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Abstract: Data science techniques have increasing importance in medical data analysis, including
detecting and predicting the probability of contracting a disease. A large amount of medical data is
generated close to the patients in the form of a stream, such as data from sensors and medical devices.
The distribution of these kinds of data may change from time to time; adaptive Machine Learning
(ML) consists of a continuous training process responding to the distribution’s change. Adaptive
ML models require high computational resources, which can be provided by cloud computing. In
this work, a classification model is proposed to utilize the advantages of cloud computing, edge
computing, and adaptive ML. It aims to precisely and efficiently classify EEG signal data, thereby
detecting the seizures of epileptic patients using Adaptive Random Forest (ARF). It includes a global
adaptive classifier in the cloud master node and a local light classifier in each edge node. In this
model, the delayed labels consider missing values, and the Model-based imputation method is used
to handle them in the global classifier. Implementing the proposed model on a real huge dataset
(CHB-MIT) showed an accurate performance. It has a 0.998 True Negative Rate, a 0.785 True Positive
Rate, and a 0.0017 False Positive Rate, which overcomes much of the research in the state-of-the-art.

Keywords: adaptive machine learning; electroencephalography; epilepsy classification; cloud
computing; edge computing

1. Introduction

Epilepsy is one of the prevalent chronic diseases that affect the human central nervous
system of all ages, and it is widespread around the world [1]. In 2016, 45.9 million people
had epilepsy, and there were more active cases with increasing age [2]. The number of
deaths and disabilities caused by this disease is still significant; the epilepsy-related death
rate in the U.S increased from 0.3 per 100,000 population in 1999 to 0.5 in 2019. In India,
there were 658 deaths related to epilepsy per week in 2016, while there were 44 in Germany
in the same year [2].

Nowadays, data-mining techniques are becoming increasingly important in medical
data analysis. Large amounts of these data are generated in the form of a stream, such as
data from sensors and medical devices. Furthermore, many personal devices of daily use,
such as the smartphone and smartwatch, contain sensors for the acceleration, location, and
biometric data of their bearers, and these sensors generate large and continuous amounts
of data [3]. Data-mining techniques are commonly used to classify patient data, thereby
detecting or predicting values often associated with diseases. The performance of the
classification model based on a single classifier is insufficient in dealing with sensitive
tasks such as monitoring the elderly with chronic diseases and classifying critical medical
conditions. Ensemble models that build multiple classifiers often produce more reliable
performance but require high computational resources.
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Adaptive Machine Learning (ML) consists of a continuous training process for the
classification model to respond to the change in data distribution. The delay in obtaining
the actual values of the class label after the classification decision restricts the adaptation
process. For this reason, the classification should have the ability to overcome this delay by
considering them as missing values, for example, after waiting for a specified period of time.
Imputation refers to predicting the most reasonable values instead of the missing values.
The prediction is performed using the available information, which has known values [4].
The model-based imputation utilizes statistical methods for building the prediction model
for the missing values based on the data distribution. The task of building an ensemble
and adaptive classifier required centric and high computational resources to handle the
ongoing patient data stream, and these resources can be provided by cloud computing
services [5].

The cloud provides storage and computing capabilities that are highly expandable.
Despite that, it is not practical to store and process all the data there, especially in appli-
cations that require a real-time or near-real-time response. Edge computing models have
been developed to handle this type of application by adding a new layer of storage and
computing resources that are closer to the source of data (end-user device) [6]. In addition
to minimizing the computation latency, utilizing edge computing can provide more relia-
bility against failures of the network, minimizing the network traffic and increasing the
capability of the cloud by shifting the computing to the edge infrastructure. On the other
hand, edge devices have a limitation to utilize the adaptive ensemble classifiers due to the
limited resources.

In this work, we focus on processing and analyzing Electroencephalography (EEG)
data to classify the brain activity signals of epileptic patients in the cloud environment. This
goal can be achieved by building an adaptive classification model that accurately detects an
epileptic seizure, thereby warning the patient’s relatives and the medical staff. It deals with
EEG data in their original form as a stream (not a batch file) when generating it without the
need to store and retrieve it.

The proposed model is characterized by utilizing the adaptive mechanism of online
bagging for handling the concept drift and the fast response of VFDT as a base learner in the
ensemble model. It utilizes Edge computing by combining a light, fast, and local classifier
that will be used only for the inference process with an adaptive and global classifier in the
master cloud node that performs the training process and sends the latest version of the
classifier to all edge nodes. The model reduces the effect of delayed labels by considering
them as missing values, and the model-based imputation method is used to handle them
in the global classifier.

2. Literature Review

Most of the current research on stream data mining focus only on improving the
accuracy of adaptive classification regardless of its efficiency. In addition, the research in
Federate learning focuses on applying the training process on both local edge devices and
the central cloud server. In this section, the theoretical background for the methods used in
this work will be explained in addition to many related works.

2.1. EEG Signals

An electroencephalogram (EEG) is a graphical record of the electrical activity of the
brain recorded from the scalp. This method can be performed in two different ways:
(1) Record invasive EEG directly from the brain through surgically implanted electrodes;
(2) Record non-invasive EEG from the surface of the human brain [7,8]. A sufficient amount
of information about brain activity can be extracted from the EEG signal. Feature extraction
involves transforming the original signal into a related data structure by removing noise
and highlighting important data, called a feature vector [9].

The features extracted from biological signals can be divided into three types [10]:
(1) Time-domain features (TDF) are calculated based on the signal amplitude, and the result
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value gives a measure of the waveform amplitude, frequency, and duration within some
limited parameters; (2) Frequency domain feature (FDF), based on the estimated power
spectral density (PSD) of the signal; and (3) Time-frequency domain characteristics (T-FDF),
using time-frequency representation to explain the energy that can locate the signal in time
and frequency [11,12].

