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Abstract: This study focuses on the airflow and pollutant dispersion around an isolated cubical
building located in a warm Mediterranean climate, taking into account the local microclimate con-
ditions (of airflow, albedo of building and soil, and air humidity) using a large-eddy simulation
(LES) numerical approach. To test the reliability of computations, comparisons are made against
the SILSOE cube experimental data. Three different scenarios are examined: (a) Scenario A with
adiabatic walls, (b) Scenario B with the same constant temperature on all the surfaces of the building,
and (c) Scenario C using convective and radiative conditions imposed by the local microclimate. For
the first two cases the velocity and temperature fields resulting are almost identical. In the third case,
the resulting temperature on the surfaces of the building is increased by 19.5%, the center (eye) of
the wake zone is raised from the ground and the maximum pollutant concentration is drastically
reduced (89%).

Keywords: LES; microclimate model; thermal radiation; pollutant dispersion; urban planning

1. Introduction

The excessive population concentration in megacities has resulted in environmental
pollution problems and overcrowded living conditions. The air quality in these cities is
determined by the airflow in the complex urban terrain, the temporal and spatial condi-
tions of pollutant sources, and the local urban microclimate parameters. The airflow and
pollutant dispersion in an urban environment can be studied in different geometrical scales,
such as blocks of buildings, street canyons, and isolated buildings. Several wind-tunnel,
real-scale experiments and numerical studies examine the airflow and pollutant dispersion
around blocks of buildings [1–5] and street canyons [6–12].

The city’s local microclimate parameters are air and surface temperatures, humidity,
direct and diffuse solar irradiation, and wind speed at different directions [13]. The
knowledge of the urban microclimate is necessary to prevent and reduce pollution problems.
The local microclimate conditions are playing an important role in the airflow and pollution
distribution in an urban environment [14]. For this reason, complex models can be used to
calculate mandatory variables such as the heat capacity of a building, the shortwave and
longwave radiation according to the solar position, the emissivity, and the air humidity.
According to these variables, the increment or decrement of the thermal comfort rate can
be found to define the human comfort conditions. Another important issue is the values
of the heating rate and of the thermal absorption of the surfaces of the building. Using
complicated microclimate models, the distribution of the environmental temperature and
their effect on pedestrians can be defined [15–19]. Small-scale meteorological models are
widely used to define the comfort conditions inside the urban environment for winter and
summer seasons [20–23].
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A phenomenon by which warm layers of air are accumulated in densely populated
centers is defined as an Urban Heat Island (UHI) creating uncomfortable thermal conditions
for urban living [24]. A high air-temperature increment leads to the need for higher energy
consumption for cooling in the summer, with a consequence of increasing air pollutants in
the atmosphere [25].

It is also identified that the rapid augmentation of the air temperature depends on
the airflow velocity. At calm wind conditions, where the airflow velocities are lower than
3 m/s, the density of hot gas masses is much higher than at heavy wind gusts [26]. As
a result, wind gusts with high airflow velocities can remove the air hot masses from the
urban environments, which leads to the decrement of the UHI phenomenon [27].

The effect of the microclimate in densely populated urban centers is also an important
topic for study. Gronemeier and Raasch [28] studied the urban flow for the city of Hong
Kong with PALM software. The numerical results showed a rapid increment in wind
velocity at the pedestrian crossing areas and high changes of the airflow direction [28,29].
Another study by Pfafferott and Rißmann [30] with the PALM code examined the interaction
between buildings and the urban microclimate using an energy balance solver. They
found that the temperature increment of the urban environment was caused by the heated
building, as the outcome of energy from the indoor model [30]. Resler and Eben [31]
examined the airflow over the city of Prague in the Czech Republic with PALM code.
Their study showed that the temperature and the concentration of NOx are in a good
agreement with real field measurements during the summer season. In the winter season,
the deviations between numerical results and experimental data pointed to inaccuracies
in modeling the atmospheric boundary layer [31]. Thus, real field urban measurements
can give important information for both real-scale meteorological phenomena and their
impact on an urban boundary layer. To better understand the complex phenomena of the
airflow in an urban environment, it is important to combine real field measurements and
wind tunnel experiments so that these two methods can be interrelated [32,33]. Numerical
methods can be also used to simulate the turbulence modelling of the airflow around both
small- and large-scale cubical obstacles [34–38].

