Nevertheless, association/dissociation
effects of layered structures are mainly balanced by the interfacial properties and the short-
range interactions of the solvents and the support, rather than the actual thickness of their
multi-walled configurations. Typically, in MD simulations, periodic boundary conditions
are applied, meaning that the simulation box is surrounded by exact replicas of itself in each
spatial dimension. In this regard, we may focus on the interfacial structure of GO layers
having an infinite area size, by simply applying the periodicity in the lateral dimensions
and by designing the simulation box accordingly.
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Figure 1. Picture of (a) GO-PVDF, (b) GO-PAI, (c) GO–PAI-cr immersed in water at room temperature
immediately after their preparation; (d) GO-PAI-cr immersed in water at 60 ◦C for 30 days (left: as
immersed; right after 30 days); (e) SEM image of the GO layer detached from the PVDF support and
(f) SEM image of the GO layer adhering well on PAI-cr (red arrow shows the GO layer position).

In this work, MD simulations were used to highlight the different stability of supported
GO systems on three polymeric materials: Polyvinylidene fluoride, the pristine Polyamide-
imide PAI, and the crosslinked Polyamide-imide PAI-cr. The behavior of supported GO
systems was compared with graphene oxide layers in water. The results follow similar
performances of experimental results and explain the nature of the strong interaction
observed.
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2. Modelling

We performed the simulations using the BIOVA package [37]. We used the Condensed-
phase Optimized Molecular Potentials for Atomistic Simulation Studies (COMPASS) force-
field [38]. This forcefield is specifically developed to simulate the dynamic and structure
properties of polymers. We used both van der Waals and electrostatic interactions and set
default atomic charges on the systems based on the atom definitions [38,39]. We employed
the cubic spline truncation method. The cut-off radius was 1.5 Å, and the spline and the
buffer widths were 1 Å and 0.5 Å, respectively. In the NPT molecular dynamics simulations
(constant number of particles, pressure, and temperature), we used the Nose Hoover Ther-
mostat [40] and the Berendsen barostat [41] to regulate the temperature and the pressure.
The thermostat Q ratio was 0.01. We set the barostat decay constant to 0.1 ps. The timestep
of the molecular dynamics simulations was 1 fs. We collected data every 104 timesteps.

2.1. Graphene Oxide Model

To build the GO monolayer, we used an oxygen content that matched that of the
experimental samples [23,24]. Generally, the protonation or deprotonation of the hydroxyl
groups and carboxyl groups (acid groups) is a function of the pH [42]. In our model,
we assumed that the groups were in the neutral state (-OH and -COOH). The weight
percentage of the monolayer was 59.5% C, 39.2% O, and 1.3% H, which was close to
the elemental analysis of the actual GO samples used in the experiments (49–56% C,
41–50% O, 0–1% H) [42]. We introduced hydroxyl and epoxy groups on the basal plane
of a graphene sheet and carboxyl groups on its periphery. The functional groups were
distributed randomly on both sides of the sheet. Specifically, we used 87 epoxy groups,
101 hydroxyl groups, and 35 carboxyl groups. The resulting GO monolayer contained
916 atoms, of which 522 atoms were carbons (C), 258 oxygens (O), and 136 hydrogens (H).

The GO monolayer was optimized using steepest gradient energy minimization. Next,
we built a three-layer structure of GOs by placing 12 GO monolayers, as illustrated in
Figure 2. We set the interlayer distance at 9 Å. This was the initial configuration of a
bidimensional 50% superposition of the GO nanosheets. We used full periodicity in the
simulation box. The box dimensions were 115 × 76 × 32.21 Å3.
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differently to make it easy to understand their spatial organization. Atoms are pictured with respect
to their van der Waals radii.
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The multilayer GO structure was solvated in water by setting the water density to
1 g/cm3. The solvation process introduced 15,936 water molecules (47,808 atoms) into the
box. We performed a steepest gradient minimization followed by an NPT simulation over
0.5 ns to ensure that the water molecules were not overlapping with the Connolly isosurface
(i.e., the surface traced by the van der Waals radii of the atoms) of the GO nanosheets.
Consequently, we performed a long NPT simulation over 4 ns, using a timestep of 1 fs for
data production.