The information extracted from EEG signals can be used for the diagnosis of brain
diseases, such as disorders, coma, and epilepsy [8,13]. The Fourier transform (FT) is an
effective technique for signal processing used in feature extraction. The Fourier transform
(FT) of the function f(x) is [14,15]:

F(w) =

∫∞
−∞ f(x)e−iwxdx (1)

Discrete Fourier Transform (DFT) maps a sequence into the frequency domain. It is
used in the case of discrete and periodic signals [15]. Let the signal be qm form = 0 . . .M− 1

and qm = qm+jM for allm and j. The discrete Fourier transform of q is [14]:

Qk =

M−1∑
0

e−i
2π
m kmqm (2)

2.2. Data Mining Classification Techniques

Data mining is defined as “extracting or mining knowledge from large amounts of
data” [16]. In data analysis, working with data commonly includes descriptive and predic-
tive tasks. A descriptive analysis could visualize relationships in data in an understandable
form for decision makers. In the prediction task, the model is used to predict the target at-
tribute for the given data [16–18]. The ensemble methods have been developed to enhance
the performance of the single classifier [19]. The main idea of an ensemble model is to
combine a set of single models, and each one tries to solve the same original task [18,20,21].
Random forest is one of the most popular ensemble techniques that are widely used for
medical data mining [18].

2.3. Stream Data Classification

There are many constraints that must be taken into account when mining streaming
data: (1) the impossibility of storing data samples due to their infinite arrival; (2) real-time
processing is required due to the rapid arrival of data samples; and (3) the possibility
of changing items’ distributions, which may require altering the current structure of the
classification model [22,23].

Concept drift means that the data being collected may change from time to time, each
time based on a certain minimum persistence. There are two important issues related to
change: the cause of the change and the speed of the change [24]. ADWIN (Adaptive
Sliding Window) is an estimation technique designed to detect changes in a data stream
based on a sliding window with an adaptive size. In this technique, as long as the average
value in the window does not change, the length of the window will not be updated [23,24].

2.4. Very Fast Decision Tree

A Very Fast Decision Tree (VFDT) is a variation of the typical decision tree designed
for streaming data. The learning of these techniques depends on replacing the leaves of the
tree with decision nodes. Each terminal node (leaf) in the tree stores enough information
statistics about the feature value, and the heuristic function uses this information to perform
the split test. After reaching the new data instance, it starts to transfer from the root until
it reaches a specific leaf node. At this point, the statistical information is evaluated, and
a new decision node can be created based on the evaluation [23,24]. VFDT relies on the
concept of the Hoeffding bound [24–26], in which r is a random variable and its real value
range is R, where the range R is log2(cn) in information gain, and cn is the number of
classes. Consider there are n independent observations from the random variable r and the
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computed mean for n is r̄. The Hoeffding bound points out that, with probability 1− δ ,
the actual mean for r is at least r̄− ε, where:

ε =

√
R2 ln(1δ )
2n

(3)

where δ is a value that is specified by the user.

2.5. Adaptive Random Forest

Ensemble modeling aims to build a strong cumulative classifier from many weak
classifiers. Adaptive random forest (ARF) is a variant of the typical random forest algorithm
used for data stream mining tasks. The main idea is to use VFDT with the ability to adapt
to changes in distribution as the base classifier of the bagging integration method [22,23,27].
In order to detect changes in the data stream, ADWIN is used in this technique, and it
utilizes the Online Bagging as a resampling method [22,23].

Table 1 shows the equivalent of four popular batch classification techniques for classi-
fying the data stream.

Table 1. Equivalent of four popular classification techniques for classifying the data stream.

Technique Model Type Batch Algorithm Stream Algorithm

Decision Tree Single C4.5 [28] VFDT [25,29]
Nearest Neighbors Single K-NN Adaptive-NN [30]

Boosting Ensemble AdaBoost [31] OzaBoost [32]
Bagging Ensemble Random Forest [33] ARF [34]

2.6. Cloud Computing

Due to its many features, such as mobility, scalability, and on-demand resources,
cloud computing has become one of the important topics in information technology [35].
According to [36], cloud computing has a significant role in applications of the Inter-
net of Things for healthcare systems. It can provide the required resources such as
servers, networks, operating systems, and software applications. From the service cover-
age point of view, cloud computing can be categorized into three types: public, private,
and hybrid. According to the kind of service, cloud computing can be divided into three
categories [37]:

• Infrastructure as a Service (IaaS), which focuses on proving the required computing
resources such as the processor, storage, and the network;

• Platform as a Service (PaaS), which provides the deployment in the cloud infrastruc-
ture using provided tools, software libraries, and programming languages;

• Software as a Service (SaaS), which runs the applications of the clients within the
cloud infrastructure.

2.7. Related Works

In [38], Chiang utilized the bivariate pattern classification method for developing an
online retraining technique that can gradually scale the training set. Their proposed model
reduced false alarms using a post-processing scheme. Three datasets were used to evaluate
the model, including the ECoG Freiburg database, the CHB-MIT EEG database, and the
national Taiwan university hospital database. The results showed an improvement in
sensitivity by 29.0 in the ECoG database and 17.4 in the CHB-MIT EEG database compared
with the offline training method.

