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Abstract: Most CycleGAN domain transfer architectures require a large amount of data belonging
to domains on which the domain transfer task is to be applied. Nevertheless, in many real-world
applications one of the domains is reduced, i.e., scarce. This means that it has much less training
data available in comparison to the other domain, which is fully observable. In order to tackle the
problem of using CycleGAN framework in such unfavorable application scenarios, we propose and
invoke a novel Bootstrapped SSL CycleGAN architecture (BTS-SSL), where the mentioned problem is
overcome using two strategies. Firstly, by using a relatively small percentage of available labelled
training data from the reduced or scarce domain and a Semi-Supervised Learning (SSL) approach, we
prevent overfitting of the discriminator belonging to the reduced domain, which would otherwise
occur during initial training iterations due to the small amount of available training data in the
scarce domain. Secondly, after initial learning guided by the described SSL strategy, additional
bootstrapping (BTS) of the reduced data domain is performed by inserting artifically generated
training examples into the training poll of the data discriminator belonging to the scarce domain.
Bootstrapped samples are generated by the already trained neural network that performs transferring
from the fully observable to the scarce domain. The described procedure is periodically repeated
during the training process several times and results in significantly improved performance of the
final model in comparison to the original unsupervised CycleGAN approach. The same also holds
in comparison to the solutions that are exclusively based either on the described SSL, or on the
bootstrapping strategy, i.e., when these are applied separately. Moreover, in the considered scarce
scenarios it also shows competitive results in comparison to the fully supervised solution based on
the pix2pix method. In that sense, it is directly applicable to many domain transfer tasks that are
relying on the CycleGAN architecture.

Keywords: CycleGAN architecture; semi-supervised learning; bootstrapping; imbalanced data

1. Introduction

The task of image-to-image domain translation (or much broader domain transfer task)
is to transfer or translate images (i.e., to learn the mapping) from one domain into another,
while preserving the content, where the term domain denotes a particular style (if images
are for example drawings), season (like winter or summer, if images are photographs), etc.
This can be achieved by using sets of paired training samples (images), which is referred
as the supervised domain adaption, or by using unpaired training samples, which is also
known as the unsupervised domain adaption. Domain adaption refers to a similar task.

Transfer of images from one source domain into another target domain found its
application in various image processing, computer graphics, computer vision and related
problems. For example, in semantic image synthesis [1–4], image-to-image translation [5–8],
image inpainting [9,10], image super-resolution [11,12], etc.

In the case of supervised approaches that are mostly based on the conditional Gen-
erative Adversarial Networks (GANs, or cGANs), and which were developed first, all
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images are assumed to be available in pairs corresponding to the samples denoting the
same thing in the source and the target domain (i.e., in the “first” and the “second” do-
main). Isola et al. [13] have first applied cGAN in the domain translation task, by proposing
supervised pix2pix learning strategy. This approach was further developed by [14–16],
but those solutions still failed to capture the complex structural relationships of the scenes
in the cases when, e.g., two domains have drastically different views, i.e., while trying to
achieve mapping through a single translation network.

Nevertheless, despite the efforts to improve the supervised methods, for many domain
transfer tasks paired training images are not fully available. Therefore, besides the described
approaches, almost at the same time an unsupervised domain transfer method known as
CycleGAN was proposed in [17]. It utilizes two GANs oriented in opposite directions,
i.e., from one domain into another, and vice versa. As introduced mappings that are learned
are highly under-constrained, cycle consistency loss was introduced in [17] to reduce the
mentioned anomaly.

Cycle consistency constraint proved to be very effective as a technique for preserving
semantic information of the data with respect to a task of domain transfer, and is therefore
applied in various tasks, e.g., in image-to-image translation [17], emotion style transfer [18],
speech enhancement [19], etc. However, many of these problems, such as emotion style
transfer, speech enhancement, speaker domain transfer, medical image domain transfer,
have inherent domain asymmetry, in the sense that one of the domains has significantly
less training data available. Therefore, such domain is usually named as reduced or scarce
in comparison to another one, which is considered as fully observable. According to
the authors’ knowledge, only several approaches tackled the mentioned problem in the
literature, i.e., analyzed domain transfer in cases when one of the two domains is scarce.
In [20], an augmented cyclic adversarial learning model that enforces the cycle-consistency
constraint via an external task-specific model is proposed. Additionally, in [21], the authors
add semi-supervised task-specific attention modules to generate images that are used for
improving the performance in a medical image classification task. However, in all those
papers, a task-specific approach is used in forming additional cost functions, which means
that the analysis of each specific task is required for problem formulation, as well during
the training procedure.

In this work, we propose a different approach. We combine the original unsupervised
CycleGAN architecture with a semi-supervised learning (SSL) strategy, as well as with
a bootstrapping (BTS) procedure. SSL is used to prevent overfitting of the CycleGAN
discriminator that is belonging (or being related) to the assumed scarce domain in the
considered domain transfer mapping. Discriminator overfitting could occur during the
initial learning iterations of the unsupervised CycleGAN due to insufficient number of
training samples in the scarce domain, and consequently lead to an underperforming GAN.
On the other hand, the second part of the proposed method, i.e., the bootstrapping strategy
(BTS), has the aim to bootstrapp the statistics of the problematic discriminator belonging
to the scarce domain (i.e., its training pool statistics). This is accomplished by inserting
(bootstrapping) artificially generated example data into the discriminator’s training pool
from time to time during the training procedure. Namely, the corresponding generator
residing in the second, fully observable domain of the CycleGAN is periodically called
during the training to randomly produce the necessary samples in the scarce domain,
and thus compensate the fact that the original training pool of the discriminator in the
scarce domain was inadequate. This sampling procedure is applied periodically during
the training, but for the first time only after the necessary generator is already sufficiently
well trained, i.e., after the initial SSL based on a small amount of paired samples from both
domains is performed. Elements of the described BTS-SSL method, i.e., combined SSL and
BTS procedure (“SSL+BTS”) that is applied during the proposed SSL of CycleGAN in the
considered asymmetric domain size scenarios, are illustrated in Figure 1.

