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Abstract: Advances in artificial intelligence in healthcare are frequently promoted as ‘solutions’ to
improve the accuracy, safety, and quality of clinical decisions, treatments, and care. Despite some
diagnostic success, however, Al systems rely on forms of reductive reasoning and computational
determinism that embed problematic assumptions about clinical decision-making and clinical practice.
Clinician autonomy, experience, and judgement are reduced to inputs and outputs framed as binary
or multi-class classification problems benchmarked against a clinician’s capacity to identify or predict
disease states. This paper examines this reductive reasoning in Al systems for colorectal cancer (CRC)
to highlight their limitations and risks: (1) in Al systems themselves due to inherent biases in (a)
retrospective training datasets and (b) embedded assumptions in underlying Al architectures and
algorithms; (2) in the problematic and limited evaluations being conducted on Al systems prior to
system integration in clinical practice; and (3) in marginalising socio-technical factors in the context-
dependent interactions between clinicians, their patients, and the broader health system. The paper
argues that to optimise benefits from Al systems and to avoid negative unintended consequences for
clinical decision-making and patient care, there is a need for more nuanced and balanced approaches
to Al system deployment and evaluation in CRC.

Keywords: artificial intelligence; machine learning; patient outcomes; socio-technical design;
algorithmic bias; clinical interaction

1. Introduction

In late 2016, Geoffrey Hinton, arguably one of the most influential researchers in the
field of ML and pioneer of neural network architectures and deep learning, evocatively
exclaimed that the technology was so profound that “if you work as a radiologist, you are
like the cayote already over the edge of the cliff that hasn’t yet looked down ... people
should stop training radiologists . .. it’s just completely obvious that within five years deep
learning is going to do better than radiologists”; a view that was solidified in a published
opinion piece that spoke about how deep learning would fundamentally transform health
care as we know it [1,2]. It has been five years since those remarks and clearly Al has
not replaced radiologists. To the contrary, radiologists are in higher demand than ever-
before [3]. If we trace the long history of healthcare information technologies (HIT), such as
the electronic health record (EHR), computerised physician order entry system (CPOE),
computer aided decision support system (CAD), e-prescription software, and now Al-
enhanced HIT, the narrative has always been the same, that computational systems are
introduced with promises of “computational superiority” to the benefit of patient outcomes,
by enhancing the safety, quality, personalisation, and efficiency of healthcare services.

However, this hyperbole has been constantly challenged by an extensive body of
research in the last three decades that has repeatedly highlighted how HIT results reported
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in experimental settings are rarely emulated in the real-world of clinical practice. There
is also a considerable and growing body of evidence highlighting negative unintended
and unanticipated consequences (NUCs) arising at the interface between new HIT tools
and socio-organisational systems, leading some to suggest that HIT seems to foster the
creation of errors rather than reduce their likelihood [4,5]. These circumstances are no
less prevalent in the era of Al, where overly optimistic descriptions of Al systems tend
to marginalise possible risks associated with their implementation in real-world practice,
particularly when system development is challenged by the nature of contextual and socio-
organisational factors in the practice of diagnostic and therapeutic clinical decision-making
for the delivery of safe, high quality patient care. This has not prevented technology
vendors and Al advocates continuing to promote the view that healthcare is ready for
disruption by Al-enhanced HIT and reiterating the standard computational narrative that
Al will be the panacea for all problems plaguing the healthcare system. These include but
are not limited to problems of misdiagnosis, health costs, time-scarcity, system efficiency,
and treatment reproducibility.

Colorectal cancer (CRC) is currently the second leading cause of cancer and cancer-
related mortality in the world [6], and therefore there has been significant interest by several
IT vendors to promote clinical decision support systems (CDSS) powered by artificial
intelligence (AI) and machine learning (ML) to address a subset of discrete challenges
in the screening, diagnostic, and therapeutic pathways of clinical practice to improve
patient outcomes. These have included preventing missed diagnoses of polyps in CC [7-9],
improving reading time efficiency in CE [10], minimising interobserver variability and
reproducibility in the histopathological examination of CRC [11,12], or introducing risk-
stratification and prognoses prediction for CRC screening or diagnosis more broadly [13-15].
While current evidence suggests these Al tools may help address some of the problems that
exist in the application of CRC screening and diagnostic technologies, it has also emerged
that these Al enhanced systems themselves have their own limitations that require greater
attention, if we are to avoid replacing one set of problems with another set [16]. In particular,
these systems are founded on problematic representational, temporal, and cultural biases
embedded in end-end data pipelines used to train Al algorithms that become further
constrained by the epistemological and ontological limitations inherent to the nature of
Al computation that tends to discretely frame problems of the real-world independent
of context. Given the tendency for Al system developers to prescribe over-confidence
in quantitative metrics produced within experimental settings, this paper explores the
potential risks that arise in the absence of adequate socio-technical evaluations of Al system
integration across context-dependent clinical interactions that may challenge Al efficacy
across socio-cultural and socio-organisational contexts.

Of course, it is acknowledged that technology does have an important role to play
in healthcare and that some forms of Al systems do support clinical decision-making
and practice. However, this paper highlights how it is very important to recognise that
most contemporary Al systems rely on forms of reductive reasoning and computational
determinism that embed problematic assumptions about clinical decision-making, which
may be problematic depending on the context of clinical practice. It is in the context of
these concerns that this paper examines the opportunities and limitations of Al in CRC
screening, diagnosis, and treatment. Furthermore, this paper explores whether investment
in Al augmentation of CRC diagnostic modalities is misdirected, given that the majority of
HIT diagnostic tools that currently support clinicians in the early detection and diagnosis
of CRC, such as the Immunochemical Faecal Occult Blood Test (iFOBT) screening test, and
diagnostic imaging modalities, such as conventional colonoscopy (CC), CT colonography
(CTC), and capsule endoscopy (CE), have done little to change the fact that CRC remains to
be the second leading cause of cancer-related death in the world, despite being one of the
most preventable diseases [6].
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2. Materials and Methods

This paper provides a socio-technical analysis of contemporary research into the
use and impact of Al in colorectal cancer (CRC). This analysis is developed through a
multi-disciplinary selective review, which identified over 120 papers published post-2018
through medical databases PUBMED, EMBASE, BIOMED, and Cochrane; computer science
databases ACM Digital and IEEE Explore; and grey literature through Google Scholar. This
approach is adopted in a similar capacity to recently published MDPI research [17,18], in
order to offer a balanced critique on the opportunities, limitations, and risks of Al system
development and integration in clinical decision-making along CRC screening, diagnostic,
and treatment pathways.