Khan [39] developed an algorithm for recognizing epileptic seizures automatically.
They utilized discrete wavelet transform (DWT) for feature extraction and decompos-
ing EEG signals. They compared the performance of normalized coefficient of variation
(NCOV), which was computed on the coefficients extracted from signals range of 0–32 Hz,
with a typical coefficient of variation (COV), and the results show the advantage of NCOV
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according to the evaluation on five subjects from CHB-MIT EEG dataset using Linear
discriminant analysis (LDA).

In [40], Ahammad utilized a linear classifier with EEG-extracted features using
wavelets and some other statistical features (mean, minimum, maximum, entropy, and
standard deviation). EEG datasets from Bonn University and CHB-MIT are used in their
implementation. The accuracy of seizure onset detection was 84.2 on the CHB-MIT dataset.
In [41], Zhang reduced the hardware complexity required for predicting epileptic seizures
from EEG signals. Overall, 44 extracted features were ranked and selected, then processed
using a second-order Kalman filter. A Support Vector Machine (SVM) classifier was used
in their model, and the implementation included two datasets: the Freiburg dataset and
the CHB-MIT dataset. The results showed a sensitivity of 100 for the Freiburg dataset and
of 98.68 for the CHB-MIT dataset.

A prediction method for patient-specific seizures was presented by [42], which applied
Convolutional Neural Networks (CNNs) to the EEG dataset. The features were extracted
by using Short-Time Fourier Transform (STFT); then, a standardization process was used to
prevent any possible influence between high and low frequencies. CNN was used in their
model in both features selection and classification steps. The best result of their proposed
model was an 82.3 sensitivity.

Zhou [43] compared the performances of frequency and time domain for the detection
of epilepsy in two datasets: the Freiburg dataset and the CHB-MIT EEG dataset. The
comparison included two binary classification tasks and one three-class task. The best
result of the frequency domain experiments was an accuracy of 96.7% with the Freiburg
dataset and of 97.5% with the CHB-MIT EEG dataset. It was 91.1% accurate in the Freiburg
dataset and 62.3% accurate in the CHB-MIT EEG dataset with time-domain signals ex-
periments. A cloud-based healthcare system was proposed by [44]; it utilized Parallel
Particle Swarm Optimization (PPSO) to improve the selection of Virtual Machines (VMs).
The implementation of their model included using linear regression and a neural net-
work model for chronic kidney disease (CKD) diagnosis and prediction. Their results
showed an improvement in the time of data retrieval in addition to a reduction in the total
execution time.

Common Spatial Patterns (CSP) and Convolutional Neural Networks (CNN) are uti-
lized by [45] for seizure prediction. Wavelet packet decomposition and CSP are used to
extract the number of selected features from generated artificial EEG signals. Their implan-
tation was evaluated using EEG data from 23 patients in CHB-MIT dataset. It achieved a
sensitivity of 92.2% with the cross-validation method. Seo [46] developed a classification
model for recognizing the emotions of Alzheimer’s disease (AD) patients. EEG data from
30 Korean patients were used to compare the performance of three machine learning tech-
niques: multilayer perceptron, support vector machine, and recurrent neural network. The
best result was gained by using the multilayer perceptron, in which its average accuracy
was 70.97%.

Ayodele [47] combined data from two datasets using the domain generalization
method. Transfer component analysis was utilized for extracted data from CHB-MIT
and TUSZ EEG datasets based on reproducing the kernel Hilbert space method. The
transformation of 3D electrode coordinates into a 2D space is applied, then Azimuthal
Equidistant Projection is used, followed by the Clough–Tocher technique. A recurrent
CNN was trained using the generated vectors with 128 units, and the testing result was a
sensitivity of 74.5%.

Ref. [48] proposed a fall detection model for the elderly by utilizing the accelerom-
eter and gyroscope in personal smart devices. They used machine learning in the local
edge device and in the cloud to classify fall status from the collected sensors data. Their
model reduced the amount of transmitted data and thereby the network traffic. A se-
lective model for image classification using Deep Neural Network DNN is proposed
by [49]. They presented a federate aggregation approach by evaluating the local DNN
models and sent the best to the central cloud server. The implantation of their method
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showed an improvement in terms of efficiency and accuracy compared with the federated
averaging method.

The applications of graph theory in neuroeconomics using EEG data were reviewed
systematically by [50]. They proposed a method for building an EEG data-based brain
network by utilizing sensor and source methods. Their results showed that the majority of
57 research articles aimed at cognitive tasks. In [51], a review of 38 articles that utilized the
two-photon imaging (2PI) technique for epilepsy research was introduced. They concluded
that 2PI is a suitable imaging technique for the research of epilepsy, and it can extend the
incoming research on human brains. In [52], a hybrid classification model was proposed
for predicting epileptic seizures. Their model used DWT to obtain time-frequency domain
data from the original EEG signals. The training process in their model is performed using
both Long Short-Term Memory and a Dense Convolutional Network, and the evaluation
used the CHB-MIT dataset.

3. Methodology

Generally, the adaptive classifier has two states: classifying a new arrival data stream
according to the current model and adapting the model to the change in data distribution.
The first state needs low computational resources, while the second state may require the
model’s reconstruction and therefore more resources. Considering that there is no control
over the time and order of the arrival of the stream data and the change in its distribution,
the classification process requires the provision of high computational resources all the time.
The utilization of the cloud as a computational platform represents an efficient solution for
adapting the classifier as follows:

1. Scalability of cloud resources can provide a fast training process even when an un-
expectedly large amount of data arrives from patients. The resource scheduling in
the cloud environment provides a reduction in the execution time by choosing the
optimal virtual machines.

2. In the cloud, an on-demand service with auto-scale resources can reduce the cost
of the classification task by utilizing the high computational resources only in the
classifier adapting process.