The initial SSL strategy that is based on a small set of paired observations allows dis-
criminator as well the generator that are residing in the scarce domain to avoid overfitting
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and learn necessary parameters to some extent. In the latter stages of the training proce-
dure the learning process is further guided by the combined SSL as well as by the usual
adversarial training strategy, but with an additional augmentation of the discriminator’s
training pool in the scarce domain, from time to time. This is illustrated in the right part of
Figure 1, where it is highlighted that the training involves three types of data, as compared
to only one in the baseline unsupervised case. Actually, during the training, after a number
of initial iterations, the pool corresponding to the discriminator of the scarce domain is
constantly (periodically) filed by training examples generated by the network F in Figure 1,
which is transferring the training examples from the full to the scarce domain.

Thus, contrary to the approach proposed in [20], where the domain attention mecha-
nism is utilized, the proposed BTS-SSL model is independent of the specific domain transfer
task, and requires only a relatively small amount of paired examples in the very beginning
of the training procedure. This property makes it directly applicable to different tasks.

Figure 1. Elements of the proposed SSL method, as compared to the original CycleGAN architecture.
It is assumed that one of the domains, e.g., X is scarce, i.e., |X | � |Y|, which makes the unsupervised
CycleGAN training much harder. Therefore, the proposed BTS-SSL CycleGAN is invoked.

The paper is organized as follows. Firstly, in Section 2 we give the preliminaries on
GANs as well as CycleGAN training strategies, on which we further build the proposed
method. Secondly, in Section 3 we introduce the combined SSL and a novel bootstrapping
strategy (BTS) in the context of CycleGAN architecture, in order to deal with imbalanced
domain transfer tasks that are characterized by one of the two domains being scarce.
In Section 4 we describe the elements of the adopted network architectures, training details
and experimental setup. Finally, in Section 5 results of extensive experiments involving
different training strategies, domain transfer tasks, and varying level of scarcity are pre-
sented and discussed. At the end, based on gathered insights, final conclusions are drawn
in Section 6.
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2. Preliminaries

In this section, we give an overview of methods and algorithms that we relate to and
further adapt in the paper.

2.1. Generative Adversarial Networks

In [22], the ground-breaking method of learning the true data distribution in a non-
parametric way was proposed in the form of Generative Adversarial Networks (GANs).
In that constellation, the discriminator network D is trying to discriminate between the
synthetic samples artificially generated by the generator network G and the ground truth
observations available in the training data. The generator G models the true data distribu-
tion by learning to confuse, i.e., deceive the discriminator D by providing D with synthetic
examples that are hardly distinguishable from the real ones. Thus, the two structures,
the discriminator D and the generator G, are mutually competing in order to reach the
Nash equilibrium expressed by the minimax loss of the training procedure, where the
optimization problem is given by:

min
G

max
D

Ex∼p(x)
[

ln
(

D(x)
) ]

+ Ez∼p(z)
[

ln
(

1− D
(

G(z)
) ) ]

, (1)

where p(x) represents the true data distribution over domain X , while the latent variable z
is sampled by the distribution p(z).

The first term in Equation (1), ln
(

D(x)
)
, corresponds to the cross-entropy between true

distribution [ 1 0 ]T and distribution [ D(x) 1− D(x) ]T corresponding to discriminator’s
probabilistic output. Similarly, the second term: ln

(
1− D

(
G(z)

) )
, is the cross-entropy

between [ 1 0 ]T and [ D
(
G(z)

)
1− D

(
G(z)

)
]T .

In Figure 1, generators in both directions are assumed to be in form of GANs, and are
denoted by mappings F and G, while the corresponding discriminators over domains X
and Y are denoted by DX and DY.

2.2. CycleGAN Networks

The CycleGAN Network is designed to capture special characteristics of one image
collection and to figure out how these could be translated into another image collection in
the absence of any supervisor, i.e., paired training examples, as finding those is difficult,
as well as expensive in the sense of labelling effort that has to be employed simultaneously
over two different domains.

In [17], Zhu et al. have proposed invoking the “cycle consistency” loss in the overall
loss function, by designing two domain translators or mappers G and F, in the mutually
opposite domain-wise directions. Namely, by learning:

G : X → Y , (2)

F : Y → X , (3)

in the form of GAN networks, and by encouraging both mappings given by Equations (2)
and (3) and illustrated in Figure 1, to be as “close” as possible to bijection, i.e., by making:

F
(
G(x)

)
≈ x, (4)

G
(

F(y)
)
≈ y, (5)

it was shown to be possible to compensate the lack of paired data samples, and effectively
learn the complex nonlinear transformations in a fully unsupervised manner.