2.2. Polymeric Models

We considered three polymeric materials to be used as supports to deposit the GO
layers, namely a polyvinylidene fluoride (PVDF), a pristine and a crosslinked polyamide–
imide (PAI and PAI-cr). The polymeric supports are presented in Table 1.

Table 1. Chemical structures of supporting polymers (numbers refer to the initial boxes, not the supercells).

Name Abbr. Chemical Structure Monom.
in a Chain

# Atoms per
Chain

Chain in a
Layer

Polyvinylidene
fluoride PVDF
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25 900 4

We built a long chain of n monomers of each material (nPVDF = 300, nPAI = 50,
nPAI-cr = 25) by branching the monomers to each other with a random torsion [43–45].
The chain conformations of the macromolecules were sampled in 1000 steps. We set the
macromolecules to fill a confined amorphous layer using a density of 2.3 g/cm3, at 300 K.
In practice, we used a simulation box with one side that was one-third of the desired box
size to speed up the sampling of polymer conformations. The dimensions of the actual
simulation box were obtained using a super cell of the smaller box. We used the amorphous
cell algorithm [37,46] to grow the macromolecule by inserting one segment at each Monte
Carlo step. [47]. The trial conformations of the inserted segments were sampled according
to Flory’s RIS theory [48]. We used argon as a spacer to promote uniform growth in the cell
and prevent segment accumulations in local high-density areas. The PVDF film contained
5 chains and 900 argon atoms. The PAI films contained 2 chains and 300 argon atoms. The
argon atoms were deleted prior the NPT equilibration of the polymeric chains. The poly-
meric films were also put between two layers of graphene to prevent the chains fluctuating
over the plane of the membrane. The positions of the graphenes were restrained during the
equilibration. We performed Forcite annealing dynamics in five cycles. The initial tempera-
ture was 300 K, and the mid-cycle temperature was 600 K. We used five heating ramps per
cycle with 1000 NVT (constant number of particles, volume, and temperature) steps each.
The resulting configuration was further equilibrated using an NPT simulation over 3 ns at
298 K and 1 bar. At the end of the equilibration the graphene layers were deleted, and the
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box sizes were adjusted to exclude the resulting empty space. The final layer dimensions
were (112.73 × 74.66 × 41.91) Å3 for PVDF and (114.02 × 75.35 × 39.20) Å3 for PAI.

The crosslinked PAI was created starting from 25-monomer-long 180 torsion chains
of PAI and DAMP molecules as linkers. PAI chains were modified to a semi-reacted
state where the imide groups were opened; the monomers were linked by a single amide
group with a simple carbon atom in its ortho position. In addition, DAMP molecules
were modified so that they carry the amide group at both their ends. Four PAI chains and
50 DAMPs were inserted into a confined amorphous layer normal to the z axis at a density
of 2 g cm−3 together with 300 Argon atoms as spacers. Graphene walls were inserted on
the top and on the bottom of the layer to prevent chain exiting from z-perpendicular faces.
A custom-made code was used to perform the actual crosslink of the chains.

The crosslinking code detected the available reactive atoms and analyzed their mutual
positions. The closest couple of atoms was analyzed. If their distance was below a set
threshold, a second check regarding the possible bond-angle was performed. When the
possible bond-angle values lay within a pre-set range of the actual value, a bond was formed,
and the geometry was optimized over 104 steps of conjugate gradient minimization. If
one or both geometrical checks failed, a short dynamic was performed (NVT ensemble
dynamics, 298 K, 1 ps). After five cycles without any new bond, annealing was performed
(between 300 K and 350 K, with five cycles of NVT ensemble dynamics of 10 ps). Both bond-
length and bond-angle range were increased gradually until the formation of new bonds
was feasible. A crosslinking degree of 74.9% was achieved. All unreacted DAMP molecules
were deleted from the system. When the polymerization progress ended, the imidic groups
between the monomers where no crosslinking occurred were not restored. We aimed to
highlight the differences between the two chemical groups (imidic and amidic) on the
affinity between GO and PAI/PAI-cr. Crosslinked PAI required a longer equilibration than
the pristine PAI. Some geometrical equilibrations were performed together with some short
dynamics (10–100 ps STP) and some increasingly hotter annealing (minimum temperature
280 K, maximum temperature 320 K and 400 K). Once the polymeric layer was equilibrated,
the graphene walls were deleted.