The rest of this paper is divided into six main sections. (1) The opportunities presented
by Al in health and the problematic assumptions that underpin approaches to Al devel-
opment, implementation, and evaluation in healthcare are discussed. (2) The limitations
and risks of these assumptions are then considered in the context of CRC, through an
examination of the multi-faceted dimensions of underlying algorithms in (a) Al and data
and (b) Al and models. (3) The social, legal, and ethical implications of these assumptions
for Al-mediated clinical decision making are then identified and discussed. (4) Beyond
these direct impacts, the paper also considers the broader impact that marginalising socio-
technical factors in CRC may have on misdirecting clinical focus in ways that do little to
improve patient population outcomes. (5) The paper also briefly looks to the future devel-
opment of Al systems and the challenges facing regulators and practitioners in responding
to the prospect of an era of ‘unexplainable” Al (6) The paper concludes by outlining steps
towards building a more nuanced and balanced approach to the deployment of new Al
tools in CRC to mitigate the risks to clinicians and patients in CRC diagnosis and treatment
pathways. The paper points to the need for greater clarity around policies and procedures
for Al clinical system validation encompassing four themes: (a) transparency and auditing
of datasets, (b) transparency and reproducibility of algorithmic methodologies and imple-
mentations, (c) reproducibility of quantitative metrics through rigorous testing standards
across diverse population distributions and under-represented edge cases that are known
to challenge Al reliability in clinical practice, and (d) a robust socio-technical framework for
Al system evaluation using a systems based approach that is sensitive to (i) the impact of
Al system integration on patient outcomes, (i) the clinical utility of Al system development
for health, (iii) the nature of Al integration in the context to existing human computer
interaction (HCI) and workflow considerations, and (iv) the nature of clinical interaction
with and without AL

To identify papers, the authors searched key terms relevant to the six sections that in-
cluded: artificial intelligence, machine learning, deep learning, medicine, health, colorectal
cancer, bowel cancer, screening, and participation. Duplicate papers were removed, and
subsequent papers were screened according to relevance, application, citation score, and
year of publication. Recent research from the last five years was prioritised for the selective
review (n = 126 papers). However, historical seminal works were still considered where
appropriate. Review papers and opinion pieces were excluded from formal analysis and
discussion. However, they were referenced if it provided more context for the reader. Only
papers with published results were included in the final analysis. In total, 88 peer-reviewed
papers form the main analysis and discussion of this paper.

3. Al in Health: Opportunities and Concerns for Clinical Decision Making

Al in health is a rapidly developing field that has recently demonstrated a remark-
able capacity to learn interrelationships within data in a way that offers utility for clinical
decision making [19-22]. Most of the recent Al optimism for healthcare has been driven
by the phenomenal development and success of deep learning (DL) [21-23]. In this sec-
tion, we briefly review the different supervised, unsupervised, and reinforcement DL
approaches [24,25] that have been used across the screening, diagnostic, therapeutic, and
prognostic pathways of clinical decision making. In navigating the application of these
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methods in medical practice, we introduce some of the problematic assumptions that are
embedded in Al system development. Some of the problems are general in nature and
implicit to the process of Al system development (e.g., the biases embedded in data used
to train Al systems), while others are specific to certain Al algorithmic methodologies that
become more visible in the healthcare space of CRC. The purpose of this section is not to
undertake an extensive review of Al methodologies, but to highlight that there are inherent
methodological considerations that underpin their development that impact on clinical
decision making. This indicates that a more nuanced approach to examining Al in CRC is
necessary if we are to optimise Al benefits and limit its harms in clinical practice.

The medical literature is ripe with examples that demonstrate the highly efficacious
modelling capacity of supervised ML across myriad medical modalities. These have
included predicting: (a) benign/malignant cancerous states from pixel data found in
photographs of skin lesions [26]; (b) classifications of disease states in chest radiographs
(e.g., normal vs. abnormal radiographs, presence of pneumonia, presence of malignant
pulmonary nodules) [27-29]; (c) risk stratification and prognosis from whole slide images
(WSI) of histopathological tissue specimens that are used to inform therapeutic pathways
in areas such as gastroenterology [12,13,30]; (d) arrythmia, atrial fibrillation, or coronary
heart disease from wave data in electrocardiograms [31-33]; (e) the likelihood of sepsis
based on clinical observation notes and test results found in EHRs [34]; (f) the presence or
future onset of neurological diseases, such as brain tumours or Alzheimer’s disease, from
CT, MRI, or positron emission tomography [35-37]; (g) cardiovascular risk from fundus
photography [38]; and (h) colonic polyps in colonoscopy [39], among innumerable other
examples [40,41]. Despite the success of supervised ML across myriad medical contexts,
researchers have started to identify that there are complex nuances that underpin (a) Al
and data, and (b) Al and models, that pose significant challenges to supervised learning
systems when modelling the heterogeneity of the real-world, due to its dependency on
large volumes of labelled data and narrow task definitions framed by the human observer.

One of these issues includes representational harms introduced through data collection
and/or labelling practices [42,43]. For example, in 2019, a landmark study was published in
Science, where Obermeyer and colleagues [44] revealed how systemic racial biases emerged
after auditing a proprietary ML algorithm used routinely on 200 million people in the
United States of America each year that was tasked with assigning risk scores on patients
that would be eligible for subsided “high-risk care management”. While the algorithm was
well intentioned, the elusive nature of systemic racial biases meant that the Al was unable to
recognise that generational inequalities in healthcare access between two sociodemographic
groups resulted in a situation where less money was spent caring for less-healthy Black
patients compared to more-healthy White patients. Therefore, at a given risk score, Black
patients were considerably more ill than White patients. Interestingly, re-labelling the data
with a proxy variable that combined current health status with expenditure was shown to
reduce racial bias by 84% and increase the percentage of Black patients receiving additional
care from 17.7% to 46.5%.

Beyond systemic biases, another issue that arises is that Al generalisability is depen-
dent on diverse and equitable representation in data distributions, which may not always
be achieved by big data. As some genomic studies have shown, marginalised groups
may be underrepresented in the data, and their use in practice may lead to confounders
and incorrect correlations, as was seen in the prediction of hypertrophic cardiomyopathy
in Black versus White patients [45]. Yet, there are public genotype repositories such as
the 23AndMe dataset, which is based on 87% European/White representation and only
2% Asian and Black representation respectively [46], and the UK Biobank has a “healthy
volunteer” selection bias [47]. Both of these tend to form the basis of training published ML
algorithms [48,49]. This could limit the success of the algorithms when used on broader
patient cohorts. While there are approaches to mitigate this issue by balancing the data
through under/over-sampling techniques and data augmentation [50,51], an accuracy
paradox may emerge, since the quality that enabled the Al to perform efficaciously on
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the dominant class initially (prevalence of large volumes of that class) can be conflated by
the prevalence of the newly augmented class. Furthermore, the class that was augmented
may have contentious validity, as the nature of synthetic data generation may mean that
generated samples do not actually represent the disease state in question [52]. For instance,
a chest radiograph that experiences a horizontal flip augmentation can inadvertently result
in the depiction of a different medical condition called situs inversus.

More broadly, other issues that have been reported on in the literature include (a) in-
terobserver variability among labellers, which can limit the veracity of the data used to
train Al models [53], (b) challenges in delineating the suitable level of abstraction when
labelling disease presentations in a way that morphologists agree with [54], and (c) intrinsic
biases introduced by the contentious validity of narrow task definitions pre-imposed by
the human observer in framing a reductive computational relationship that is maximised
between an input X and an output Y independent of broader interrelationships between
clinical history, examination, and interaction [55].

Contemporary unsupervised learning and reinforcement learning approaches have at-
tempted to deal with some of these problems in healthcare by approaching computation in
a way that is more emblematic of human approaches to knowledge discovery and decision
making [56-58]. Unsupervised learning has shown that a data-driven approach indepen-
dent of human interference can successfully disentangle meaning out of complex data
structures, such as learning implicit brain MRI manifolds to enable for better quantitative
analysis and observations about the presence and/or development of disease [59], or deriv-
ing general-purpose patient representations from electronic health records to predict the
onset of future disease states across diverse clinical domains and temporal windows [60].
Similarly, “goal-directed” reinforcement learning has shown much promise in the ICU
setting, where optimising decision making for a longitudinal goal that requires extensive
personalisation (e.g., patient survival) is highly desired. For example, one study explored
how a RL algorithm could use available patient information to define a personalised regime
for sedation and weaning off ventilator support in an ICU, by predicting the optimal time
to extubation in a way that minimised complications arising from either (a) prolonged
dependence on mechanical ventilation on one extreme or (b) premature extubation that
requires reintubation on the other extreme [61]. In another study, it was demonstrated that
continuous state-space models could learn clinically interpretable treatment policies that
could aid ICU physicians in treating septic patients, in a way that improved the likelihood
of patient survival [62].