The goal of the proposed model is to precisely classify the EEG signal for detecting
epileptic seizures. The proposed model, entitled Adaptive Random Forest in the cloud
(ARFC), can be used to protect the patient from sudden epileptic seizures, which can cause
injury or more critical situations. It also provides more time for the medical staff to take
the appropriate medical procedure. The model contains two major stages: (1) the stream
data preprocessing stage, which is performed on the patient’s side, and (2) the building of
an adaptive classifier stage in the cloud environment. Figure 1 illustrates all steps of the
proposed model. The paradigm can utilize the advantages of both Edge computing and
adaptive ML. It includes two classifiers: (1) a global classifier in the cloud master node,
which receives the data stream from all edge nodes for adaptive training processes, and (2) a
local classifier in each edge node that contains the latest version from the global classifier.
The local classifier is used to classify the local node’s stream data rows then send them to
the master node. The global classifier applies machine learning imputation for retrieving
the missing label values. It adapts itself with the change in the data distribution from all
nodes, and finally, updating the local classifier with the newest version will be performed.
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Figure 1. The diagram of ARFC for classifying EEG data stream in the Cloud.

3.1. Stream Data Preprocessing

The signals from the patient’s brain are read using EEG sensors, which are placed in
particular places in the cortex, as explained in Section 2.1. These sensors produce a large
amount of data because there are multiple channels, so the preprocessing stage aims to
prepare the EEG data in an appropriate form for building the classification model. In the
first step, the important features are extracted from the EEG signal using Fast Fourier Trans-
form (FFT). FFT is an implementation of Discrete Fourier Transform, which is explained in
Section 2.1. The importance of this step is based on the fact that building a classification
model depends on choosing the best feature for the data splitting process during building
decision trees. For this reason, the quality of extracted features and their correlation to the
target of the classification task has significant importance in preprocessing operations.

While the previous step is trying to reduce the complexity of the data steam hori-
zontally by extracting the most valuable features, the aggregation aims to make a vertical
reduction in the data stream by minimizing the number of rows. This step includes the
aggregation of a set of patient rows that are generated during the same time moment and
with the same target class value. The preprocessing ends with sending the preprocessed
EEG data stream to the cloud where the adaptive classifier is built. Algorithm 1 summarizes
the steps of preprocessing stage.

Algorithm 1 EEG Stream data preprocessing—Edge Node.

1: procedure EEG PREPROCESSING
2: S← Raw EEG signals received at time t
3: F← Set of extracted features from S using FFT . based on Equation (2)
4: for each subset A in F, where |A| = sample rate of S do
5: if IsIdentical(Class(A)) = True then R = R + Aggregated(A)
6: end if
7: end for
8: Upload Preprocessed stream R to the cloud side
9: end procedure

The classification in this part of the proposed model can be considered static, whose
primary goal is a fast response due to the rapid generation and large quantity of EEG
signals. If the signal is classified as an epileptic seizure, the patient, the contact person, and
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the medical authority responsible for his care are notified. The patient’s actual status is
acquired after the notification, and then it combines with the feature data of that instance
before sending them to the master node across the cloud. The patient or the medical staff
may dismiss the notification, thinking it is a false warning or due to the lack of information
to confirm this at present. The feedback for the actual value of the patient’s status will
wait for a specific period. If there is no response after the time expires, the class label is
considered a missing value, and only the features values are sent to the master node.

3.2. Building of Adaptive Classification Model

The master node is the centerpiece of the proposed model, receiving instances sent
from all the edge nodes for adapting the classifier with these instances. First, the received
data are tested for missing values, as these reduce the accuracy of the classification process.
The fact is that the data received for different patients make it impractical to use arithmetic
methods to impute the value, such as the average. In addition, the EEG signals often
have unbalanced distribution in the target values, in which the number of normal signal
values greatly exceeds the number of the seizure values, and this makes choosing the most
frequent value to missing value imputation also impractical. Therefore, the process of
imputation in the proposed model depends on the employment of machine learning to build
a quick and simple classifier to infer the missing value through training on the rest of the
known values.

The imputation is performed by using an extreme fast decision tree classifier, which
was proposed by [53]. It is an efficient modified version of VFDT in which the data will be
split when there is a good splitting; then, if a better split is detected, the old one is replaced.
The result will be tested for concept drift; if there is a drift in the distribution of the data,
the new training operation starts. The ensemble classifier is built using an Adaptive
Random forest.

At this stage, the process begins with reading a specified number of data rows sent
from all patients’ devices, and this number represents the default size of the ADWIN
window. The default window size must be carefully chosen because if the number is too
small, the changes in the model will be frequent. In addition, if the window size is too large,
the response of the model to the change in data distribution will be limited. The next step is
using the online Bagging [32] of K-based classifiers, and each base classifier is constructed
using VFDT, as proposed in [25]. In the beginning, this stage sets the size of the ARF model
and then the number of subset ensembles generated by re-sampling the data samples from
the previous stage. The number of subsets is equal to the number of base classifiers. Each
subset is used to train a single VFDT classifier. Finally, each data element is classified by
voting among all base classifiers.

3.2.1. Initializing the Size of Ensemble Model

Although Online Bagging is used for ensemble model construction, the size of the
model, that is, the number of base classifiers is a user-defined parameter whose value is
required before the model generation operation starts. The importance of this parameter
comes from the fact that it represents the stopping condition of each learning step, which
is related to the complexity of the required computing resources. It is recommended that
the value of this parameter in the model tends to be in the low range value (about ten base
classifiers). With the continuous arrival of stream elements, mining stream classifiers are
expected to have a fast response in the learning and classification process.