Therefore, if we denote the generator networks implementing mappings G and F by
GX→Y and GY→X, respectively, and denote the discriminator networks corresponding to
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domains X and Y , i.e., true distributions pX(x) and pY(y), by DX and DY, respectively,
from Equation (1) we get the following adversarial optimization objectives:

Ladv(GX→Y, DY) = Ey∼pY(y)
[

ln DY(y)
]
+Ex∼pX(x)

[
ln( 1− DY(GX→Y(x)) )

]
(6)

Ladv(GY→X , DX) = Ex∼pX(x)
[

ln DX(x)
]
+Ey∼pY(y)

[
ln( 1− DX(GY→X(y)) )

]
(7)

as well as the cycle-consistency objective:

Lcyc(GX→Y, GY→X) = Ex∼pX(x)
[
‖GY→X(GX→Y(x))− x‖

]
(8)

+ Ey∼pY(y)
[
‖GX→Y(GY→X(y))− y‖

]
(9)

making the full optimization objective given by:

L(GX→Y, GY→X , DX , DY) = Ladv(GX→Y, DY) + Ladv(GY→X , DX)

+ λcyc Lcyc(GX→Y, GY→X) (10)

the one being optimized during the unsupervised training of the model shown in the left
part of Figure 1. Effect of the enforced cycle-consistency during the training (learning) is
regulated by the penalty parameter λcyc.

2.3. Unsupervised Training Procedure

In the following lines of Algorithm 1 are formally summarized the main steps of
the unsupervised training procedure that was discussed in more details in Section 2.2.
The algorithm implements an iterative optimization of the objective function given by
Equation (10).

The presented steps are the basis for the proposed semi-supervised extension of the
original CycleGAN algorithm, presented in Section 3.

Algorithm 1 CycleGAN training procedure

procedure CYCLEGAN (process in the left part of Figure 1)

N, number of iterations; m, minibatch size; η > 0, learning rate; X ∈ X , Y ∈ Y , unpaired

or unlabeld training sets, such that |X| � |Y|;
Randomly initialize parameters of discriminators DX , DY , and generators GX→Y , GY→X :

θDX , θDY , θGX→Y , θGY→X

for k = 1 to N do

Sample minibatch of unpaired training data {x1, . . . , xm} ⊂ X, {y1, . . . , ym} ⊂ Y

L̂adv(GX→Y , DY) =
1
m ∑m

i=1 ln DY(yi) + 1
m ∑m

i=1 ln
(
1− DY(GX→Y(xi))

)
L̂adv(GY→X , DX) =

1
m ∑m

i=1 ln DX(xi) + 1
m ∑m

i=1 ln
(
1− DX(GY→X(yi))

)
θ
(k+1)
DX

←− θ
(k)
DX
− η∇θDX

L̂adv(GY→X , DX)

θ
(k+1)
DY

←− θ
(k)
DY
− η∇θDY

L̂adv(GX→Y , DY)

θ
(k+1)
GY→X

←− θ
(k)
GY→X

− η∇θGY→X

[
L̂adv(GY→X , DX) + λcyc Lcyc(GX→Y , GY→X)

]
θ
(k+1)
GX→Y

←− θ
(k)
GX→Y

− η∇θGX→Y

[
L̂adv(GX→Y , DY) + λcyc Lcyc(GX→Y , GY→X)

]
end for

end procedure
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3. Proposed Approach

In order to deal with the mutually imbalanced domains, i.e., a problem where one of
the domains involved in the translation task is scarce, we utilize an approach with two
additional concepts, which are added to the standard CycleGAN model. Nevertheless,
as in the original CycleGAN architecture, the proposed solution remains task-independent
and avoids introduction of any task-dependent optimization constraints. The general idea
of the method is depicted by the functional diagram in the right part of Figure 1.

3.1. Avoiding the Overfitting by SSL Strategy

Firstly, we employ the semi supervised learning (SSL) strategy based on the simple
‖ · ‖1 norm error term, which is computed over all pairs or elements in the provided
small set of labeled or paired training samples (xp

i , yp
i ) that represent the same thing in the

involved scarce X and a fully observable domain Y , respectively.
Thus, despite an unfavourable situation in which the number of unlabeled training

samples in domain X is considered as significantly lower than the number of available
unlabeled observations in the domain Y , i.e., |X | � |Y|, it is assumed that there still exists
a small amount of labeled training pairs (xp

i , yp
i ) that are possible to be reliably matched into

pairs based on their ground-truth labels, and thus provide the basis for the SSL strategy.
Based on the valuable information contained in this small set of MSSL paired ob-

servations, i.e., Pdata = {(xp
i , yp

i )|i = 1, . . . , MSSL}, it is possible to define an additional
SSL optimization term LSSL, which will enforce that the learned CycleGAN mappings in
Equations (2) and (3) respect the fact that xp

i ∈ X and yp
i ∈ Y are paired, i.e., have the same

label. This is illustrated in Figure 2, where the expected closeness of the samples xp and yp
after transformation of xp by the learned mapping G is depicted.

G

G


SSL Loss

pX
pY

X Y

( )p
iG x

p
iy

p
ix

Figure 2. SSL loss LSSL, Equation (11), which enforces closeness of the “transformed” ŷp
i = G(xp

i )

and the “true” yp
i over a small set of paired, i.e., labeled samples Pdata = {(xp

i , yp
i )|i = 1, . . . , MSSL}

from a scarce domain X and a fully observable Y . The same also holds in the opposite direction,
for F(yp

i ).

As the result of previous considerations, the closeness of the “transformed” G(xp
i ) and

the “true” labeled samples yp
i during the SSL phase of the proposed training procedure can

be described by the following optimization objective:

LSSL(GX→Y, GY→X) =
1
m

m

∑
i=1

[
‖GX→Y(xp

i )− yp
i ‖1 + ‖GY→X(y

p
i )− xp

i ‖1
]
, (11)

which evaluates and imposes the corresponding closeness over a predefined amount of
MSSL available paired examples in both directions, from X into Y , as well to the opposite
side, from Y into X , Figures 1 and 2.