While such studies present an important stride forward in computational clinical
decision support that more closely resembles human behaviour, the significance of the
results should not be overstated. As Liu et al. [58] highlight in their comprehensive review
of RL algorithms developed for critical care settings, while these approaches do mitigate
against some of the biases introduced by the human observer in supervised learning
approaches, the methods do little to address the fact that data collection itself, may remain
biased since (1) the state space used in RL systems are constructed from data constrained by
the selection of patient demographics, laboratory tests, and vital signs present in the data;
and (2) the task being optimised for is still defined a priori, which means, as in supervised
learning, the efficacy of the system is still heavily influenced by the human observer who
decides what goal should be optimised for. Most importantly, both unsupervised and
reinforcement learning approaches introduce new, more complicated problems around
model evaluation in the absence of a labelled benchmark, which has led to researchers such
as John Kleinberg to famously declare that unsupervised clustering is so problematic that
it’s possible to define an “impossibility theorem” for it [63,64].

Given the importance of data and their role in shaping the efficacy of Al predictions,
this paper advocates for greater collaboration between the ML, health informatics, and
clinical communities to develop a standardised systems-based approach to Al evaluation
prior to clinical integration and posits that datasets and algorithms should be thoroughly
audited prior to integration into clinical practice. For this to work, transparency from



Appl. Sci. 2022,12, 3341

6 of 25

commercial vendor-locked systems and adequate prospective studies must become the
norm. Unfortunately, a recent review of 130 FDA-approved Al medical devices found that
126 systems only ever used retrospective studies to report their results, and none of the
54 high-risk devices were evaluated by prospective studies [65]. Unsurprisingly, when one
of the commercial algorithms that was being used for the detection of a pneumo-thorax
was prospectively evaluated across ethnically diverse population groups, there was a
statistically significant difference in performance on the algorithm’s ability to accurately
predict the pathology in Black versus White patients [65]. Problematically, one meta-
analysis also discovered that in 516 publications highlighting the accuracy of medical
Al systems, only 6% were externally validated [66]. This may suggest that there is over-
optimism on the promise of medical Al and haphazard consequences may arise if sufficient
external evaluations of the impact on patient outcomes in varied socio-organisational
settings prior to clinical integration do not occur [67].

In the next section, we will deepen our examination of the issues of algorithmic bias
in clinical decision making in CRC from a perspective of (a) Al and data, and (b) Al and
models. The section integrates a perspective on how socio-technical interactions at the
interface of clinical practice in CRC may marginalise the opportunities that Al may provide
clinicians, patients, and the healthcare system.

4. Al in CRC: Limitations and Risks of Algorithmic Bias in Clinical Decision Making

Although Al introduces opportunities for clinical decision making, Figure 1 highlights
how there are a range of issues that amalgamate to limit model efficacy in the real-world,
the most significant of which are related to the interrelationship between: (1) Al and data,
through the underlying biases present in data distributions used during model training;
and (2) Al and models, through the reductive computational assumptions that emerge
out of the translation of medical problems into narrow computational task definitions
that are independent of context and that are constrained by limitations in underlying
model assumptions. This section examines these issues in the context of CRC screening
and diagnosis.

[} Dataset Challenges (Human Collection and Labelling)
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U Temporal Biases U
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Cultural Biases u Noise and Artefacts Class Imbalances ’

J1 J1 J1
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Figure 1. This infographic highlights the range of potential challenges associated with Al in clinical
decision making and reinforces the need for a robust framework to Al evaluation prior to clinical
integration, to maximise confidence in the safety and equity of system use in practice.
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4.1. CRC, Al and Data

It is well established that data has the most significant impact on developing efficacious
Al models that are robust, performant, fair, safe, and scalable across contexts [68-70]. Ac-
cess to large-scaled labelled data during model training is so significant that Sun et al. [71]
demonstrated that Al model performance increases logarithmically relative to the amount
of training data available. However, ‘big data’ and ‘balanced data’ are not synonymous.
In this section, we explore (1) representational biases and stereotypes that emerge in data
relating to race, gender, ethnicity, religion, disability, sexual orientation, and socioeco-
nomic status that alter what Al systems learn, and discuss how they may marginalise
patients from backgrounds that tend to be at the highest risk of CRC and have the poor-
est outcomes [72-78]. Furthermore, we discuss how (2) class imbalances associated with
the representation of heterogenous and/or underrepresented disease states in datasets
may lead to problematic outcomes for patients with rare diseases, particularly when clin-
ician automation complacency and bias in the presence of Al influence clinical decision
making [50,79,80].

4.1.1. Representational Biases in Data and CRC Risk Stratification Algorithms

In CRC screening, it is well known that the patients who participate the least in
screening, who have the highest risk of CRC, and who present with the poorest outcomes,
tend to be concentrated in groups that have experienced the most social disadvantage,
such as people from (a) Indigenous populations, (b) low socio-economic status, (c) diverse
cultural backgrounds, or (d) with disability [68-70]. For example, African Americans have
the highest incidence of CRC of all ethnic groups in the United States (US), have a mortality
rate that is approximately 20% higher than White Americans, and typically have a younger
onset of the disease [68]. Yet, such groups tend to either be (a) underrepresented in historical
machine learning datasets, or (b) when they are represented, experience algorithmic bias
due to systemic inequities embedded in the nature of the data. This poses potential risks to
patient care when an algorithmic prediction of patient risk and/or prognosis is clinically
implemented to guide clinical decision making around who will benefit from access to
treatment interventions.

These representational issues combined with a lack of a standards-based approach to
medical Al evaluations poses some interesting challenges in CRC screening, particularly
when there is a significant interest in developing ML methods for the screening of early-stage
CRC, given that the current two-tiered “Gold Standard” FOBT + colonoscopy approach
is challenged by a problem of low patient participation in screening [81]. Wan et al. [82]
suggested leveraging ML with whole-genome sequencing of plasma cell-free DNA and
demonstrated that is possible to predict the early onset of the disease with a mean area
under the curve (AUC) of 0.92 and sensitivity and specificity of 85%. One perspective is
that this whole genome approach allows for an unbiased discovery of signals that are not
disease specific and can be extended to the monitoring of non-disease states through the
detection of biomarker correlations. However, as the authors acknowledge, demographic
and institutional biases may impact on the generalisability of the results and the need for
prospective trials is emphasised. The issue with prospective trials that are not sensitive
to these representational issues, is that they can be designed in a way that unwittingly
supports the hypothesis, even when the authors are well intentioned. For example, Chan
and colleagues [83] proposed an ensemble ML algorithm to predict recurrence of CRC
using historical genomic data from a French population and claimed a sensitivity of 91.18%,
which was validated on data from Australia (91.67%) and the United States of America
(80%). There are concerns that the Al is therefore optimised for patients with Caucasian
ancestry, which could lead to problematic outcomes if these same algorithms are then
inappropriately used on patients of different ancestry that they are not optimised for. This
is of particular concern when we consider that (a) patients who are often at the highest
risk and who demand the most urgent care are often the ones that are least represented in
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the data, and (b) that clinical decision making, according to some research, can be heavily
influenced by the presence of algorithms [15,79,80].