In online bagging, any new data sample is selected according to the Poisson(1) distri-
bution. The classification decision of the ensemble bagging model is based on voting for all
K base classifiers with the same weight. It assigns an initial weight w = 1 to each new data
example and then passes it to the first weak learner. If this data example is misclassified,
its weight will increase before passing it to the next weak learner. The base learner in
the proposed model is a VFDT classifier, and the ensemble size used is 10 learners. The
ARF classifier is presented in [54]; it uses the resampling method of Online Bagging with a
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different adaptive method. The parameters of ARF can be categorized into two groups, the
first one related to the bagging model and the second related to the base learner. The first
group includes:

• The ensemble size, which is the total number of base learners in the model;
• Maximum number of features that can be tested in each split;
• Warning threshold, which detects when the background tree will be built as a response

for distribution change;
• Drift threshold, which detects when the current tree will be replaced by the

background tree.

The second group includes the parameters for building VFDT, which are:

• The tree size that can be controlled by its depth or/and the maximum number of
terminal nodes;

• Minimum number of data instances in a terminal node to make the splitting;
• The type of criterion that should be used for splitting.

All the seven parameters in both groups are user-defined, and they should be chosen
carefully. The reason for that is because their values have a direct effect on the model
performance in terms of efficiency and accuracy.

3.2.2. VFDT Classifier Building

It includes two types of nodes: decision nodes and terminal nodes; each terminal
node in the tree stores enough statistical information about the characteristic value. The
heuristic function uses this information to perform split testing. After reaching the new
data instance, it starts to transfer from the root node (root) until it reaches a specific leaf
node. At this point, if the class value of the new instance is not available (i.e., unknown
value) or has not been seen before (i.e., a new class in multi-class classification tasks), the
instance is classified according to the majority of the current terminal nodes. Otherwise,
the statistical information is evaluated, and the evaluation of a new decision node can be
created according to the following conditions.

The evaluation includes computing the gain for all features in all possible split points.
For each split point, the impurity of class distribution of the current node and the possible
child nodes will be computed using Entropy, according to the following equation, for
node a:

Entropy(a) = −

c−1∑
i=0

p(i|a)log2p(i|a), (4)

where c refers to the number of classes. The difference between the entropy of the cur-
rent node and the average value of the entropy of its possible child nodes after splitting
represents the gain of the splitting operation. A split that produces a more uniform class
distribution, that is, a higher gain, is desirable. If the difference between the highest two
features is greater than the Hoeffding boundary value, which is computed according to
Equation (3), the current terminal node will be replaced with a decision node based on the
highest feature. At the same time, for each split branch of this new node, a new empty
terminal node will be added.

The final decision of classifying the data instance will be made using majority voting
among all the decision trees in the forest. If the instance is classified as a seizure, an
immediate alert will be sent to the patient’s device and also to the responsible medical staff.
Algorithm 2 summarizes the steps of the building classifier stage.
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Algorithm 2 Adaptive Classification Model-Master Node.

1: procedure ADAPTIVE CLASSIFIER BUILDING
2: R← preprocessed EEG stream samples
3: Trees← Ensemble bagging model of VFDT trees
4: Wt: warning threshold
5: Dt: drift threshold
6: while R has instance d do
7: X← set of features values in d
8: y← class label value in d
9: for each tree t in Trees do

10: Using X, Trace t until leaf node ln is reached
11: if Known(y) = False then
12: y←major class(ln)
13: else
14: bf1,bf2← two highest gain features . based on Equation (4)
15: HB← Hoeffiding Bound . based on Equation (3)
16: if Gain(bf1)-Gain(bf2) > HB then
17: Replace tnwith a decision node based on split test of bf1
18: Add new terminal nodes for each possible split value
19: end if
20: end if
21: if Warning(t,X,y) >Wt then
22: Make new background tree bt
23: end if
24: if Drift(t,X,y) > Dt then
25: Replace twith bt
26: end if
27: end for
28: end while
29: Return Treesmodel, Classified sample instances
30: end procedure

4. Implementation and Experimental Results

The implementation included using CHB-MIT Scalp EEG database [55,56], which
contains EEG recordings with intractable seizures gathered at Children’s Hospital Boston.
After the cessation of anti-seizure medication, subjects were observed for up to several
days to define their seizures and determine their suitability for surgical intervention. These
recordings were made using the International 10–20 method of EEG electrode physical
locations and names, as shown in Figure 2. In this method, the electrode’s name points to
its placement on the brain; C refers to the center of the head, F: to the front, T is temporary,
P is a rear part, and O means occipital. In addition, the name also contains a number
that refers to the side of the cerebral; for the right side, even numbers are used, and odd
numbers are used on the left [57,58].

EEG signals of the CHB-MIT dataset were gathered from 24 cases (23 human subjects).
Each case contains 9–42 continuous data files from a single subject. The sampling rate for
the signals was 256 samples per second with 16-bit resolution. In this work, 20 files from
10 patients were chosen randomly to generate a stream containing 110,644 s and included
normal and seizures signals. The total number of extracted rows was 28,324,864 rows with
23 columns and the class label.
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Figure 2. The placement of EEG electrode based on the 10–20 International system.