Several wind-tunnel experiments exist that describe the airflow characteristics around
a cubical building. The wind-tunnel experiments are suitable for collecting detailed spatial
experimental data [32,33,39–41] under stable conditions. However, experimental wind tun-
nel experiments are not efficient for the prediction of real-scale meteorological conditions.

The present study is focusing on the simulation of the flow and pollution distribution
around an isolated building [42] and, more importantly, on the influence of a meteorolog-
ical model on these results, i.e., what differences exist between the use of real boundary
conditions and those employed for reasons of convenience. In addition, the use of an
isolated building instead of a large urban area ensures good reliability of the numerical
results for the available resources. In this respect, such studies do not seem to exist in the
scientific literature.

The isolated building of this study is in the climatological area of Athens, Greece.
Three different scenarios are examined. Scenario A studies the neutral flow and pollutant
dispersion in the wake area of an isolated cubical building with adiabatic walls, without any
buoyancy forces. Scenario B studies the same building with specified constant temperature
of 50 ◦C on its surfaces. Scenario C studies the same building with convective and radiative
conditions imposed by the local microclimate.

2. Configuration and Pollutant Dispersion Modelling
2.1. Problem Configuration

Figure 1 presents the geometry of the computational domain around the isolated
cubical building of this study, with exactly the same dimensions as the SILSOE cube. The
SILSOE cube field experiment for the study of the airflow around it [43], with a 6 m height
cube placed in an open area, has been used as a test case in several other studies [44]. This
geometry remains unchanged in all the different simulated scenarios of this work.
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Figure 1. Computational domain and boundary conditions.

The global coordinate system origin is the frontal left edge of the computational
domain and the distance between the frontal area of the computational domain and the
building is 5 H. The distance between the lateral boundaries of the computational domain
and the building’s surface is also 5 H [45]. The distance from the rear surface of the building
up to the outlet boundary of the computational domain is set at 12 H and the total height
of the computational domain is 5 H. The resulting blockage effect value is approximately
1.81%. Under the recommendations of the German Association of Engineers (VDI), the
blockage effect should be maintained below 10% during the simulations [46] and according
to [46,47] should be even lower than 3%, which is satisfied in the present study.

The Reynolds number is kept constant at 4.03 × 106, based on the height of the cube
and the free stream velocity. The specified flow field at the inlet of the computational
domain is in the form of a logarithmic profile with the no-slip condition at the ground.
A passive source of pollutants is located on the floor of the computational domain at a
distance H from the rear surface of the building, using as a pollutant methane (CH4) gas
with a concentration and release of 600 ppm and 18.5 L/h, respectively. The dimensionless
concentration coefficient K of the passive pollutant is defined as [48,49]:

K =
(cMeasured/cSource)uH H2

QSource
(1)

where cMeasured is the tracer concentration at any position, cSource is the tracer concentration
on the pollutant source, QSource is the release rate of the pollutant, and uH is the velocity of
the flow at the height of the building.

In Scenarios B and C, the temperature is affecting the flow field through the usual
Boussinesq approximation. In these cases, the Grashof number, i.e., the ratio of thermal
buoyancy forces over viscous forces is defined as [50]:

GrH =
gβ

(
TSur f ace − T∞

)
H3

v2 (2)
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where TSur f ace is the temperature on the surfaces of the building, T∞ is the bulk temperature,
β is the coefficient of thermal expansion, and v is the kinematic viscosity of the fluid. In
Scenarios B and C, the Grashof number based on the height of the building is 2.43 × 1011

and 7.68 × 1011, respectively. Thus, the buoyancy forces are intensive and the boundary
layers close to the heated surfaces are highly turbulent.