To understand the effects that these algorithms have on clinical decision making, we
point to a fascinating study published in Nature, where Kostopoulou and colleagues [15]
setup an experiment to observe how recommendations for referral to specialised oncology
care would change in 157 general practitioners (GP) from the United Kingdom (UK) when
presented with 20 vignettes of patients with symptoms that might indicate potential CRC
and an unnamed algorithm predicting each of the patient’s risk. The researchers observed
two things: (1) after receiving the algorithm’s estimate, a GP’s inclination to refer for
specialised care changed 26% of the time, with the greatest impact seen when the GP
felt that they underestimated the risk compared to the algorithm; and (2) with continued
use, there was a positive GP disposition towards the algorithm, as GPs became better
calibrated to the probabilistic way that the algorithm would associate symptoms with risk
that they started to inadvertently emulate the same algorithmic approach to deduction
and conclusion.

While this study was celebrated as a success with high clinical utility, as GPs seemed
to improve their cancer referral decisions to the benefit of the patient, particularly when
the Al risk predictor was higher than the clinician; what the study does not thoroughly
investigate is the inverse scenario of what happens when patients who are actually high
risk are provided with low-risk scores, as witnessed in the previous Obermeyer study [44].
Even though the study does seem to indicate that GPs tend to err on the side of caution
and so an incorrect low risk algorithm theoretically should not change a GPs disposition
to refer; the effects of these interactions have not been thoroughly investigated. Human
factors engineering suggests the opposite may occur, as humans may subconsciously deflect
accountability to the machine [84], particularly when the effects of confirmation bias [85,86]
and automation complacency [80] set in, where clinicians are believed to lean towards
the decision of an automated system and subsequently stop searching for any further
confirmatory evidence. This phenomenon has been extensively discussed for two decades
in cardiology around the issue of automated electrocardiogram analysis [87,88].

This is concerning, particularly when a close examination of the literature shows
examples of representational biases that are both systemic and distributional in nature
unwittingly emerge in the absence of a robust methodological framework to address
these problems. For example, Nartowt et al. [14] developed an exclusively software-based
screening tool for the early identification and prevention of CRC in large populations by
training a neural network to classify individuals into low, medium, and high CRC-risk
groups using only personal health data found in two public datasets: (1) the National Health
Interview Survey (NHIS) dataset and (2) the Prostate, Lung, Colorectal, Ovarian Cancer
Screening (PLCO) dataset. To maximise machine performance, the authors converted much
of the dataset pertaining to race into a set of binary variables presenting attributes such as
“Not Hispanic/Spanish origin”, “Black/African American only”, “American Indian only”,
“Other race”, “Multiple race”, and “Sex factor”. However, this reductionism clearly has
consequences. Demarcating all other ethnic groups into a single variable of “Other race” is
a dangerous assumption, because it implies that there are no differences between all the
other rich cultures across the world. Compounding the problem is the fact that systemic
disparities that exist across groups due to sociodemographic context are not accounted
for, even though it is already known that this can be a significant limitation to predicting
accurate outcomes.

4.1.2. Class Imbalance, Heterogeneous Disease States, and Underrepresented Disease

Class imbalances and underrepresentation of rare disease states also presents an
interesting challenge for Al in CRC, which is not easily remedied by simply accruing more
data. The quality that makes ML so potentially powerful, the ability to learn patterns
within data by maximising signals that reinforce distributions in the datasets, is also one
that can lead to a situation where an Al optimises for features that are highly predictive of
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over-represented disease states, at the expense of features that detect or diagnose under-
represented rare diseases, even where computational techniques such as data augmentation
and regularisation are implemented. For example, in a recent landmark study, Wang and
colleagues [11] developed a state-of-the-art deep CNN that capitalised on transfer-learning
and demonstrated superior performance to pathologists in the histopathological analysis of
CRC tissue specimens, achieving a 0.988 vs. 0.970 AUC. The experimental setup appeared
sound and resistant to algorithmic bias: (a) they used a large volume of data (170,099
patches sourced from 14,680 whole slide images, captured from >9631 patients), and (b)
the patient cohorts attempted to be clinically representative, by collecting cases from
multi-independent sources across China, the USA, and Germany. However, as the authors
highlight in their analysis, several histological types were excluded from the study, because
they were too rare and had less than a 0.5% incidence. While they acknowledged this
limitation and stated that the algorithm would improve over time through the collection of
more data, it is important to highlight, again, that balanced data are more important than
more data, and the algorithm may remain skewed to the overrepresented class.

This may not be a problem in and of itself, as we acknowledge that rare diseases are
difficult for clinicians to diagnose and that the net benefit of these systems may still be
incredibly valuable when used as a second observer to ensure common cases are not misdi-
agnosed and/or missed on account of human error. However, a socio-technical analysis
evaluating the system may weigh these benefits against the risk that over-confidence in the
Al over time may alter the behaviour of clinical interaction, such that clinicians become less
perceptive of signals that an Al is known to be poor at, due to complacency in the presence
of the machine. This may mean that more careful consideration to HCI in the development
of HIT systems that utilise Al is enacted, or specific clinician retraining around how to
approach clinical practice in the presence of Al is mandated.

This may have interesting ramifications in emergent capsule endoscopy technologies,
where AI has been heavily promoted to increase small bowel findings while reducing
reading time through a mechanism that filters out normal findings and uses image process-
ing techniques to merge similar images together [10]. While this optimisation has largely
been lauded as a profound optimisation and improvement to the workflow through the
reduced reading time, there are concerns around whether the models will be robust against
all possible edge cases, particularly given the highly heterogenous ways that disease can
manifest. We do not know the answer to these questions, but it does indicate that, at
minimum, we need a rigorous framework around the external validation of Al, specific
quantitative testing around edge cases that are expected to be a challenge for Al such as
underrepresented classes, and more evaluations of clinician performance with and without
the use of Al, to ensure that we optimise the benefits of Al and limit their harm when
integrated into clinical practice.

4.2. CRC, Al and Models

In the previous section, the impact of data on Al performance was discussed and
it was acknowledged that more sensitive approaches to developing transparent, repre-
sentative, and equitable datasets could improve the efficacy of Al across diverse patient
cohorts and limit potential harms. This section extends on that discussion, to highlight that
there are broader contextual factors that impact clinical decision making that poses unique
challenges for Al, when consideration is given to the fact that current Al system technology
is functionally unable to transcend the epistemological and ontological assumptions embed-
ded in the nature of model design. This tends to leave Al unaware of the nature of clinician,
patient, or healthcare interactions and may result in erroneous conclusions by an Al system
due to an inability to recognise and appreciate the nuances of (a) temporal context, and/or
(b) situational operator context. Consequently, this section re-emphasises the dangers of
clinician complacency in the presence of Al system implementation in clinical practice.
This section concludes by examining how the inability to adequately explain Al model
predictions exacerbates the impact that context has on Al reliability in practice.
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4.2.1. Temporal Context

An issue that has been widely discussed in the literature is the problem of model
adaptation in the presence of distributional data shift [89], where there is (1) a mismatch
between the training data used by an algorithm at one point in time, and unanticipated
and/or evolving patient/healthcare contexts that emerge at a later point in time; and (2) an
inability of an Al algorithm to accurately adapt to such non-stationary clinical operational
environments due to the way that an Al model frames its assumptions of the world [55].
This tends to manifest most when historical EHRs are used to train a ML algorithm and new
data are later recorded and captured in the EHR, which was absent in the historical data due
to the evolution of clinical practice. This leads to a problem known as model drift [84,90,91].
This is not an easy problem to solve, since historical data cannot suddenly be updated
according to new knowledge, and new knowledge is often not voluminous enough to
train a new algorithm efficaciously. Even though more contemporary methods allow for
continuous learning via a process known as incremental learning [52], it is important to
recognise that this process of adaptation is still bound within the initial constraints of the
problem definition and an Al algorithm cannot epistemologically adapt outside of the
computational model “frame” imposed by the engineer. Importantly, the ML community
has not agreed on the best approach to handling class imbalances that emerge during
incremental learning, since real-time learning may inadvertently undo any efforts used to
balance initial data distributions and may skew the algorithm back too heavily in favour of
diseases or population groups that present commonly.