4.1. The Platform of the Data Stream Classification

In this work, four main tools were used: scikit-multiflow, Sklearn, Weka, and Rapid-
Miner. Scikit-multiflow is an open source package that is used in Python programming
language for data stream mining tasks, including classification and clustering. It was devel-
oped with ECOSYSTEM project by the University of Waikato, which includes a Massive
Online Analysis (MOA) platform for stream mining and the Waikato Environment for
Knowledge Analysis (Weka) for batch mining. Scikit-multiflow provides many popular
mining techniques, flow generators, and concept drift detection techniques. In our imple-
mentation, it has been used to perform the data streaming and classification techniques.

Sklearn is a free Python library for machine learning tasks. It contains many classifica-
tion techniques, such as random forest and boosting. In this work, Sklearn was used for
feature extraction from EEG data and also for data row aggregation. RapidMiner is another
software that is used in this implementation for calculating the correlation among the
features of the CHB-MIT dataset. It is developed for data science, including deep learning,
machine learning, and text mining. Amazon AWS cloud service has been utilized in this
implementation as an on-demand computational resource. The EC2 virtual machine VM
was used as a master node which has 8 CPU cores, 32 GB memory, and a 300 GB SSD hard
drive. Ubuntu Linux operating system, Python, scikit-multiflow, and Sklearn have been
installed in the VM to perform the stream classification. On the other hand, a Raspberry
Pi3 Model A+ unit is used as an edge node with a 1.4 GHz quad-core processor, 512 MB
memory, and Raspberry Pi operating system with Python and the same packages in the
master node. Pickle python object has been used for transmitting the classifier object from
the master node to the edge node byte by byte across the network.

4.2. Dataset Analysis

The CHB-MIT EEG dataset has many interesting points that represent challenges to
the typical data mining techniques as follows:

1. The frequency of classes values is an imbalance, and the dataset contains only two
values for the target class, zero for the normal EEG signal and one for the EEG
signal. The total number for the normal class instances in the extracted rows was
109,141, and that represents 99.64% of the whole extracted data. This majority leads
most classification techniques to incorrect high accuracy; for example, if the classifier
predicts all extracted rows as a normal EEG signal, the accuracy will be 99.64%.

2. Very weak correlation between the features on the one hand and the target class on
the other hand. In Table 2 and Figure 3, we can notice that all correlation values
(in columns correlation B) are very close to zero, which makes the classification task
more difficult.



Appl. Sci. 2022, 12, 3408 12 of 21

3. High correlation between most of the features, as can be seen in Table 2 and
Figure 3, the average correlation between each feature and other features is shown in
Table 2 in columns (correlation A), and most values are more than 0.8. The features are
not completely matched (i.e., the correlation is not 1) to be considered as a frequent
feature and will be removed.

Figure 3. The Correlation matrix among all features of CHB-MIT dataset.

Table 2. The Correlation between features and target class of CHB-MIT dataset.

Feature’s
Name

Correlation
A

Correlation
B

Feature’s
Name

Correlation
A

Correlation
B

ch1 0.837 −0.016 ch13 0.833 −0.016
ch2 0.839 −0.013 ch14 0.862 −0.012
ch3 0.833 −0.011 ch15 0.838 −0.012
ch4 0.852 −0.007 ch16 0.802 −0.004
ch5 0.846 −0.018 ch17 0.830 −0.018
ch6 0.857 −0.016 ch18 0.676 −0.015
ch7 0.774 −0.019 ch19 0.811 −0.011
ch8 0.850 −0.009 ch20 0.799 −0.008
ch9 0.846 −0.019 ch21 0.734 −0.014

ch10 0.811 −0.021 ch22 0.778 −0.012
ch11 0.837 −0.013 ch23 0.838 −0.012
ch12 0.839 −0.006

4.3. Stream Mining Configuration

The configuration of the EEG stream included the aggregation of each 256 rows to
one single row because all rows related to a single second lead to either the normal or
seizure class. This will reduce the required computational resources. Then, the 10 files
were merged, in which the model will receive 10 rows from 10 patients every second. The
parameters in scikit-multiflow were set as follows: sample size-frequency, which refers to
the default window size, was set to 100; ensemble size was 11 base learners; info gain was
chosen as the split criterion for building the random tree classifier; and split confidence
was set to 0.01.

4.4. The Experimental Results

The model performance evaluation depended on the Test then Train method because
the data are a stream, not a batch file. In this method, each instance that arrives in the
current sliding window will be considered a test instance and used to evaluate the model.
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Then, the instance will be used to train the model. The mean accuracy will be calculated
for every 100 instances depending on testing performance. So, in this method, all data
elements will be used for testing and training to avoid bias such as the cross-validation
in batch data mining. Applying the proposed model using the CHB-MIT dataset led to
some significant results that confirm its advantage. Considering the normal signal is a
negative class and the seizure is a positive class, Table 3 shows that the proposed model had
the best True Positive Rate TPR compared to Random Forest, J48 Decision Tree, Reduced
Error Pruning Tree (REPTree), AdaBoost, and Bayes Network classifier. In addition to the
high value of True Negative Rate TNR, ARFC also has a low False Positive Rate, which is
most important.

Table 3. Comparison of the accuracy between ARFC and five batch classifiers.

Technique True Negative Rate True Positive Rate False Positive Rate

Random Forest 0.989 0.007 0.0113
J48 0.999 0.092 0.000

REPTree 0.999 0.002 0.0002
AdaBoost 0.996 0.129 0.013

Bayes Network 0.817 0.709 0.19
ARFC 0.9983 0.7852 0.0017

The implementation detected 37 changes in the extracted EEG data stream. The size of
the ADWIN window has been changed accordingly; as we can see in Figure 4, the average
window size was 1251, while the maximum size was 10,240. The large size of ADWIN
points to more stability in the distribution of data stream and vice versa. Table 4 showed that
the proposed model has the best performance in comparison to five stream classifiers: Rule-
based, VFDT, Random VFDT, OzaBagging, and Adaptive-NN. The comparison is included
in Table 4 using five metrics: accuracy, Kappa, precision, Recall, and F1 score.