Thus, by applying the described SSL procedure and the introduced LSSL objective,
we prevent discriminator DX in the scarce domain X to overfit during the initial iterations
of the learning process. In the standard unsupervised learning setting, characteristic for
any CycleGAN model, overfitting of discriminator DX would mostly be inevitable, due
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to assumed limited number of available unlabeled training samples in the scarce domain,
i.e., adopted assumption that |X | � |Y|.

By combining Equation (11) with the standard CycleGAN objective presented in
Equation (10), the full SSL objective is made of:

L(GX→Y, GY→X , DX , DY) = Ladv(GX→Y, DY) + Ladv(GY→X , DX)

+ λcyc Lcyc(GX→Y, GY→X)

+ λSSL LSSL(GX→Y, GY→X), (12)

where λSSL is the corresponding regularization parameter.

3.2. Improving the Learning Process by BTS Strategy

As the second part of the proposed learning procedure, we employ the bootstrapping
(BTS) strategy based on the internal structures already available in the CycleGAN model.

Since the domain X is assumed to be scarce, during the training discriminator DX at
its disposal has a significantly smaller pool of unlabeled training samples in comparison
to the discriminator DY in the domain Y . Therefore, the aim of the proposed BTS strategy
is to overcome this imbalance, by artificially expanding the size of the unlabeled training
pool of the discriminator DX . This is illustrated in the left part of Figure 3.

G

BTSX

X

F

Y XF G →

Y

XD YD

Figure 3. Bootstrapping of the statistics of the discriminator DX in the scarce domain X , by adding a
set of novel examples XBTS to the original pool of unlabeled training data X. Bootstrapped samples
are randomly generated by GY→X .

This is achieved by exploiting the already learned mapping F, shown in the right
part of Figure 1, i.e., the GAN implementing the generator function GY→X. Under the
term “already learned”, it is assumed that in the initial phase of the training procedure,
parameters of the CycleGAN model are first initially optimized for some time using the
previously described SSL strategy from Section 3.1. Only after this “initial training” phase,
the GY→X structure from the CycleGAN model should be considered as reliable enough
to be used as the bootstrapping data sampler for the training pool of the discriminator
DX residing in the scarce domain X . Of course, the decribed BTS strategy could also be
applied independently from the SSL one, but in the assumed scarce X scenarios such
approach would not result in the same level of performance, as in the “SSL+BTS” case,
when these two strategies are synergistically combined together. The only requirement
is that semi-supervision is feasible, i.e., that there exists a small amount of paired data in
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set Pdata with MSSL matched samples from both domains, as described in Section 3.1 and
illustrated in Figure 2.

BTS of the DX’s training pool, i.e., BTS of its statistics, is periodically repeated during
the whole learning procedure in order to exploit the improved versions of the utilized
generator GY→X each time. Furthermore, available set of paired, i.e., labeled samples Pdata
is used alongside the larger unlabeled training sets X and Y, from both X and Y domains,
during the whole training procedure. This means that even after the initial SSL is already
accomplished, i.e., after the proposed BTS strategy is invoked for the first time during the
training, Pdata samples are continued to be used in the SSL objective, Equation (12). In such
a way, the initial constraints that are expressing the closeness between the “transformed”
and the “true” samples in Figure 2, i.e., expressing the quality of generators GY→X and
GX→Y in some training iteration k, are also preserved in the future – after the BTS of DX
statistics is periodically performed, and the training pool of DX is re-expanded again.

In Figure 1, the proposed periodical bootstrapping of the DX’s statistics, which is
achieved by GY→X GAN that is transferring examples from the full into the scarce domain,
is illustrated by an additional third arrow, oriented from Y towards X and centrally
positioned in the functional diagram of the SSL CycleGAN architecture, in the right part of
Figure 1. The same process is also illustrated in Figure 3, where it can be seen that the XBTS
denotes the set of novel unlabeled training samples that are added to DX’s training pool.
The samples are randomly generated based on the parameters of the generator GY→X that
have been learned up to that moment.

After performed BTS, the training pool {X ∪ XBTS} of DX can be considered as being
closer in size to the training pool Y of the discriminator DY, Figure 3. Thus, despite the
unfavourable training conditions, an improved CycleGAN performance is expected to be
achieved in comparison to the standard unsupervised training, as well as in comparison
to the basic SSL strategy without BTS. It should be mentioned that XBTS is replaced each
time with a new set of samples when GY→X is periodically invoked for the BTS—randomly
generated samples from previous BTS iterations are not accumulated in the training pool
of DX .

In summary, after a number of initial iterations, when the discriminator DX , as well
as the generator GY→X for the scarce domain X , are sufficiently pre-trained by using the
combination of adversarial and SSL loss, Equation (12), the described BTS strategy for
improving the learning process comes into play. In essence, it results in improving the
statistics of p̂X(x) that is describing the unlabeled data in the training poll {X ∪ XBTS} of
DX . Improved statistics result in better discrimination of x, and consequently in the better
performance of whole CycleGAN SSL.

Although it has already been discussed, we would like to point out once again that the
“unlabeled” refers to training samples of {X ∪ XBTS} and {Y} for which the exact match
in the opposite domain is not known exactly and in advance, in contrast to the paired or
“labeled” training pools {Xp} and {Yp}, i.e., set of paired samples Pdata, which is used in
the SSL objective LSSL in Equations (11) and (12), Figure 2. In that sense, the BTS strategy
directly affects only the discriminator term DX in the cost functions in Equation (12),,
i.e., Ladv(GY→X, DX). However, the indirect effect of the increased sample size in the
training pool of DX is successfully propagated to all model elements in Figure 1 during
the subsequent training iterations, until the next BTS with a likely better training pool is
generated again.