To show how these issues manifest first-hand in a healthcare setting, Davis et al. [92]
revealed how decreasing rates of acute kidney injury (AKI) led ML models to drift towards
a state of over-prediction of AKI within one year of development and this had the negative
unintended consequence of altering clinical decision making in a way that misdirected
resource allocation and expenditure. A more extreme example of this problem can be seen
in the emergence of the recent COVID-19 pandemic, which witnessed an unprecedented
shift in the patient landscape of a typical emergency department (ED), where an exponential
increase in ED visits for COVID-19 matched an exponential decline in acute visits for stroke
and heart attacks [91]. This presents a potential issue for CRC, given that since the early
1990s, the incidence of colorectal cancer in patients below the age of 50 has nearly doubled,
but this population is often not captured by most screening programs [93,94]. While it is
true that the absolute number of these patients are currently small and are not necessarily
included in screening pathways, it does demonstrate how disease patterns evolve over time,
and this has consequences to how Al systems are developed and evaluated. Observations in
younger CRC patients who present with more advanced stages of CRC have suggested that
there are multifactorial genetic and environmental components that influence the nature of
the underlying disease [93]. How does this then influence prognostic model performances,
e.g., if the underlying biological mechanisms are discovered to have shifted over time?
Therefore, it is important to consider that we need more robust guidelines around how
and when algorithms should be re-trained or re-calibrated, to maintain their performance
across shifting distributions to ensure that clinical decision making, which is inevitably
influenced by algorithmic decisions, remains robust to evolving clinical knowledge and
dynamic clinical settings.

The ramifications of temporal context on algorithmic predictability can be quite elusive,
particularly when we also consider how Al integration into clinical decision making along
therapeutic pathways is quite sensitive to the specific circumstances of the patient’s own
temporal context, independent of the broader population. For example, it was reported in
one study by Jie and colleagues [95], that when IBM’s Watson for Oncology (WFO) was
used to provide an oncologic treatment recommendation for a colon cancer patient, the
WEFO did not recommend the usual CapeOX (oxaliplatin + capecitabine) treatment regimen,
because WFO assumed it was unsafe for the patient due to a recent biochemical blood
test that showed a creatinine clearance rate <30. However, when this was reviewed by the
multi-disciplinary team (MDT), the oncologists immediately knew that this was a transient
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reversible biochemical abnormality due to the treatment, which would organically recover
after one week, concluding that it would be irresponsible to stop the CapeOx treatment
scheme. On review, the creatinine clearance rate returned to normal as the MDT expected.

4.2.2. Situational and Operator Context

Al algorithms also tend to be unaware of situational context, where environmental
factors may have a significant impact on the appropriateness of the predictions, which again
reinforces the need for a standardised external validation framework that is sensitive to
technical and socio-technical concerns. There have been countless examples in the broader
ML literature to show how situationally unaware neural network signal optimisations have
led to a model exploiting unreliable artefacts, confounders, or spurious cues in a training
dataset to the detriment of its reliability and generalisability in new contexts. The most
cited example of this problem in the literature is the classic case where a ML algorithm
predicted pneumonia in a chest radiograph due to the type of X-ray machine equipment
that was used, rather than any underlying features of pneumonia. By coincidence, the
situational context was that patients who were most unwell, and most likely to have
pneumonia, were the ones that required point of care imaging by the clinical staff and
those radiographs were incidentally stamped with the term “portable” [29]. Given that it is
known that an Al may maximise spurious cues to forge incorrect classifications, even at the
level of a single pixel perturbation [96], there may be consequences that limit the currently
reported success of Al-assisted polyp and/or CRC detection and diagnosis systems used
in conventional colonoscopy, when they become more mainstream. In a recent study;,
Li et al. [97] highlighted the range of situations that contributed to false positive or false
negative detections by an Al-assisted polyp detection system, which included: (a) when a
polyp had approached the corners of frames when they were about to appear or disappear
from the image; (b) when light reflections and shadows were present in the image due to
bubbles arising from a patient’s sub-optimal bowel preparation; (c) when edges of circular
folds could be misconstrued as polyps; or (d) when images were out of focus and blurred.

This introduces an interesting socio-technical question: is the problem here due to the
Al or due to the interaction of the human observer with the AI? One could argue that the Al
was performing as intended—it disentangled the factors of variation to demarcate polyps
most of the time, as advertised—, but it had some expectations around how the human
observer interacted with it. This could include expectations around the endoscopist’s pace
of movement to limit the likelihood of blur, the patient’s minimal bowel preparation, or
expectations around the endoscopist’s approach to insufflation or irrigation of the bowel.
This highlights that clinical decision making may need to be adjusted in the presence of Al
and clear guidelines around the expectations and limitations of these systems in-use are
needed so that we optimise their benefits and limit their harm.

At times, situational context, patient context, clinician context, temporal context, and
representational biases may all interact to affect the relevance of Al decision making. In
one WFO feasibility study, Liu’s team [98] investigated whether patients with lung can-
cer who were receiving treatment in China, of Chinese descent, could be provided with
treatment recommendations that were consistent with the multidisciplinary team. The
authors concluded that the overall consistency was 65.8% and could have been increased
to 93.2% had the WFO considered differences between Western and Chinese contexts, such
as (1) differences in the presentation of genetic mutations, (2) differences in the sensitivity,
tolerance, and metabolism of chemotherapeutic agents due to different physiques that influ-
ence treatment regimens between nations (e.g., concurrent vs. sequential chemoradiation),
(3) differences in the availability of drugs between markets, and (4) differences between
patient preferences, particularly in lieu of treatment prices and medical insurance.

There are different perspectives around why these issues arise and the significance
of their impact. Some authors such as Strickland [99] argue that these issues arise due to
poor data practices by IBM. However, another perspective could be that the limitation
lies in the way that the Al was framed to model the data, and had it been provided with
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access to the raw data with greater computational capacity, perhaps Al could propose
a personalised treatment recommendation (i.e., rather than having a treatment regimen
offered according to national guidelines that dismisses concurrent chemoradiation, Al
could learn to optimise the dosing of concurrent chemoradiation for the smaller physique).
The existence of these competing perspectives validates the position advocated by this
paper, that a robust methodology to Al evaluation in healthcare is needed. Furthermore,
this example also emphasises that there are clearly dangers when commercial vendors
develop algorithms using multi-centre datasets that appear equitable and efficacious on
local population distributions but proceed to reductively commercialise that same Al system
without any due diligence or oversight to internationally different population distributions.

4.2.3. Interpretability of Al Models

Since Al reliability can be affected by numerous contextual factors that arise in clinical
practice, EU regulators have enforced a position through the 2018 European Data Protection
Regulation stating that “black box” Al algorithms that have a significant effect on users
must be able to explain why a decision was made on-demand, as patients deserve the
“right to explanation” [100,101]. As a precedent, this was an important and sensible step
towards developing safer Al systems that were operationalised in a way that were more
complementary to how clinicians are trained to weigh competing modes of evidence to
the contextual circumstances of the patient. The computational community has responded
positively to these concerns by enhancing Al system interpretability through integrating
(a) gradient-weighted class activation mappings (Grad-CAM) [102-104], (b) replacing singu-
lar end-end classification pipelines with sequential segmentation + classification steps [105],
(c) extracting highly active neurons to visualise feature detectors [106], (d) gradient feature
auditing to estimate the indirect influence a feature has on a prediction [107], and (e) using
a process of “deep dreaming” to understand the evolution of a network’s layers [108].
However, the diversity of the methods also indicates that “interpretability” exists on a
spectrum and knowing what level of interpretation is sufficient to limit the impact of Al
bias in clinical practice is unknown.