Table 4. Comparison of the performance between ARFC and three stream classifiers using five metrics.

Technique Accuracy Kappa Precision Recall F1 Score

VFDT 0.9894 0.6458 0.5896 0.727 0.6512
Adaptive-NN 0.9908 0.6361 0.6911 0.5972 0.6407
OzaBagging 0.9917 0.634 0.6951 0.5905 0.6386

ARFC 0.9959 0.8707 0.8425 0.9048 0.8726

Tracking of the proposed model accuracy during the classification of the EEG data
stream is illustrated in Figure 5. The stability of its accuracy can be noticed; the accuracy of
seizures also tends to increase. Figure 5 illustrates that the obvious change in ADWIN’s
size had an effect on the True Positive Rate (i.e., seizures class), as we can see in the periods
(20,991–37,151) and (58,175–70,079). In both Figures 4 and 5, the index of the distribution’s
change refers to the position of the instance where the change in distribution was declared
by ADWIN.
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Figure 4. ADWIN window size of ARFC when a change in data distribution occurs.
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Figure 5. Tracking the performance of ARFC and the change in ADWIN window size.

Another observation that has been noticed from the performance of the proposed
model is its robustness of it against the missing values in the class label, which is one of the
most difficult challenges for data stream classification tasks. Table 5 shows a comparison
with the other five stream classifiers using two versions of the CHB-MIT EEG dataset. In
the first one, we removed 1% from the values of the class label, while in the second one, we
removed 3% from these values. The results in Table 5 confirm the advantage of ARFC in
both cases before applying the model-based imputation.

Figures 6 and 7 illustrates the ARFC performance with utilizing EFTD for imputation.
They show the ability of EFDT to recover the original values for missing class labels and
increase the accuracy of ARFC from 0.958 to 0.986 with a 3% missing ratio.
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Figure 6. Comparison of Model performance with Model-besed imputation: (a) ARFC accuracy with
3% missing values; (b) Accuracy of missing value recovery with 1% and 3% ratios.
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Figure 7. Comparison of ARFC performance with using EFDT as Model-based imputation technique
against the other three techniques.

Table 5. Comparison of ARFC accuracy with four stream classifiers in presence of missing class
values without Model-besed imputation.

Classifier Without Missing 1% Missing 3% Missing

VFDT 0.9894 0.9893 0.957
Random VFDT 0.9885 0.988 0.9571

OzaBagg 0.9917 0.9922 0.9571
Rule-based 0.9872 0.9871 0.9572

ARFC 0.9959 0.9958 0.9588

An evaluation of the computational costs of the proposed model has been performed
in terms of training time, testing time, and memory space. The evaluation using the CHB-
MIT dataset included a comparison with the performance of Oza bagging, which is a
popular bagging classifier, and it also has accuracy results close to the proposed model.
The comparison in Figure 8 showed that ARFC has an average (0.8 s) training time and
(0.2 s) testing time, while the average of Oza bagging was (4 s) training time and (3.6 s)
testing time. In terms of memory space cost, ARFC consumed 1269.084 kB on average
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during the training processes compared with 10,966.367 kB memory consumed by Oza
bagging, as shown in Figure 9. In Table 6, a significant reduction can be noticed in the
response time of ARFC in the edge node without training reach to 90%; OzaBagging also
has a reasonable reduction, and that confirms the benefit of applying the proposed method
with other ensemble classifiers.

Table 6. Comparison of the response time’s reduction in seconds between ARFC and OzaBagging in
edge node.

Classifier Training Time Inference Time (Without Training) Reduction Rate

OzaBagging 0.1304 0.0282 78%
ARFC 0.1167 0.0121 90%

The CHB-MIT dataset has been used in many research articles, and the used techniques
included deep learning, support vector machines, and linear classifiers. Table 7 shows a
comparison between ARFC and eight randomly selected research articles. The comparisons
confirm that ARFC overcomes the results of 15 articles.
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Figure 9. Comparison of Model size in Memory of ARFC and OzaBagging in Master node.
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Table 7. The performance of ARFC compared to 15 related works.

Year Authors Technique Accuracy

2011 Chiang et al. [38] On-line Retraining 52.2
2012 Khan et al. [39] LDA 91.8
2014 Ahammad et al. [40] Linear classifier 84.2
2016 Zhang et al. [41] SVM 98.68
2017 Truong et al. [42] CNN 82.2
2018 Zhou et al. [43] CNN 97.5
2019 Zhang et al. [45] CNN 92.2
2020 Ayodele et al. [47] Recurrent CNN 74.5
2020 Jiang et al. [59] SVM 99.17
2020 Gómez et al. [60] CNN 99.3
2020 Kaziha et al. [61] CNN 96.74
2020 Chen et al. [62] SVM 94
2021 Wang et al. [63] CNN 99.54
2021 Liu et al. [64] CNN with LSTM 97.51
2021 Zhao et al. [65] LGCN 99.3

This work - ARFC 99.59

5. Discussion

The results above showed an effective performance of the adaptive classification with
EEG data stream regarding accuracy and response time in the cloud environment. TPR
(or sensitivity) is a popular metric for evaluating the performance of seizure detectors, as
in this work. However, depending only on the high value of the True Negative Rate (or
specificity) may lead to an unreliable evaluation. Epilepsy patients often have normal EEGs;
consequently, if the classifier mostly receives normal EEG signals without seizures, then
TNR tends to be very high. This metric does not necessarily reflect the actual performance
in actual clinical use. The False Positive Rate is a more critical metric because false alarms
about seizures waste the neurologists’ time. However, the results in Table 3 show that
ARFC has a low FPR equal to 0.0017. This means, on average, from 1000 detections, only
1.7 can be detected falsely as a seizure.