2.2. Governing Equations

The PALM model system, an open-source software that simulates atmospheric and
oceanic boundary layers, is used for the present simulations. The Navier-Stokes equations
in a non-hydrostatic, filtered, and incompressible form under the Boussinesq approximation
are solved. The basic equations for the conservation of mass, momentum, energy, and
moisture are defined as:

∂ui
∂xj

= 0 (3)

∂ui
∂t

= −
∂uiuj

∂xj
− εijk f juk + εi3j f3ug,j −

1
ρ0

∂π∗

∂xi
+ g

θv − 〈θv〉
〈θv〉

δi3 −
∂

∂xj

(
u′′i u′′j −

2
3

eδij

)
(4)

∂θ

∂t
= −

∂ujθ

∂xj
− ∂

∂xj

(
u′′j θ′′

)
− Lv

CpΠ
Ψqv (5)

∂qv

∂t
= −

∂ujqv

∂xj
− ∂

∂xj

(
u′′j q′′v

)
+ Ψqv (6)

∂s
∂t

= −
∂ujs
∂xj
− ∂

∂xj

(
u′′j s′′

)
+ Ψs (7)

where i, j, k ∈ {1, 2, 3}, the components of the velocity (u1 = u, u2 = v and u3 = w) are
defined by the ui variable at specific positions in the flow field xi, where x1 = x, x2 = y
and x3 = z, and t is time. qv and s are the latent heat transfer and moisture, respectively.
The gravitational acceleration is denoted by g, the density of the dry air is defined by ρ0,
and Lv is the latent heat of vaporization. The source term of the variable qv, is defined as
Ψqv and the sink term of the variable s is defined as Ψs. The angle brackets correspond to
the horizontal averages of the flow field and the double prime indicated the subgrid-scale
variables.

The subgrid-scale turbulence kinetic energy is defined as:

e =
1
2

(
u′′i u′′i

)
(8)

The modified perturbation pressure based on the perturbation pressure p∗ is defined as:

π∗ = p∗ +
2
3

ρ0e (9)

The potential temperature is defined from the equation:

θ =
T
Π

(10)

where T is the instantaneous absolute temperature and the Exner function is calculated by
the equation:

Π =

(
p
p0

) Rd
Cp

(11)
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where p is the hydrostatic pressure of the air, p0 = 1000 hPa is the reference pressure,
Rd is the specific gas constant for dry air, and Cp is the specific heat capacity under
constant pressure.

The virtual potential temperature is defined by the equation:

θv = θ

[
1 + qv

(
Rv

Rd
− 1

)
− ql

]
(12)

where Rv is the specific gas constant for water vapors, and ql is the liquid water mixing ratio.

2.3. Urban Surface Model (USM) of the PALM Model System

The urban surface model (USM) of the PALM model system is used for the energy
balance in the computational domain. The energy balance solver is driven by three main
procedures: (a) the solver predicts the temperature of the outer surfaces, (b) the turbulence
dispersion of the sensible temperature is calculated at the surfaces near the walls, and (c)
the calculation of the sublayer heat flux caused by convection. The first two procedures of
the energy balance solver are executed simultaneously. The third procedure is executed
under the calculations of a subgrid-scale model that predicts the thermal diffusion from the
bluff body.

The energy balance solver is defined as:

C0
dT0

dt
= Rn − H − LE− G (13)

where C0 is the specific heat capacity, T0 is the radiative temperature of the surface skin
layer, Rn is the net radiation, H is the sensible heat, LE is the latent heat, and G is the heat
flux at the surface of the ground. On the USM, the energy balance is calculated separately
for each surface, and the three different types of radiations (sensible heat, latent heat, and
ground heat flux) from the surface heat are combined.

The calculation of the convective heat transfer between the air and the outer surfaces
is defined by the equation:

H = h(θ1 − θ0) (14)

where θ0 is the temperature of the outer surface of the building, θ1 is the temperature
of the air mass in contact with the outer surface of the building, and h is the coefficient
of convective heat transfer and is parameterized only for the vertical surfaces inside
the computational domain [51]. For the horizontal surfaces inside the computational
domain, the coefficient of convective heat transfer is parameterized under the Monin-
Obukhov similarity, which involves the calculation of the local friction velocity [52,53]. The
friction velocity is used for the calculation of flow momentum near the surface, for each
surface separately.

3. Initial and Boundary Conditions

The inlet velocity profile is described by the logarithmic law of the wall with a free-
stream velocity value of 10.13 m/s. Figure 2 presents the normalized velocity profiles at
both the inlet of the computational domain and in the X/H = 2 position from the inlet for
Scenarios A–C, where A and B should be identical.
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As observed in Figure 2a, an important deviation appears in Scenario C that corre-
sponds to the application of the meteorological model in comparison with the other two
scenarios. This difference appears also in the free-stream flow region and is caused by the
strong buoyancy effects caused by the increased thermal heating of the air.