In practice, the proposed BTS strategy consists of a function call to GY→X in every
k + K-th training iteration, for some fixed period K. Each BTS results in a fixed amount of
novel samples added to X, where samples represent, e.g., images in the image translation
task. Images in XBTS are generated by the GAN network G(k)

Y→X, where (k) denotes the
state of parameters in k-th training iteration. This is done by using a uniform distribution
and randomly choosing a fixed percentage of images in the training set Y, which are than
transferred to scarce domain by G(k)

Y→X . Thus, in every k + K-th iteration, the discriminator
DX is trained on a pool {X ∪ XBTS}, augmented in the previously described manner.
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3.3. Proposed SSL+BTS Training Procedure

In the following lines are formally summarized the main steps of the introduced SSL
and BTS strategies, described in Sections 3.1 and 3.2.

Algorithm 2 begins by the order of steps that in the very beginning perform exclusively
SSL strategy, during the first K0 out of N iterations, K0 � N. Only after the SSL secures that
discriminator DX is not overfitting, the BTS strategy is invoked for the first time in iteration:
K0 + 1. Afterwards, the BTS is periodically invoked every K-th iterations, and jointly
employed with the SSL strategy till the end of the procedure.

Algorithm 2 BTS-SSL CycleGAN training

procedure CYCLEGAN SSL+BTS (process in the right part of Figure 1)

N, number of iterations; K0, number of initial SSL iterations without BTS, K0 � N; K,

period of BTS repetition; m, minibatch size; MSSL = |Pdata|, number of paired examples in

Pdata = {(xp
i , yp

i )|i = 1, . . . , MSSL} = Xp × Yp; mSSL, SSL minibatch size, mSSL < MSSL;

q ∈ (0, 1), fixed percentage of training data Y that are randomly chosen to produce the

bootstrapping samples for the training pool of DX ; η > 0, learning rate; X ∈ X , Y ∈ Y ,

unpaired or unlabeled training sets, while Xp ∈ X , Yp ∈ Y are paired or labeled training

subsets, such that |X | � |Y|, |X| � |Y|, and |Xp| = |Yp|, but |Xp| � |X| ;

Randomly initialize parameters of DX , DY , and GX→Y , GY→X : θDX , θDY , θGX→Y , θGY→X

for k = 1 to N do

Sample minibatch of unpaired training data {x1, . . . , xm} ⊂ X, {y1, . . . , ym} ⊂ Y

Sample minibatch of paired training data {(xp
1 , yp

1 ), . . . , (xp
mSSL , yp

mSSL )} ⊂ Xp ×Yp

L̂adv(GX→Y , DY) =
1
m ∑m

i=1 ln DY(yi) + 1
m ∑m

i=1 ln
(
1− DY(GX→Y(xi))

)
L̂adv(GY→X , DX) =

1
m ∑m

i=1 ln DX(xi) + 1
m ∑m

i=1 ln
(
1− DX(GY→X(yi))

)
L̂SSL = 1

m ∑m
i=1

[
‖GX→Y(xi)− yi‖1 + ‖GY→X(yi)− xi‖1

]
L1 = L̂adv(GY→X , DX) + λcyc Lcyc(GX→Y , GY→X) + λSSL L̂SSL(GX→Y , GY→X)

L2 = L̂adv(GX→Y , DY) + λcyc Lcyc(GX→Y , GY→X) + λSSL L̂SSL(GX→Y , GY→X)

θ
(k+1)
DX

←− θ
(k)
DX
− η ∇θDX

L̂adv(GY→X , DX)

θ
(k+1)
DY

←− θ
(k)
DY
− η ∇θDY

L̂adv(GX→Y , DY)

θ
(k+1)
GY→X

←− θ
(k)
GY→X

− η ∇θGY→X
L1

θ
(k+1)
GX→Y

←− θ
(k)
GX→Y

− η ∇θGX→Y
L2

if
(
k == K0 + 1

)
∨
(
(k > K0) ∧ (( (k− K0) mod K) == 0)

)
then

Bootstrapping the training pool XD of discriminator DX .

XD ← {X ∪ XBTS}, XBTS = randq
(
G(k)

Y→X(Y)
)
, where randq(·) represents the oper-

ator of choosing dq |Y|e samples from the training pool Y ∈ Y , and transforming

them by G(k)
Y→X to scarce domain X , i.e., generating XBTS.

end if

end for

end procedure

In that sense, the adopted abbreviation “SSL+BTS” in Algorithm 2 better reflects the
order of appearance of SSL and BTS strategies during the learning process. However, since
BTS is periodically repeated, and also represents an extension of the SSL CycleGAN setup,
the method is named as BTS-SSL CycleGAN.
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Algorithm 2 has all elements of standard CycleGAN training procedure given by
Algorithm 1 in Section 2.3. In that sense it can be used in any task where the unsupervised
learning approach based on the cycle-consistency loss has already been applied before.

As already explained in Section 3.2, the main characteristic of the presented SSL+BTS
procedure is that every K iterations after k = K0 the training pool XD of discriminator
DX is updated with dq |Y|e synthetic samples generated by G(k)

Y→X, i.e., XD ← X ∪ XBTS .
However, XBTS is used only for DX , and is not added to unlabeled training set X.

Improved performance of DX indirectly boosts the entire training procedure and leads
to better results of the domain transfer in comparison to the baseline learning Algorithm 1,
as reported by the results of the conducted experiments in Section 5.