Most of the previous work dealt with data as a batch file (i.e., not a stream) and focused
on improving its classification accuracy regardless of its efficiency. Some of these works
suggested a distributed classification environment, but the training process was carried out
at both the edge and the master nodes. In our work, the results confirm the possibility of
centralizing the training process of the adaptive model in a node with high computational
resources and using the resulting model each time to perform the inference in the edge
nodes close to the patient. This facility produces a lightweight and constantly adaptive
classifier that can be implemented in low-resources devices such as smartphones, tablets,
and even smartwatches.

The fast response of the proposed classifier can provide efficient seizure onset detection.
This kind of detection focuses on starting the warning procedures, diagnosis, and the
required therapy. The instant notification for an epilepsy patient would save his life
by preventing severe injuries caused by falling or car accidents through driving. The
delayed alarm may cause worsening of seizure symptoms, thereby restricting the patient’s
ability to respond. The immediate seizure onset detection can also help the medical staff
instantly give the patient the necessary anticonvulsant. Another essential characteristic
of the proposed model is providing a resistant classification to the problem of connection
loss, which is common on the user’s side. The inference process continues in the edge node
using the newest classifier regardless of a connection with the master node; the new data
are sent after the connection returns.

Regarding reliability, handling the delayed labeling as missing values can make the
proposed detector more applicable for patients and medical staff because we do not expect
high feedback, especially during seizure time. Despite that, the experiments were limited to
a limited percentage of the values that did not exceed 3%. The missing rate could be more
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extensive in practical applications due to the lack of user response. It should be noted that
the challenges of EEG signal classification are not limited to missing data. Non-invasive
EEG depends on the signals from the outer brain surface; thereby, its effectiveness may be
reduced with epilepsy that begins deep in the brain. The detection of this kind of seizure
can be affected by the signals of daily physical activities such as eye flutter.

Accessible and affordable wearable sensor devices such as EMOTIV can facilitate the
preprocessing of EEG signals in the edge node. Despite the reduction in the received data
during preprocessing steps, the expected amount of uploading data can still be significant
because of the rapid signals received from EEG sensors. Regarding the implementation,
the CHB-MIT dataset used to evaluate the model’s performance has been collected from
a young sample of 23 cases whose ages do not exceed 22 years for males and 19 years
for females. Since epilepsy is common in all age groups, exploring the efficiency of the
proposed model in middle-aged and older people is necessary. Generally, large medical
datasets are difficult to obtain and utilize due to patients’ privacy rights. Finally, the benefits
of our model go beyond the home use of the patient, as health institutions can use it to
monitor inpatients within their private cloud.

6. Conclusions

EEG signal data are an effective source for exploring the activities of the human
brain. In this work, stream data mining techniques were utilized to build an adaptive
classification model in the cloud environment that can classify EEG signals for detecting
epileptic seizures. The proposed model included extracting the important features using
Fast Fourier Transform, data row aggregation, and utilizing ARF as an adaptive classifier
and EFDT for recovering missing values of the class label. The results of applying the
proposed model to a real big dataset showed its preference over many typical batch
classifiers, online classifiers, and many related research articles. It has a 0.998 True Negative
Rate, a 0.785 True Positive Rate, and a 0.001 False Positive Rate. Applying EFDT to recover
the original values of missing class labels improved the accuracy of ARFC from 0.958
to 0.986, with a 3% missing ratio. In terms of efficiency, a significant reduction was obtained
in the response time of ARFC by using it for inference in the edge node, reaching 90%. The
medical staff can utilize this fast response for applying the necessary therapy procedures as
immediately after seizure onset to prevent complications in patients with epilepsy. The low
computational requirements in the edge node facilitate the monitoring of patients outside
health centers and prevent serious accidents while performing their daily activities. The
proposed classifier can be developed in the future to handle missing EEG data itself and
utilize Active Learning techniques to improve the classification process.
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Abbreviations
The following abbreviations are used in this manuscript:

EEG Electroencephalography
CHB-MIT This database, collected at the Children’s Hospital Boston, consists of EEG recordings
TDF Time-domain features
FDF Frequency domain feature
PSD Power spectral density
T-FDF Time-frequency domain feature
FT Fourier transform
DFT Discrete Fourier Transform
ADWIN ADaptive WINdowing
VFDT Very Fast Decision Tree
IaaS Infrastructure as a Service
PaaS Platform as a Service
SaaS Software as a Service
ARF Adaptive random forest
ECoG Electrocorticography
DWT Discrete wavelet transform
COV Coefficient of variation
NCOV Normalized coefficient of variation
LDA Linear discriminant analysis
SVM Support vector machine
CNN Convolutional Neural Network
STFT Short-Time Fourier Transform
PPSO Parallel Particle Swarm Optimization
VM Virtual Machine
CKD Chronic Kidney Disease
CSP Common Spatial Pattern
AD Alzheimer’s disease
TUSZ Temple University EEG Seizure Corpus
ARFC Adaptive Random Forest in the Cloud
REPTree Reduced Error Pruning Tree
EFDT Extremely Fast Decision Tree
LSTM Long Short-Term Memory
LGCN Linear graph convolution network
TNR True Negative Rate
TPR True Positive Rate
FPR False Positive Rate
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