As shown in Figure 3, the present numerical results for the pressure coefficient are in
good agreement with the corresponding experimental data of Scenarios A and B.
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The pressure coefficient at the surfaces of the building for all scenarios is defined as:

CP =
p− pREF
1
2

ρREFu2
∞

(15)

where p is the static pressure of the fluid at a point, pREF and ρREF are the static pressure and
density of the fluid at the free-stream at the inlet of the computational domain, respectively,
and u∞ is the free-stream velocity at the inlet.

As observed in Figure 3, important differences exist between Scenarios A–C because
of the heating of the surfaces of the building and the microclimate model application. The
pressure coefficient distribution on the frontal surface of the building for Scenarios B and
C is higher than the corresponding for Scenario A because of the influence of the mixed
convection heat transfer, which causes reduction on the density of the streamlines in this
region. In Scenario C, this influence is expected to be larger than for Scenario B. In Scenario
B, the pressure distribution at the rear surface of the building significantly approaches the
corresponding for Scenario A. In Scenario C, the pressure distribution at the rear surface of
the building is the highest compared with other scenarios because of the domination of the
buoyant heating forces there.

Figure 4 presents the vertical profile of the turbulent kinetic energy at the inlet of the
computational domain for Scenarios A–C, as compared with the corresponding numerical
data on the same normalized upstream position from the cube [18].

As described in Figure 4, the turbulent kinetic energy distribution at the inlet of the
computational domain is almost identical for Scenarios A and B and different from Scenario
C because of the effect of the buoyancy forces from the microclimate conditions.



Appl. Sci. 2022, 12, 3410 8 of 27Appl. Sci. 2022, 12, x FOR PEER REVIEW 8 of 27 
 

 
Figure 4. Turbulent kinetic energy at the inlet of the computational domain for Scenarios A–C. 

As described in Figure 4, the turbulent kinetic energy distribution at the inlet of the 
computational domain is almost identical for Scenarios A and B and different from 
Scenario C because of the effect of the buoyancy forces from the microclimate conditions. 

On the lateral boundaries of the computational domain, periodic boundary 
conditions are employed because of the temporal and spatial periodicity of the flow. 
Neumann boundary conditions are used for the turbulent kinetic energy ሺ𝑒ሻ, temperature ሺ𝜃ሻ, and the perturbation pressure ሺ𝑝∗ሻ to calculate the following equations concerning 
the building’s height: 𝑒̅ ൬− 𝛥𝑦2 ൰  =  𝑒̅ ൬+ 𝛥𝑦2 ൰ (16)

𝜃̅ ൬− 𝛥𝑦2 ൰  =  𝜃̅ ൬+ 𝛥𝑦2 ൰ (17)𝑝∗തതത ቀ− ௱௬ଶ ቁ  =  𝑝∗തതത ቀ+ ௱௬ଶ ቁ  (18)

Figure 4. Turbulent kinetic energy at the inlet of the computational domain for Scenarios A–C [18,44].

On the lateral boundaries of the computational domain, periodic boundary condi-
tions are employed because of the temporal and spatial periodicity of the flow. Neu-
mann boundary conditions are used for the turbulent kinetic energy (e), temperature (θ),
and the perturbation pressure (p∗) to calculate the following equations concerning the
building’s height:

e
(
−∆y

2

)
= e

(
+

∆y
2

)
(16)
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θ

(
−∆y

2

)
= θ

(
+

∆y
2

)
(17)

p∗
(
−∆y

2

)
= p∗

(
+

∆y
2

)
(18)

The Dirichlet boundary condition is used for the velocity at the ground of the com-
putational domain for the no-slip condition. Therefore, the velocity components at the
ground are:

u(z = 0) = 0 (19)

v(z = 0) = 0 (20)

w(z = 0) = 0 (21)

On the staggered computational grid, the velocity components in the X and Y direc-
tions, respectively, are defined at the specific height of z = ±∆z

2 . Thus, the symmetry
boundary condition is used as:

u
(
−∆z

2

)
= −u

(
+

∆z
2

)
(22)

v
(
−∆z

2

)
= −v

(
+

∆z
2

)
(23)

On the upper surface of the computational domain, the perturbation pressure (p∗)
obeys the Neumann boundary condition. For the velocity to maintain the free-stream
regime over the atmospheric boundary layer, Neumann boundary conditions are also
applied to the velocity components of the velocity in the X and Y directions:

∂zu|top = constant (24)

∂zv|top = constant (25)

Additionally, on the upper surface of the computational domain, Dirichlet boundary
conditions are used for both the turbulence kinetic energy (e) and the temperature (θ).