2.3. Multilayer Models

The supported GO models were prepared as a multilayer, containing, from bottom
to top, a Graphene wall, a polymeric substrate, the three-layer GO system, a volume of
water (at density 1 g cm−3 of dimensions 115 × 76 × 32.21 Å), and a second Graphene
wall. The distance between the lowest GO sheets and the polymeric substrate was about
2 Å for PAI, about 4 Å for PVDF, and about 4 Å for crosslinked PAI. The small changes
in the distances depended on local roughness of the polymeric layer that prevented the
GO from approaching the support too closely without overlapping the branching groups
of the polymer. Graphene walls and GO sheets were constrained during an equilibration
run over 1 ns NVT at 298 K, then the constraints were removed. The amount of water
present in every system is reported in Table 2. Each multilayer geometry was optimized
and then NPT dynamics was performed for 4 ns at 298 K and 1 bar for data production.
The dimensions of the system before data production dynamics are also reported in Table 2.

Table 2. Multilayer supported systems details.

System Water Content
(n◦ mol.)

Dimensions
(Å3)

Total Number of
Atoms

GO-PAI 18,576 113.0 × 76.1 × 114.9 105,579

GO-PVDF 21,720 113.0 × 76.0 × 114.8 109,878

GO-PAI-cr 20,868 115.1 × 76.2 × 124.0 121,902
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3. Results and Discussion

Figure 3 shows the configurations of free-standing and supported GO layers on PVDF,
PAI, and PAI-cr films. Within water, the layers appeared highly dispersed due to the
oxygen-containing functionalities. The water content on the surface enhanced the repulsive
nature of the interlayer interactions, making the GO nanosheets shift their rotation angle.
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In the case of the supported systems the inner layers were more anchored to the
polymeric films. Several water molecules were encountered between the polymer and the
nanosheets of the first layer. The immobilization of the nanosheets should be attributed
to non-covalent bonds of the water molecules that bridge the polymeric surface and the
GO. It has been observed in the literature that these interactions are associated with
strong hydrogen bonds formed between the water hydrogens and the oxygens of the
functional groups of the nanosheets [49,50]. Representative hydrogen bonds of water
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molecules bridging the polymer and the first GO layer are shown in Figure 4, as snapshots
corresponding to the initial and final configurations of the NPT equilibrations.
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Figure 4. Examples of hydrogen bonds between polymer–water–GO in the lower layer of GO at the
beginning of the simulation (left column) and at the end (right column). GO in colored in gray, PAI
in purple, PVDF in green, and crosslinked PAI in blue. Some atom types are colored differently in
order to highlight their atom type: oxygen in red, hydrogen in white, fluorine in light blue. The
orange dotted line represents the hydrogen bonds.

Figure 5 shows the density profiles of water molecules as a function of the distance
from the top edge of the simulation box and through the graphene oxide layers. The profile
curves depict the water densities in the initial and the final configurations of the NPT
simulations. The boundary of the stacks with the graphene oxide layers is highlighted
using two vertical yellow dashed lines. Both the supported and the unsupported systems
display highly ordered structures of water molecules in the interlayer space at the initial
configurations. These structures reflect the parallel orientation of the graphene nanosheets.
The density plateau on the left side of the plots corresponds to the bulk density of water.
On the right side of the plots, we encounter a negligible density. This density corresponds
to a small amount of water molecules inserted inside the polymeric layer upon solvation.