4. Elements of the Adopted Experimental Setup

In this section, we provide a description of the elements that were used in order to
obtain experimental results presented in Section 5. The experimental setup was designed
in such a way to provide extensive comparison between the proposed BST-SSL CycleGAN
method and the baseline CycleGAN, as well comparison against one supervised domain
transfer method. In order to get better insights into the performance of the proposed
SSL+BTS training procedure, experiments included different types of assessments, both
quantitative and visual. Therefore, in the following we point out the main characteristics
of the individual elements of the adopted experimental setup and provide details of the
corresponding training procedures.

4.1. Network Architecture and Training Details

For the purpose of experimental comparisons we have implemented the correspond-
ing neural networks based on the best practices from the literature. Since the proposed
semi-supervised learning is generally applicable to any variant of the original CycleGAN
architecture, we have decided to rely on the referent implementations form the papers were
the corresponding methods were originally introduced.

Thus, for the main neural network architecture of the corresponding GANs we have
adopted the architecture proposed in [17], where the CycyleGAN model was originally
proposed), and which was also utilized in [19]. This implementation of unsupervised
domain translation was also the basis for implementation of the SSL+BTS method proposed
in this work. In addition, since the original CycyleGAN was introduced in the context of
image-to-image translation tasks, the same type of domain transfer tasks was also chosen
for the experimental comparisons in this work. One of the advantages of this type of
experiments is also that they provide visual insights into the quality of obtained domain
transfer results.

The main characteristics of the adopted architecture are that it contains two stride-2
convolutions, as well as several residual blocks and 2 fractionally strided convolutions with
stride 1

2 . It uses 6 blocks for 128× 128 and 9 blocks for 256× 256 and higher-resolution
type images. It also uses instance normalization as in [17,23,24].

For the discriminator network, we have relied on 70× 70 PatchGAN in order to classify
whether the image patches are real or fake, as it was more efficient than the usual full-image
network.

When it comes to training details, besides the main algorithmic steps of the performed
training procedures, which have already been described in detail in Sections 2.2 and 3,
some of the specific settings and values of control parameters that were used in the experi-
ments include the following. In the training procedure, as in [17], instead of negative log
likelihood loss figuring in (1), we used more stable L2 loss approach consisting of training
G to minimize Ez∼p(z)[(D(G(z))− 1)2] as well as training discriminator D to minimize
Ex∼p(x)[(D(x) − 1)2] + Ez∼p(z)[D(G(z))]. Furthermore, similarly as in [17], we use the
history of generated images (50 of them) in order to calculate the average score. We also
keep λcyc = λSSL = 10, for all of our experiments. Sizes of minibatches m and mSSL are
kept equal and set to m = mSSL = 50. Random initialization of the network parameters
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was performed by using random samples drawn from normal distribution N (0, 0.02). All
networks were trained using the learning rate of η = 0.0002 which is kept constant during
the first 100 epochs and then linearly decays to zero during the next 100 epochs.

In experiments with all used datasets we have controlled the size of the scarce domain,
by changing the percentage SX of the domain used: 25%, 50% and 100%, and performed
both the unsupervised, as well as the proposed SSL approach (loss function (12)), with and
without the proposed bootstrapping of the statistic of the discriminator DX from the scarce
domain (variants SSL+BTS, and SSL). In all experiments, as all datasets used actually
contain paired images, we use a fixed 20% of the scarce domain training paired examples
for evaluation in the SSL manner. In each experiment, after initial K0 iterations, during the
next k + K-th training iteration, where K = 50, 20% of randomly chosen examples from the
target domain is transformed by GY→X and added to the pool of the discriminator DX .

4.2. Considered Domain Translation Tasks

The particular tasks, as well as datasets that are used in experiments, are the fol-
lowing: Semantic label↔photo task on CityScapes dataset [13,25]. The dataset consists of
2975 training images of the size 128× 128, as well as evaluation set for testing; Architectural
labels↔photo task [13,26] on CMP Facade dataset, containing 400 training images; as well
as Map↔aerial photo task on Google Maps dataset [13], containing 1096 training images of
the size 256× 256.

All experiments were performed in an imbalanced domain scenario, where we keep
the “left” domain (original images domain in all experiments) scarce, i.e., we simulate that
particular situation by using only a certain percentage of the original left domain.

4.3. Considered Baseline Domain Translation Methods

We evaluate the proposed approach in comparison to well-established baseline image-
to-image translation methods, where we choose the original CycleGAN method proposed
in [17], as well as pix2pix image translation method proposed in [13].

4.4. Utilized Measures for Results Comparison

Evaluating the quality of synthesized images is an open and difficult problem. We
use some classical measures such as Peak Signal-to-Noise Ratio (PSNR) as well as more
advanced Structural Similarity Index Measure (SSIM), which is a perception-based model
that considers image degradation as perceived change in structural information. It also
incorporates important perceptual phenomena, including both luminance masking and
contrast masking terms. The SSIM measure is much more appropriate for measuring image
degradation than PSNR.

The PSNR is evaluated as PSNR = 20log
(

MAXI/
√

MSE
)

, where MAXI is the
maximum possible pixel value of the ground truth images, while MSE is the squared
Euclidean norm between the generated and ground truth images. The SSIM measure
between images generated by the considered GAN algorithms and ground truth images is
calculated on various windows x, y of an image, by using the following formula:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(13)

where µx and µy are average values of x and y, while σ2
x and σ2

y are variances and c1 and c2
are constants, set as reported in [27].

In addition to the mentioned classical image quality measures, we have also used
some more specific measures, such as measures based on human judgments, which we call
Perceptual Realistic Measure (PRM), as well as the FCN score measure proposed in [28],
which is based on pre-trained semantic classifiers and measures how discriminative the
generated output is. We then score the synthesized photos using the classification accuracy
against the labels these photos were synthesized from.