4. Nested Computational Grid

PALM provides the capability of computational grid self-nesting. In the self-nesting
mode, there is a root/parent computational domain with the ability of nesting up to 63
levels of nested/child computational subdomains. Each subdomain may be root/parent to
another nested subdomain. As a result, the second subdomain is simultaneously nested
referring to the first parent, and also root, to the third nested. The nested computational
subdomain receives all the appropriate and mandatory information for the three compo-
nents of the velocity and all the prognostic variables of the vectors from its boundaries
with the root computational domain. The flow field data are interpolated from the coarse
to the finer computational grid. By the end of each time step, the corrected solution from
the solver is reversely interpolated to the root/parent domain.

Figure 5 shows the grid arrangement used in the simulations. The root computational
grid (coarse grid) is shown at full height of the computational domain in contrast with the
nested (finer grid-darker parts), which is shown at two building heights.
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For the simulations, three different computational grids are used with an incremental
resolution from the coarse to the finer: the coarse computational grid with 924,400 cells, the
medium grid with 1,248,400 cells, and the fine grid with 1,842,400 cells. The grid errors
using two computational grids are estimated from the following equation [4]:

GCI =
f2 − f1

1− rp (26)

where f2 is the numerical solution that results from the medium computational grid and the
corresponding from the finer is f1. r is the refinement factor between the two computational
grids and p is the accuracy of the algorithm, which is 3 for the present study. The refinement
factor between the medium and finer computational grid is approximately 1.47.

Figure 6a presents the profile of the error bars of the normalized velocity, at the axial
position 0.5 H from the rear surface of the building for scenario A. Additionally, Figure 6b
shows the profile of the normalized concentration of the pollutant at the same axial position
and scenario.

The mean value of the errors of the normalized velocity between the coarse and the
medium computational grids is approximately 3.77% and the corresponding value between
the medium and the fine grids is about 1.54%. The mean value of the errors of the pollutant
between the coarse and the medium computational grids is approximately 2.77% and the
corresponding value between the medium and the fine grids is about 1.24%. For both of
the aforementioned variables, the decrement of the errors going from the coarse to the finer
computational grids is clearly observed.
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5. Numerical Details

The global discretization of the computational grid is accomplished using finite differ-
ences on a staggered Cartesian Arakawa-C grid [55]. The equations are spatially discretized
on a fifth-order differential upwind scheme [56], while a third-order Runge-Kutta scheme
is used on the temporal discretization [57]. The equations are implicitly filtered by the
discretization of the computational grid and the subgrid-scale processes are calculated by
the 1.5-order Deardorff numerical scheme [58]. Thus, it is assumed that the energy that is
transported by the subgrid-scale vortices is proportional to the local gradients of the mean
quantities [59,60].
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The convergence criterion maintained on each simulation is kept below the 10−4 value
for each computed variable based on the error. The time step is automatically adjusted for
the CFL constant value of 0.9.

Every simulation is carried out until flow stationarity has been achieved. Figure 7
presents the normalized velocity components with respect to the free-stream velocity
(ux/u∞, uy/u∞, uz/u∞), at the point with Cartesian coordinates of X: 10 H, Y: 5.5 H, and
Z: 0.5 H and for the period from 600 to 1400 s for Scenario A.
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Figure 7. Velocity fluctuations of ux/u∞, uy/u∞, uz/u∞ at point X: 10 H, Y: 5.5 H, Z: 0.5 H from
600 up to 1400 (s) for Scenario A.

As it is shown in Figure 7, the flow seems to have attained stationarity conditions from
the time point of 700 (s) onward. The attainment of stationarity conditions is confirmed by
finding out that the mean value and higher order statistics are independent of the time of
initiation of the measurements. If this is valid for the mean value and the autocorrelation
function, the process is said to be weakly stationary. In this respect, the mean, the variance,
and the autocovariance with a time delay of 2 (s) values are computed and given in
tabulated form below (Table 1):

Table 1. Mean Value, Variance and Autocovariance for Specific Time Periods.