5. Social, Ethical, and Legal Ramifications of AI Mediated Clinical Decision Making

In the context of the technical and socio-technical critiques discussed above, it is
important to delve more deeply into the wider ramifications of the underlying concepts
pertaining to computational biases and reductionist assumptions embedded within most
contemporary clinical Al systems. Beyond NUCs at the clinical interface, this section
highlights that there are potentially broader ethical and moral questions raised by the
wide-spread deployment of these systems because of their potential to transform the basis
for clinical decisions. We discuss how the socio-technical perspectives provided are not
simply ‘contextual” concerns but are more deeply grounded in the fundamental limitations
and risks embedded within Al systems themselves.

Clinical decision making is not just about treating biological disease, it is about treating
a patient with a unique set of psycho-social and cultural factors. It is for this reason that
two critical pillars guide the practice of ethical medicine: beneficence (the need for common
good and benefit) and nonmaleficence (first, do no harm) [109]. Therefore, clinical care
means that even in the absence of evidence, a clinician may choose to “err on the side of
caution” and order an investigation, weighing out the risks associated with the potential
of a missed diagnosis against the risks of overdiagnosis to the unique circumstances of
the patient [84]. Al algorithms are not sensitive to the impact that “absolute” probabilistic
decisions around disease, independent of the patient’s concerns has on the patient’s well-
being. While some may argue that this is too strong of a criticism of Al, since Al is not
the one making the final decision and is merely “supporting” the physician to make their
decision; as we have discussed throughout this paper, clinicians are susceptible to a range
of cognitive biases that can influence clinical decision making.
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Given the influence algorithms have on clinical decision making, who then is account-
able when a clinical error enters clinical practice? Inevitably, the presence of the Al agent
will mean that a clinician will always be influenced by its existence, irrespective of whether
the human operator chooses to accept or reject the AL If the Al's deductions are not to
be used by the human operator, but are later discovered to have revealed an outcome
that could have prevented the loss of human life, is the human operator accountable for
choosing to preserve clinical autonomy and ignore the AI? Inversely, if the Al's conclusions
are used by the human operator, but are later discovered to have resulted in the loss of
human life due to an unexplained statistical error, is the Al or human accountable and
can an Al ever understand the concept of accountability? This is further complicated by
the fact that the methods used to increase model interpretability are currently constrained
to the discrete case of medical imaging and do little to address concerns around more
contemporary unsupervised and reinforcement learning approaches that are increasingly
being applied to genomics datasets [110-112], the raw text in electronic health records [60],
or in some cases across a mixture of data sources sourced longitudinally across different
data contexts [113,114]. In these cases, some ethical issues arise from the fact that even if
the computational methods were able to explain themselves, there remains the broader
problem that there is no guarantee that we may even be able to understand or validate the
conclusion that the Al arrives to.

While these issues are beyond the scope of this paper (refer to [67,84,109] for further
discussions), we mention them to highlight that, given the fact that we know that (a) there
are several potential sources for algorithmic error and bias, (b) algorithms influence clinical
decision making, (c) there is an insensitivity to clinical impact by algorithms, and (d) a
lack of guidelines around accountability in the presence of an algorithm; it reinforces
our position that a more nuanced socio-technical approach to Al system evaluation prior
to clinical integration is necessary if we are to avoid a repeated history where negative
unintended consequences arise in yet another HIT integration.

6. Further Risks and Limitations from Marginalising Socio-Technical Factors in CRC

In this section, the paper highlights how even if technical and socio-technical concerns
are addressed through robust evaluation standards in the interest of patient safety, Al
system development and investment should be directed towards problems that have the
most measurable impact on patient morbidity and mortality outcomes. Much of the Al
optimism in CRC screening has been driven by the fact that it presents a potential solution
to the problem that in a routine screening colonoscopy, between 17-28% of colorectal polyps
(adenomas) are missed, which is concerning given that for every 1% increase in a clinician’s
adenoma detection rate (ADR), there is a 3% decrease in the risk of interval cancer [115-117].
Several of the vendor-backed Al augmented diagnostic systems have proposed to address
this issue by providing clinicians with a real-time Al polyp detection system, and the
evidence provided by recent RCTs is promising. It suggests that the ADR increases by up
to 50% with the inclusion of an Al detection system, with the most pronounced effect on
trainee gastroenterologists [7-9]. Similarly, in Al-enhanced capsule endoscopy (CE), experi-
mental evidence suggests that Al augmentation consistently outperforms a conventional
CE reader in terms of both accuracy and time, showing a 99.88% vs. 74.57% sensitivity in
the per-patient detection of abnormalities and, significantly, a 5.9 vs. 96.6-min recording on
per-patient reading time between the Al vs. human respectively [10].

While such results are exciting and show some promise in improving patient out-
comes, it is also important to recognise that one of the biggest influences on CRC-related
mortality is not fundamentally due to the nature of the current technology, but rather due
to the prevalence of low rates of participation in CRC screening [118]. Various studies
from Australia, which implemented one of the first national approaches to bowel cancer
screening, have suggested that at the current participation rate of ~40%, a 15-36% reduc-
tion in CRC-related mortality can be expected, and if participation rates in the screening
population were to increase to 70%, a 59% reduction in CRC-related mortality would be
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observed [119-124]. The problem is that several high-income nations have failed to reach
their desired target of 65-80% screening coverage, even in the presence of wide-scale public
health campaigns to raise awareness about its importance [81,125]. Unfortunately, it seems
that these rates are not likely to increase, given that the rate of FOBT-based screening
coverage has plateaued in Australia over the last five years [126]. Participation in follow-up
colonoscopy, where many of the Al-enhanced methods are poised to transform outcomes
are equally discouraging. Studies from Europe, the United States, Canada, and Australia
show that even in the presence of a positive FOBT, only between 50-70% of patients proceed
for a diagnostic examination via colonoscopy [126—129]. Participation among the most
marginalised groups that have historically experienced social disadvantage, such as those
from Indigenous populations, low socio-economic status, cultural and ethnic diversity, or
disability, tends to be the lowest in either stage of the screening process [69,130,131].

Consequently, it is possible that the extensive focus of Al adoption and integration into
the CRC diagnostic pathway may not have the drastic impact it has promised on patient
outcomes. In the following sections, we highlight how the barriers to participation in CRC
screening is permeated by human factors, and that if we are sensitive to these factors, we
can capitalise on Al methods in a way that can lead to a more significant impact to patient
outcomes by developing technology that increases the uptake of screening coverage in
high-risk population groups.

6.1. Interaction between Patient & Healthcare System

Several international qualitative studies [132-138] have concluded that there are nu-
merous psycho-social and cultural factors that interact and accumulate to impact on a
patient’s willingness to participate in CRC screening. Barriers include low awareness and a
misunderstanding of the medical guidelines around the need for CRC screening and/or be-
lieving that screening was only required in the presence of symptoms, which is exacerbated
by a lower perception of risk associated with bowel cancer compared with other more
high-profile cancers [139]. There has also tended to be limited promotion in community
languages among culturally and linguistically diverse populations, which contributes to
challenges around the understanding of the purpose of testing and/or how to apply the
test kit instructions even if patients choose to proceed [69]. Even where promotion has
occurred, screening programme administrators have tended to have limited awareness of
how factors, such as culture or gender, influence the way individuals interpret and receive
information [132,133]. Additional factors have included the logistics relating to a lack of
time to get screened or lack of transportation. For those in urban areas, lack of time could be
related to extensive work commitments and a perception of inefficiency by the healthcare
system, while for those in rural and remote areas, lack of time may relate to distance and
access to healthcare services [134]. Furthermore, fear, anxiety, stigma, shame, uneasiness, or
embarrassment in engaging with a procedure that involves stool collection (e.g., the FOBT),
or an invasive visualisation of the bowels (e.g., the colonoscopy), both of which may lead
to a positive diagnosis of cancer, have been suggested to exacerbate an unwillingness to get
screened regardless of sociodemographic context [132].