Appl. Sci. 2022, 12, 3411 12 of 17

There are various measures of FCN accuracy used in [28]: pixel accuracy evaluated as
∑i nii/ ∑i ti, mean accuracy evaluated as (1/ncl)∑i(∑i nii/ti) and mean region intersection
over union accuracy evaluated as (1/ncl)∑i nii/

(
ti + ∑j nji − nii

)
. Term nij is the number

of pixels of class i predicted to belong to class j, ncl is the number of classes and ti = ∑j nij
is the total number of pixels belonging to the class i.

Concerning the PRM measure, we have asked student participants (10 of them) at the
Faculty of Technical Sciences, University of Novi Sad, to evaluate the perceptual quality of
images generated by the proposed method in comparison to baseline methods. We note
that for us it was much more accessible to organize our own pool of human participants,
than to use some internet service such as AMT perceptual studies. In the Map↔ aerial
photo experiments conducted on Google Maps, we follow the procedure reported in [17].

The participants were shown pairs of images, each pair containing one real image
(i.e., the ground truth) and one synthesized, generated by the proposed as well as baseline
algorithms. Next, they were asked to choose an image they thought it was real. The first
5 trials of each session were conducted for practice and a feedback was given whether the
participant’s response was correct or incorrect. The remaining 15 trials were used to assess
the rate at which each algorithm fooled the participants.

In addition, the relative improvement of the proposed method against the CycleGAN
baseline, denoted by δ, was computed for each of the described measures separately.

5. Experimental Results

In this section, we present experiments on several real image datasets in the task of
image-to-image translation, showing the efficiency of the proposed domain transformation
method that we call BTS-SSL CycleGAN.

5.1. Quantitative Evaluation of the Conducted Experiments

Results of the conducted experiments are summarized in Tables 1 and 2. The relative
improvement brought by the proposed method in Table 1 is expressed by average δPSNR
and δSSIM, while SSL and BTS denote results of the methods corresponding to individual
elements of the proposed SSL-BTS learning strategy.

Table 1. Experimental comparison between proposed semi-supervised (SSL+BTS) and the unsuper-
vised CycleGAN, under different scenarios: varying sample size SX of scarce domain X , as well as
when applied to different tasks/datasets—CityScapes, Facade dataset, Google Maps.

SX pix2pix CycleGAN SSL BTS SSL+BTS δPSNR δSSIM

[%] PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM [%] [%]

CityScapes
25 19.98 0.60 17.20 0.56 18.30 0.59 17.30 0.58 18.77 0.61 9.1 8.9
50 20.45 0.64 17.00 0.55 18.95 0.61 17.18 0.59 19.04 0.64 12.00 16.4

100 19.51 0.59 17.12 0.54 20.03 0.58 17.75 0.63 20.47 0.65 19.6 20.4

Facade dataset
25 13.78 0.35 10.93 0.25 11.78 0.31 10.81 0.27 11.83 0.32 8.23 28.0
50 14.24 0.40 11.00 0.25 13.22 0.37 11.92 0.28 13.75 0.40 25.0 60.0

100 14.25 0.42 10.98 0.27 12.88 0.33 11.52 0.35 13.21 0.41 20.3 51.8

Google Maps
25 30.35 0.67 30.47 0.71 30.62 0.73 30.55 0.75 31.20 0.77 2.4 8.4
50 30.55 0.68 29.78 0.72 30.68 0.75 29.81 0.76 30.88 0.79 3.7 9.7

100 30.01 0.69 30.24 0.73 30.92 0.75 30.27 0.77 31.23 0.81 3.3 11.0
Note: maximum for each SX is typeset in bold (PSNR) and blue bold with blue highlight (SSIM), while the largest
δ over all SX is shaded in green.

BTS training includes only bootstrapping of the discriminator DX, without paired
samples, while SSL involves using paired samples, but without bootstrapping. As an
example of the performance of supervised methods on the same tasks, results of pix2pix
method are also presented.
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In Table 1 the results of the PSNR, as well as SSIM measure between images generated
by the considered GAN algorithms (baseline pix2pix, CycleGAN as well as the proposed
BTS-SSL CycleGAN, in an image-to-image translation task, from scarce to target domain)
and ground truth images, are presented, for all the dataset used.

From Table 1 it can be seen that the proposed BTS-SSL CycleGAN algorithm obtains
better results on average, by both PSNR and SSIM measures, in all of the experiments,
in comparison to the CycleGAN method, especially on CityScapes and CMP Facade datasets.
It can also be seen that both SSL and BTS components of the proposed algorithm contribute
significantly to the obtained results.

In Table 2, the PRM results for the Google Maps dataset and the Photo→ Map task,
for the proposed method in comparison to the baseline methods, are given in form of the
accuracy of detecting generated, i.e., false images by the participants, and expressed in %.

Table 2. Results of the second type of experiments. Performance of the proposed SSL+BTS was
compared against unsupervised CycleGAN, and supervised pix2pix by using Perceptual Realistic
Measure (PRM) for the ‘Photo→ Map’ domain translation task, and by assessing image segmentation
quality in the case of ‘Photo → Semantic label’ task. Relative improvement of SSL+BTS over
CycleGAN is expressed by δ, while the respective datasets are listed in the table.

Task/Dataset Measure SX pix2pix CycleGAN SSL BTS SSL+BTS δ

Photo→ Map
Google Maps

PRM
25 18.8 17.5 18.0 18.1 18.4 5.1
50 19.8 18.7 19.3 19.2 19.5 4.3

100 21.7 20.4 20.8 20.7 21.1 3.4

Photo→ Semantic label
CityScapes

FCN
per-pixel acc.