Averaging Period (s) Mean Value Variance Autocovariance

600–800 1.0806 0.0473 0.3426

800–1000 1.0851 0.0538 0.3738

1000–1200 1.0879 0.0530 0.4316

1200–1400 1.0889 0.0524 0.4443
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These computed values show that the flow field is at least weakly stationary.
However, although the flow field has reached stationary conditions it is possible the

concentration field has not reached it yet.
Figure 8 presents the pollutant dispersion inside the computational domain for Sce-

narios A and C at the position with coordinates of X: 7.5 H, Y: 5.5 H, and Z: 0.5 H for the
period of 200–1000 (s).
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Figure 8. Concentration of the pollutant for Scenarios A and C at the position with coordinates of
X: 7.5 H, Y: 5.5 H and Z: 0.5 H for the time period of 200 to 1000 (s).

The mean, the variance, and the autocovariance with time delay of 2 (s) values of the
pollutant concentration are computed and given in tabulated form below (Table 2), which
demonstrates that a passive scalar attains stationarity earlier in time than the velocity field:

Table 2. Mean Value, Variance and Autocovariance for Specific Time Periods.

Averaging Period (s) Mean Value Variance Autocovariance

200–400 0.2449 0.0186 0.9584
400–600 0.2445 0.0198 0.9532
600–800 0.2480 0.0193 0.9548

800–1000 0.2463 0.0195 0.9524

6. Results and Discussion

The air flow field around the cubical geometry is presented in Figure 9 using nor-
malized velocity profiles on the symmetry plane at different streamwise positions up-
stream, downstream, and at the middle of the roof of the cube (X/H = 5.5) for all three
scenarios [44,54,61–65]. Comparisons are also made with Richards and Castro’s experimen-
tal data [60] for Scenario A.
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Figure 9. Normalized velocity profiles on the symmetry plane at positions X/H = 0, X/H = 2,
X/H = 4, X/H = 5.5, X/H = 7, X/H = 7.5, X/H = 8 and X/H = 10 for Scenarios A–C [44,60].

Differences in the normalized velocity profile between Scenario C and Scenarios A
and B are observed especially in the wake region of the cube, where the mixing layer for
Scenario C has moved almost one cube height above the mixing layer of the other two
scenarios. This is caused by the strong buoyant forces created in this case.

Figure 10 shows the streamlines of the flow for Scenario A. A detachment of the flow
at the top surface of the building and a recirculation of the flow on both the frontal and the
rear surfaces of the building are observed.

Different recirculation lengths Xf, Xb, and Xr are defined for the frontal, rear, and roof
recirculation of the building, respectively.

Table 3 presents a comparison of the length of different recirculation zones in compari-
son with available experimental data.

Table 3. Recirculation length of the recirculation zones.

Xf Xb Xr

Martinuzzi and Tropea [61] 1.04 H 1.61 H -
Rodi [62] 0.651 H 2.182 H 0.432 H

Hoxey, Richards [63] 0.75 H 1.4 H 0.57 H
Richards and Norris [64] 0.9 H 1.4 H 0.9 H

Hu, Xuan [65] - 1.31 H 0.94 H
Scenario A 0.79 H 1.56 H 0.56 H
Scenario B 0.56 H 1.97 H 0.64 H
Scenario C 0.86 H 2.15 H 0.73 H
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Figure 10. Velocity streamlines of the mean flow field on the symmetry plane of the computational
domain for Scenario A.

The recirculation zone Xf in front of the upstream surface of the building for Scenario A
is 41% higher than the corresponding for Scenario B and 8.14% lower than Scenario C.
In addition, the recirculation zone on the roof Xr for Scenario A is 20.81% lower than the
recirculation zone of Scenario B and 27.44% lower than for Scenario C. The recirculation
zone in the wake region Xb of the building for Scenario A is 13% lower than the corre-
sponding recirculation zone of Scenario B and 23.28% lower than the recirculation zone for
Scenario C.

Figure 11 shows the normalized vertical temperature profile for Scenario C at the
position with coordinates of X = 7 H and Y = 5.5 H, on the symmetry plane and two heights
behind the building.