6.2. Interaction between Patient & Clinician

Given the problematic issues around sensitivity and rates of false positives arising
from FOBT tests [140,141], patients and clinicians have also been found to convince them-
selves (in the absence of evidence) that a positive FOBT reading is a false positive attributed
to an alternative source of bleeding (e.g., haemorrhoids, menstruation, and straining due
to constipation), dietary factors (consumption of beets or orange juice), or medications
(e.g., the use of blood thinners). In more extreme cases, some patients more speculatively
reported that they believed the toilet was contaminated with someone else’s blood, even
if the toilet had been cleaned prior [142]. Interestingly, despite the established guidelines
around the importance of FOBT-based screening, one qualitative study involving inter-
views of general practitioner (GP) perceptions of CRC screening in Australia found that
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many GPs reinforced negative attitudes towards the FOBT, leading patients to either reject
undertaking the FOBT or reject the result of the FOBT in the presence of a positive result.
For example, GPs were found to use low risk of bowel cancer arguments to negate the
significance of screening, and where a patient returned a positive FOBT, provided explana-
tions that implied that the positive FOBT was more likely the result of a benign source of
bleeding [143].

6.3. Interaction between Clinician & Healthcare System

System based factors have also been implicated in having a significant role in the man-
agement of patients that require CRC screening. Primary care physicians play an important
role in the advocacy, facilitation, support, education, and counselling of patients [144].
However, since screening is typically managed outside of the practice setting by a broader
national bowel cancer screening infrastructure, there are inconsistencies in the way that
results are recorded in patient health records and the availability of that information in the
primary care setting. This introduces complexities in the way that GPs flag patients who
are overdue for screening, particularly given that FOBT-based screening should occur bien-
nially to achieve its purported benefits. Some studies have suggested that even when the
information is made available in the EHR and made accessible in the primary care setting,
poor HIT practices have led to workarounds and the under-utilisation of these systems
by practitioners [145]. These issues are only compounded in busy primary care settings,
where there exists a limited capacity and/or unwillingness to discuss the importance of
screening with patients when other more immediate acute and chronic conditions need to
be managed in a short consultation session [143].

7. The Future of Al and Potential Implications for Clinical Decision Making

In recent years, extensive research and investment has gone into developing (1) novel
Al methods that are more emblematic of human reasoning, (2) cloud computing infrastruc-
ture to support the storage and retrieval of large volumes of structured and unstructured
data through data lakes, and (3) the acceleration of computational processing power in both
the domains of super computing and quantum computing. For Al researchers, the belief
is that the union of these three fields will result in the holy grail of Al research, artificial
general intelligence (AGI). Whether the advancements will correspond to achieving this
esoteric goal of human hubris is yet to be seen. However, it does indicate that Al systems
are here to stay and both regulators and medical practitioners are likely going to need to
grapple with ethical issues surrounding patient autonomy in the presence of contemporary
unexplainable Al systems, where some end-of-life patients may argue that they prefer to ex-
periment with an algorithmically inspired personalised therapy that we do not understand,
and which may have no evidence.

There is some evidence in the literature to suggest that Al is capable of remarkable
feats that can paradoxically be incapable of explanation, problematic for interpretation,
yet remain useful to clinical application. The first was an unsupervised learning algo-
rithm known as Deep Patient that was trained on data aggregated from approximately
700,000 patients to broadly predict the health state of an individual by assessing their
probability to develop various diseases. The algorithm was evaluated on 76,214 patients
comprising 78 diseases across diverse clinical contexts and temporal distributions [60].
Interestingly, the model managed to predict the onset of psychiatric disorders that are
notoriously difficult to detect and diagnose by physicians, such as schizophrenia, with
remarkable precision, significantly outperforming prior efforts. However, as the lead re-
searcher concedes in an interview, “we can build these models ... but we don’t know how
they work” [146]. Similarly, in the field of computational biology, researchers from Google
achieved a phenomenal leap forward in the 50-year-old “protein-folding challenge”, using
an algorithm, AlphaFold, to determine the structure of a protein based solely on its amino
acid sequence, achieving an accuracy of 92.4 on the Global Distance Test (GDT) [112]. This
has significant ramifications for developing new therapeutics, given that it is the closest
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attempt to solving Levintha’s paradox, which describes the peculiar situation where there
are 10%% possible configurations of a protein from a typical sequence of amino acids, yet
nature folds proteins spontaneously to a consistently exact configuration. The success of
such approaches has already found its way into CRC, where deep reinforcement learning
has been applied to understand the association between human MicroRNA and colorectal
cancer disease progression [147].

It is important to remember that the way Al perceives, interprets, and “senses” reality
across millions of data points is epistemologically different to the way humans do, and
therefore there may always remain a divide between our understanding of Al and the
Al’s understanding of the world. Is there a quantitative threshold with which we can
“trust” the Al in favour of human judgement in the absence of understanding if the Al is
consistently correct across longitudinal observation? This is an open question we currently
have no answer to. From the perspective of the EU regulators, a system that cannot explain
itself and one that we do not understand has no place in clinical practice. This view
is certainly one that seems sensible for the time-being, as it would appear as though the
systems that act with profundity are currently the exception, not the rule. However, as more
evidence evolves in the near future, it may be the case that persisting with this position
may itself be an ethical danger, as preventing individuals from access to personalised
algorithmically inspired medical interventions that may be life altering, even in the absence
of understanding, will invite new questions around patient autonomy, as some patients
may simply prefer to take the risk.

8. A Way Forward to Enhancing Clinical Decision Making in CRC: A More Nuanced
Approach to Al Systems Development, Implementation, and Evaluation

This paper has presented a socio-technical analysis of contemporary research into
the use and impact of Al enhanced HIT in healthcare broadly and in colorectal cancer,
specifically to offer a balanced critique on the opportunities, limitations, and risks of Al
system development and integration in clinical decision-making. Through this approach,
the paper has highlighted socio-technical perspectives on the important contextual nuances
that arise from problematic assumptions embedded in the development, implementation,
and evaluation of Al systems when applied along the screening, diagnostic, and treatment
pathways of CRC.

In Section 3, a series of problematic assumptions underpinning approaches to Al de-
velopment and implementation in health were identified. These included the general data
problems associated with systemic representational biases that manifest elusively through
data and the way that unbalanced data distributions tend to marginalise underrepresented
groups even in the presence of “big data”. An examination of specific issues that permeate
supervised learning (intractability of labelling, veracity of labels, and the computational re-
ductionism intrinsic to narrow task definitions), unsupervised learning (the “impossibility”
of evaluation and interpretation), and reinforcement learning (selection biases in the fram-
ing of environmental data and goals) was then provided. Having examined these issues
and in recognition of the fact that minimal external validation of Al in health has existed
in both academic research and commercial FDA-approved systems, this paper advocates
that, moving forward, it is critical that datasets that are used for ML learning training are
independently audited in a transparent way. While the authors do acknowledge that data
are perceived as the currency of ML and many vendors have locked commercial agreements
in place that are also protected by legislation around patient privacy, it is important to
remember that the aircraft industry is supported by an extensive amount of vendor-backed
software and hardware components that have managed to cooperate with one another in
the interests of safety while maintaining competitiveness. Some researchers, therefore, have
advocated that independent auditing analogous to the Aviation Safety Reporting System
should exist in healthcare [148].