25 0.57 0.43 0.45 0.46 0.50 16.3
50 0.63 0.49 0.52 0.51 0.54 10.2

100 0.71 0.52 0.56 0.55 0.58 11.5

FCN
mean acc.

25 0.16 0.13 0.15 0.16 0.18 38.5
50 0.20 0.15 0.17 0.18 0.19 26.7

100 0.25 0.17 0.19 0.20 0.22 29.4

FCN
mean IoU

25 0.13 0.09 0.10 0.10 0.12 33.3
50 0.16 0.10 0.11 0.12 0.13 30.0

100 0.18 0.11 0.13 0.13 0.15 36.4
Note: all values are expressed in [%]; higher PRM is better (% of gen. images misinterpreted as real); maximum
for each SX is typeset in bold and the largest δ over all SX is shaded in green.

It can be seen that, similarly to other experiments, the proposed BTS-SSL CycleGAN
outperforms the baseline CycleGAN, but as expected, does not outperform the fully super-
vised pix2pix method. Furthermore, both BTS as well as SSL components of the method
contribute to the final result.

Results of FCN accuracy measure for the proposed BTS-SSL CycleGAN in comparison
to baseline methods are provided in Table 2 for the CityScapes dataset and the Semantic
label↔photo task, are presented. It could be seen that the proposed BTS-SSL CycleGAN
obtains better results in comparison to the CycleGAN, but it is outperformed by the
fully supervised pix2pix, as expected. It could also be seen that both BTS as well as SSL
components of the algorithm contribute to the final result.

5.2. Visual Comparison between Analyzed Methods

As an example of the conducted visual comparisons, in the following are presented
several figures that illustrate visual performance of the proposed BTS-SSL CycleGAN
method against considered baselines.

In Figures 4–6, visual examples are given for the proposed BTS-SSL CycleGAN vs.
baseline algorithm comparisons, for 100% of the scarce domain data used: Real A (scarce
domain) and Real B (target domain) correspond to image pair examples. Examples are
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shown for Google Maps, CityScapes and Facade datasets. It can be seen that in those exam-
ples, the proposed BTS-SSL CycleGAN obtains visually more accurate results than the
baseline methods.

Go
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Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS

Ci
ty

Sc
ap

es

Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS
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s

Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS

pix2pix vs. CycleGAN vs. SSL vs. BTS vs. SSL+BTS [25% of domain A]

Figure 4. Visual examples of the proposed vs. baseline algorithm comparisons for 25% of the scarce
domain data used: Real A (scarce domain) and Real B (target domain) correspond to image pair
examples. Examples are given for Google Maps, CityScapes and Facade datasets. SSL denotes that
only SSL on the control part of pared images is included in the training of CycleGAN, BTS denotes
that only bootstrapping of the statistic of the A discriminator pool is included in the training, while
SSL+BTS denotes that both SSL and BTS are included.
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Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS
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Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS

pix2pix vs. CycleGAN vs. SSL vs. BTS vs. SSL+BTS [50% of domain A]

Figure 5. Visual examples of the proposed vs. baseline algorithm comparisons for 50% of the scarce
domain data used: Real A (scarce domain) and Real B (target domain) correspond to image pair
examples. Examples are given for Google Maps, CityScapes and Facade datasets. SSL denotes that
only SSL on the control part of pared images is included in the training of CycleGAN, BTS denotes
that only bootstrapping of the statistic of the A discriminator pool is included in the training, while
SSL+BTS denotes that both SSL and BTS are included.



Appl. Sci. 2022, 12, 3411 15 of 17

Go
og

le
 M

ap
s

Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS

Ci
ty
Sc

ap
es

Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS
Fa

ca
de

s

Real A Real B pix2pix CycleGAN SSL BTS SSL+BTS

pix2pix vs. CycleGAN vs. SSL vs. BTS vs. SSL+BTS [100% of domain A]

Figure 6. Visual examples of the proposed vs. baseline algorithm comparisons for 100% of the scarce
domain data used: Real A (scarce domain) and Real B (target domain) correspond to image pair
examples. Examples are given for Google Maps, CityScapes and Facade datasets. SSL denotes that
only SSL on the control part of pared images is included in the training of CycleGAN, BTS denotes
that only bootstrapping of the statistic of the A discriminator pool is included in the training, while
SSL+BTS denotes that both SSL and BTS are included.

6. Conclusions

In this work, in order to deal with imbalanced domains problem in the context of
domain translation or domain transfer tasks, we have proposed a novel solution for over-
coming the difficulties of the unsupervised learning process in such case. The proposed
method combines the unsupervised CycleGAN architecture with SSL learning strategy
that is additionally improved through an internal bootstrapping procedure (BTS). Thus,
the BTS-SSL CycleGAN semi-supervised domain translation model was formed. Based
on experimental results, it has exhibited potential to be a method of choice for the im-
provement of any CycleGAN-based domain translation task, especially in the considered
imbalanced domains scenario. The proposed SSL strategy was used during the initial
training stages to prevent discriminator related to the scarce domain from overfitting,
while the employed BTS strategy for bootstrapping the statistics of the training pool of the
discriminator was used to improve the learning performance in the unfavourable scenario
of imbalanced domains. BTS was performed by inserting the example data generated by
the corresponding internal generator, i.e., mapping from the fully observable into the scarce
domain. We have manage to obtain significantly better results in comparison to the original
CycleGAN method, and comparable with the fully supervised pix2pix method, on several
image domain transfer datasets. In further work, we will focus on other more intelligent
ways to bootstrap the statistics of the discriminator of the scarce domain, by inserting into
its pool only a certain amount of transferred image examples that “fit” the initial statistics
of the mentioned pool sufficiently well.
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