The present numerical results are in good agreement with the experimental data of
Uehara and Murakami [41], who studied the stability of the atmospheric flow inside an
urban street canyon placed normal to the wind direction. They found that inside the canyon
exists a stable thermal stratification as shown above, which weakens the cavity eddy.

Figure 12 shows the temperature distribution on the vertical and horizontal surfaces
of the building for Scenario C, along the intersection lines with the transverse symmetry
plane (path No. 3) and two other planes parallel to it at distances 0.25 H (path No. 2) and
0.45 H (path No. 1), respectively.
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Figure 11. Normalized temperature profiles at the wake region of the flow for Scenario C, at X = 7 H
and Y = 5.5 H, where T is the mean temperature, Ta is the ambient temperature, and Tf is the
temperature at the floor of the computational domain [41].

The surface temperatures of the cube are the result of an energy balance between the
incoming thermal radiation that is absorbed and reflected or emitted, and heat convection
by the airflow. The amount of radiation that reaches the surfaces of the cube and the
visibility of the solar path are determined by Athens’s longitude and latitude. Albedo
and emissivity of the surfaces control the shortwave and longwave radiation components
reflected and emitted, respectively. The albedo and emissivity coefficients are 0.2 and 0.95,
respectively, typical values for concrete material. The thermal heat capacity and thermal
conductivity of the cube control its ability to store and conduct heat, respectively.
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Figure 12. Temperature distribution on the vertical and horizontal surfaces of the building for the
Scenario C along three different streamwise paths.

The temperature on the cube surfaces depends primarily on the convective thermal
energy loss. In regions, where turbulence exists high heat exchange takes place. At the
lower part of the frontal surface of the cube, where the horseshoe-shaped vortex appears,
low surface temperatures appear. On the contrary, on the upper part of the frontal surface
of the cube higher surface temperatures are shown. Similarly, on the wake zone of the cube
where the arc vortex is present, low surface temperatures are shown because of the high
heat exchange rate. On the first part of the roof surface where the flow separates the heat
exchange is small, so the surface temperature is high, and on the second part it is reduced
where the flow reattaches.

Figure 13 present the vertical mean pollutant concentration profiles computed for
the time period from 800–1400 (s), at which all variables are statistically stationary on the
symmetry plane for both Scenarios A and C at the Cartesian coordinate positions of X: 7 H,
for a, X: 7.2 H for b, and 7.4 H, for c. The height Z extends from 0 to 2 H.

In Figure 13, the highest mean concentration of the pollutant is observed for Scenario A,
where a large amount of the pollutant is trapped inside the wake region. In contrast, in
Scenario C where because of the high buoyancy forces the maximum pollutant concentra-
tion is small in the above region as the pollutant is shifted almost one cube height higher
away from the floor, thus creating a recirculation region of larger length and height than
that corresponding for Scenario A.

As the pollutant in Scenario A is trapped inside the wake region of the cubical building,
it becomes very harmful to the pedestrian’s health. In Scenario C, this problem is exempted
to a large extent, as the high levels of pollutant concentrations are at much higher heights
than those of the pedestrians. This behavior is the result primarily of the buoyant forces
acting on the roof and on the leeward surfaces of the building.

Figure 14 present the distribution of the flux concentration on the symmetry plane
because of the x-velocity component for Scenarios A and C at the x-positions: (a) (X: 7 H,
Y: 5.5 H), (b) (X: 7.2 H, Y: 5.5 H), and (c) (X: 7.4 H, Y: 5.5 H) for heights Z that extend from 0
to 2 H.
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Figure 13. Vertical concentration profiles with the pollutant source at X = 7 H for Scenarios A and C
at positions (a) (X: 7 H, Y: 5.5 H), (b) (X: 7.2 H, Y: 5.5 H), and (c) (X: 7.4 H, Y: 5.5 H).

In the wake region, up to the height of the cube, the flux concentration is similar
for both cases A and C. At heights higher than the building, the concentration flux for
Scenario A is larger of that of C because of the important influence of higher free stream
air velocity. Additionally, the wake zone height in Scenario C exceeds the height of the
building and the low values of air velocity produce low concentration fluxes.