In Section 4, these issues in the context of Al in CRC were examined and additional
nuances were identified in the nature of Al through an evaluation of problematic data
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and model assumptions. In data, it was highlighted that there was significant interest
in using ML for the purpose of risk stratification and prognostic prediction, particularly
given that participation in the existing paradigm of CRC screening was low. However,
it was uncovered that several studies reinforced racial biases and used distributions that
underrepresented the most marginalised patients, who tend to have the poorest CRC
outcomes. It was also observed that class imbalances in modelling the heterogeneity of
disease presentation remained a problem, similar to problems that have been identified
in the broader Al in health literature. In models, the frame problem of Al was revisited
and it was observed that the epistemological and ontological assumptions embedded
in ML algorithms were often not resistant to the impact that context-dependent clinical
interactions between the patient, clinician, and health system had on clinical decision
making. These interactions included the way that knowledge and operational practices
evolved over time to create a problem of temporally-influenced model drift; the way
that transient effects in the patient circumstances could obfuscate model conclusions in
oncologic treatment; the way that spurious cues in data due to situational context could
lead to erroneous signal optimisation; the way that operator interactions with Al systems
influenced prediction outputs in colonoscopy; the way that a model built for one local
populace but commercialised in an international market could not synthesise differences in
national guidelines to treatment; and the broader issue where many approaches were not
explainable or interpretable.

In examining these issues, the theme that pervaded the multifaceted discussion was
that human behavioural studies had identified that clinical decision making had a tendency
to be influenced by confirmation bias, algorithmic bias, and automation complacency.
Therefore, there was a risk that even small system errors could have major ramifications
to patient safety. In recognising these issues, it was identified that the emphasis of the
ML literature was on quantitative outcomes, but very few works existed that explored the
qualitative socio-technical impact that this would have on patient outcomes. When the
issue was discussed, it tended to only ever be conjectured as a potential problem, while
studies focused on reporting quantitative outcomes to justify their integration into clinical
practice were often not reproduced. This paper therefore suggests that, moving forward,
ML studies in health and in CRC have strict standards around: (a) the reproducibility of
algorithms prior to publication, (b) reproducibility of quantitative metrics across different
socio-organisational settings, (c) a definition for what “interpretability” should look like,
given the myriad methodologies that claim to achieve machine interpretability in various
ways, and (d) a systems-based approach to the qualitative evaluation that carefully exam-
ines: (i) the impact of Al system integration on patient outcomes, (ii) the clinical utility of
an Al system, (iii) the nature of Al integration in context to existing HCI and workflow
considerations across varied socio-organisational and cultural settings, and (iv) the nature
of clinical interaction with and without Al Further research into a unified quantitative and
qualitative methodological framework for Al-enhanced HIT evaluation is urgently required.
Indeed, this is something that the broader ML community has identified, motivating an
upcoming dedicated conference (ICLR2022 ML Evaluation Standards) to deal with this
exact issue [149].

In Section 5, the discussion on Al and clinical decision making was broadened to
introduce the fact that there were additional social, ethical, and legal ramifications around
the integration of Al systems into clinical practice. It was highlighted that there were prob-
lems around the fact that Al itself is insensitive to impact, particularly when probabilistic
approaches to clinical decision making that discretise diseases upend decades of medical
dogma that has identified health as an interplay that is influenced by complex psycho-social
and cultural interactions. Issues pertaining to clinical accountability were also discussed. It
was highlighted that the philosophical and ethical debates remain ongoing, particularly
around issues of culpability in the presence of machine and/or human error. Given that this
research suggests that Al errors are inevitable and will have undue influence on the human
observer, moving forward, the authors advocate that careful consideration of the socio-
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technical interactions of system use, particularly around the nature of human—computer
interaction is examined. The ML model is only one component, whereas how and when the
prediction is relayed to the clinician is entirely dependent on the nature of HCI. Therefore,
careful examination of how Al is rendered in-use is as critical as the model development,
and well-crafted product design solutions inspired by participatory design principles can
limit some of the complications that may arise from automation complacency.

In Section 6, the paper reasserted the view that Al efficacy and investment need to
be moderated against their impact on patient outcomes. It was identified that the last
three decades of technological advancement have done little to perturb the rate of CRC
mortality, and that in the presence of increased incidence, it is critical that the one factor
that is known to have the most measurable effect on mortality, namely increasing rates of
screening participation, should be the context that future Al technology should attempt to
address. Complex human factors emerged in the interactions between (a) the patient and
healthcare system (misunderstanding, miscommunication, accessibility, cultural sensitivity
and broader psycho-social dimensions), (b) the patient and clinician (trust and perception
of inefficacy of FOBT), and (c) the clinician and healthcare system (poor interoperability
between national and community infrastructure, and poor HIT practices with the EHR). In
recognising these issues, the authors emphasise that sensitivity to socio-technical factors in
the design and implementation of new technologies is critical. One solution that has not
yet been considered in the literature is whether capsule-based technology can be creatively
repurposed, reimagined, and repositioned as a tool for the screening of precancerous
lesions from home, which may address patient anxieties around (a) the anxiety of a cancer
diagnosis, (b) the inconclusiveness of a FOBT result, (c) concerns around the invasiveness
of a colonoscopic investigation, and (d) accessibility to healthcare centres both in terms of
distance and time.

In Section 7, the paper concluded with a brief look into the future to suggest that
the union of big data, high performance computation, and contemporary approaches
to unsupervised and reinforcement learning means that regulators may be required to
grapple with complex issues around patient autonomy in the era of unexplainable Al. Early
evidence suggests that more modern approaches may unlock immense power to the benefit
of the patient through personalised medicine. However, this is complicated by the fact
that these methods are not interpretable, and even if they were, may never be understood.
Where this leaves clinical decision making and clinical autonomy in the presence of patients
who may prefer algorithmic clinical decision making needs to be discussed.

9. Conclusions

Through a socio-technical analysis of the contemporary literature on Al in CRC, it is
evident that a more nuanced approach to Al development and implementation is required.
While there is no doubt that Al itself is a transformative technology that has the capacity
to positively impact clinical practice to the benefit of the patient, Al optimism needs to
be balanced against a thorough understanding of the limitations that also permeate the
underlying nature of the technology. This paper highlighted how there are concerns around:
(a) biases in end-end data pipelines and technical issues associated with algorithmic model
assumptions in the design and development of Al systems; (b) socio-technical issues
relating to confirmation bias, automation complacency, interpretability, and the clinician
workflow that arises from the interaction with Al systems; (c) ethical and legal implications
around accountability and autonomy for both the clinician and the patient; and (d) the
potential for misdirected Al investment in the specific context of CRC, where there may be
less of an impact on patient mortality and morbidity outcomes, given that the larger issue
that proliferates CRC screening is the problem of patient participation that Al currently
does little to address. Through the amalgamation of these issues, the authors conclude
that the way forward is to develop a more robust mixed methods framework around the
auditing and evaluation of Al systems prior to system integration in clinical practice. Such
a framework should be guided by principles of data transparency, the reproducibility of
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ML models, and more balanced evaluation metrics that weigh quantitative ML metrics
against important qualitative clinical considerations, such as (i) the impact of Al system
integration on patient outcomes, (ii) the clinical utility of the system, (iii) HCI and clinical
workflow considerations across varied socio-cultural and socio-organisational contexts,
and (iv) the nature of clinical interaction. In this way, there can be increased confidence that
the future of Al in CRC is safe, effective, equitable, and beneficial to clinicians, patients,
and the broader health system.
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