Appl. Sci. 2022, 12, 3460 9 of 13
Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 15 
 

  
(a) (b) 

  
(c) (d) 

Figure 5. Density profile perpendicular to GO sheets at the beginning of the simulation (blue lines) and at the end (orange lines) for (a) GO in water; (b) PVDF; (c) 
PAI; and (d) PAI-cr, as a function of the distance from the top edge of the box. The yellow dashed lines denote the boundaries of the stacks of the GO layers.

Figure 5. Density profile perpendicular to GO sheets at the beginning of the simulation (blue lines) and at the end (orange lines) for (a) GO in water; (b) PVDF;
(c) PAI; and (d) PAI-cr, as a function of the distance from the top edge of the box. The yellow dashed lines denote the boundaries of the stacks of the GO layers.



Appl. Sci. 2022, 12, 3460 10 of 13

On the other hand, the water density profiles at the final configurations show that the
water structure has been disturbed due to oscillations of the GO layers after a simulation
over 4 ns. The interlayer distance is similar to that of the initial configuration. However,
this value corresponds to the center-of-mass distance of the GO layers. The nanosheets on
the layers were not oriented exactly parallel. Nevertheless, using a hydrophilic support,
the initial ordering of the GO layers was partially maintained throughout the equilibration.
The situation was even better for the GO-PAI-cr system. This is also depicted by the shape
of the corresponding water density profiles in the interlayer range of distances.

Figure 6 shows the position and the orientation angle of the individual GO nanosheets
of the different membrane systems. The GO nanosheets are indexed from 1 to 12, where
the labels GO1 up to GO4 correspond to the nanosheets of the outermost layer, the GO5 to
GO8 nanosheets lie at the middle layer, and the GO9 to GO12 nanosheets are attached to
the polymeric film. We will now discuss the initial and final configurations of the specified
nanosheets. The differences of the center-of-mass displacement of the nanosheets between
the layers are marginal. We may note that the outermost nanosheets are displaced more
than those in direct contact with the support. This is especially true for the PVDF-supported
membrane, in which the polymeric film is hydrophobic.
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In Figure 7, we present the tilt angle of the individual nanosheets in respect to the
plane of the polymeric film. The tilt angle decreases for the layers closer to the support.
This confirms the partial stabilization effect of the polymeric substrate. The nanosheets
of the PVDF supported membrane obtain the greatest rotation. Both PAI-GO membranes
are shown to be efficiently stable where we observe small GO rotations. In the case of
the pristine PAI-GO, the rotation angle of the nanosheets is more uniform throughout
the layers.
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Figure 7. GO sheet tilt angle with respect to normal axes: GO in water (red), GO-PAI (purple),
GO-PVDF (green), and GO-PAI-cr (yellow). We investigated the stability in water of GOs supported
on different polymeric films using molecular dynamics simulations. The membranes consisted of
three layers of GOs deposited onto the hydrophobic and hydrophilic polymeric supports. We showed
that the GOs of the outermost layer were more distorted than those of the first. We observed the
greatest distortion for the GO layers of the PVDF support due to the hydrophobic characteristics of
the substrate. We also observed that the water density profile curves flatten compared to the initial
configurations, because the solvent phase is rearranged upon equilibration due to the reorientation of
the GO layers. The reorientation of the layers is detected by monitoring the tilt angle of the nanosheets
in respect to the plane of the support. We visualized that water hydrogens bridge the polar branches
of the polymeric film with the oxygen groups of the adjacent GO nanosheets.

4. Conclusions

Molecular dynamics simulations were used to investigate the different stability of
graphene oxide (GO) supported on three polymers: Polyvinylidene fluoride, pristine
Polyamide-imide, and crosslinked Polyamide-imide. This analysis was compared with the
behavior of graphene oxide layers in water. We noted that the outermost GO nanosheets
were more distorted than those nanosheets in direct contact with the polymeric support.
This was confirmed by recording the displacement and the rotational angle of the GO
nanosheets and by observing the water density profiles along the distance from the plane
of the support and through the GO layers. We have discussed the configurations observed
at the initial and final timestep of the MD simulations. We have shown that the PVD
supported systems are less stable compared to the PAI and the PAI-cr supported systems.
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