Figure 15a–c present the distribution of the flux concentration on the symmetry plane
because of the z-velocity component for Scenarios A and C at the x-positions: (a) (X: 7 H,
Y: 5.5 H), (b) (X: 7.2 H, Y: 5.5 H), and (c) (X: 7.4 H, Y: 5.5 H) for heights Z that extend from
0 to 2 H.



Appl. Sci. 2022, 12, 3410 20 of 27Appl. Sci. 2022, 12, x FOR PEER REVIEW 20 of 27 
 

  
(a) (b) 

Figure 14. Cont.



Appl. Sci. 2022, 12, 3410 21 of 27Appl. Sci. 2022, 12, x FOR PEER REVIEW 21 of 27 
 

 
(c) 
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Figure 14. Concentration flux profiles that are due to the x−velocity component on the symmetry
plane for Scenarios A and C at positions (a) (X: 7 H, Y: 5.5 H), (b) (X: 7.2 H, Y: 5.5 H), and (c) (X: 7.4 H,
Y: 5.5 H) for heights Z that extend from 0 to 2 H.
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Figure 15. Distribution of the non-dimensional flux concentration at the z−component of the velocity 
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For Scenario A, where the buoyancy forces do not affect the pollutant distribution, 
the concentration flux is toward the ground floor (Figure 15a,b) within the recirculation 
zone near the point of reattachment, in accord with the flow field of Figure 10, and away 
from the floor outside the recirculation zone. On the contrary, for Scenario C, the 
buoyancy forces lift the pollutants near position X = 7 H (left end of source) where at 
positions X = 7.2 H and X = 7.2 H (center and right end of source, respectively) the 
buoyancy forces are counterbalanced by momentum flux forces. It is expected that by 
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Figure 15. Distribution of the non-dimensional flux concentration at the z−component of the velocity
on the symmetry plane for Scenarios A and C at positions (a) (X: 7 H, Y: 5.5 H), (b) (X: 7.2 H, Y: 5.5 H),
and (c) (X: 7.4 H, Y: 5.5 H) for height Z that extends from 0 to 2 H.

For Scenario A, where the buoyancy forces do not affect the pollutant distribution, the
concentration flux is toward the ground floor (Figure 15a,b) within the recirculation zone
near the point of reattachment, in accord with the flow field of Figure 10, and away from the
floor outside the recirculation zone. On the contrary, for Scenario C, the buoyancy forces
lift the pollutants near position X = 7 H (left end of source) where at positions X = 7.2 H
and X = 7.2 H (center and right end of source, respectively) the buoyancy forces are coun-
terbalanced by momentum flux forces. It is expected that by placing the pollutant source
closer to the leeward face of the building, the lifting forces that act on the concentration
would be higher, resulting in higher concentration fluxes away from the ground. Thus, a
higher fraction of the pollutants will escape the recirculation zone.
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7. Conclusions

In the present work, three different scenarios are studied. The emphasis is on the flow
and pollutant dispersion around an isolated cubical building in an open area and with
a pollutant source placed on the ground and at a distance of one building height in the
symmetry plane behind its rear surface. Scenario A with adiabatic walls of the building
and without any buoyancy forces, Scenario B with the same constant temperature of 50 ◦C
on all the surfaces of the building, and Scenario C with convective and radiative conditions
imposed by the local microclimate.

Each scenario is simulated using the large-eddy simulation (LES) approach. The
numerical results that describe the nature and the behavior of the flow around an isolated
building are in good agreement with the corresponding experimental and numerical data
that were used for their validation.

It is observed that at higher flow field temperatures, the length and the corresponding
height of the recirculation are increased. Thus, the recirculation region for Scenario B has
higher length than that for Scenario A and lower than that for Scenario C, for which exist
the highest temperatures from the three scenarios studied.

The pollutant in Scenario A is trapped inside the wake region of the cubical building
with its highest concentration levels at a height close to what a pedestrian would breathe,
thus being very harmful to his health. In Scenario C, the higher temperatures together with
the associated buoyancy forces that are developed raise most of the pollutants to a height
greater than that of the building, allowing them to escape the recirculation region of the
building and be carried away by the wind, without causing any serious harm to the health
of a pedestrian.

It is expected that by placing the pollutant source closer to the leeward face of the
building, the lifting forces that act on the concentration would be higher, resulting in higher
concentration fluxes away from the ground. Thus, a higher fraction of the pollutants will
escape the recirculation zone.
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