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Abstract: Infrared image target detection technology has been one of the essential research topics
in computer vision, which has promoted the development of automatic driving, infrared guidance,
infrared surveillance, and other fields. However, traditional target detection algorithms for infrared
images have difficulty adapting to the target’s multiscale characteristics. In addition, the accuracy
of the detection algorithm is significantly reduced when the target is occluded. The corresponding
solutions are proposed in this paper to solve these two problems. The final experiments show that
this paper’s infrared image target detection model improves significantly.

Keywords: infrared image; deep learning; neural network; target detection; transfer learning; multiscale
characteristics; context analysis

1. Introduction

Infrared image target detection identifies and labels each target class from an infrared
image containing multiple targets. Infrared images consist of information about the ther-
mal radiation emitted by the target and are not susceptible to environmental influences.
Therefore, infrared images have advantages over visible images in low-visibility environ-
ments, such as night scenes, haze, rain, snow, and dust. In recent years, IoT technologies
such as nighttime intrusion warning systems have cited infrared images based on this
advantage [1].

Target detection algorithms, in general, can be divided into two categories: traditional
target detection algorithms based on image processing and machine learning and new target
detection algorithms based on deep learning. Traditional infrared image target detection
algorithms include edge detection, module matching, Hough transform, etc. Some target
detection algorithms use edges, contours, and textures for target detection. Dalal et al.
proposed using gradient direction histograms to detect HOG features of pedestrians [2].
They divided the image and obtained the directional histogram of the gradient edges of
each pixel point in each region. The combined directional histogram was used as a feature
representation for each area. Papageorgiou et al. proposed using Haar wavelet features
for target detection, calculating the pixel values in adjacent rectangles obtained from the
detection window and their differences and then using the differences to classify each
region in the image [3]. Wu et al. proposed to detect pedestrians using Edgelet features
and obtained high target detection performance [4]. Traditional target detection algorithms
extract features manually for images. These features rely on a priori knowledge and have
limited expressiveness, limiting the accuracy of target detection algorithms.

In recent years, with the rapid development of deep learning, many deep-learning
algorithms have been applied to the field of computer vision. Deep-learning-based target
detection algorithms have been proposed one after another. Compared with traditional
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target detection algorithms that use manual feature extraction, deep-learning-based target
detection algorithms can self-extract features, which do not require a priori knowledge
and have the more expressive power of the extracted features. This is more beneficial to
improve the performance of target detection models. In 2014, Girshick applied the regional
convolutional neural network to target detection and proposed the R-CNN model [5].
This model is an essential milestone in deep-learning-based target detection algorithms.
R-CNN first uses the Selective Search method to extract about 2000 candidate regions,
then uses CNN to remove features from the stretched candidate regions, and finally uses
support vector machine SVM to classify these features and box regression. In 2015, Girshick
proposed a faster Fast R-CNN based on R-CNN [6]. Unlike the computational process
of R-CNN, Fast R-CNN first convolves the whole image to get the feature map and then
combines the two steps of candidate region classification and frame regression for training
so that the computation speed is faster.

Neither R-CNN nor Fast R-CNN solves the problem of relying on the selective search
algorithm in the candidate region generation phase, which causes a very time-consuming
pain, so Ren et al. proposed the Faster R-CNN model. Faster R-CNN introduces a Region
Proposal Network (RPN), which extracts candidate regions directly on the feature map
output from the convolutional neural network, significantly improving the detection speed
of the target detection model. Then, Bell proposed the ION model based on the Faster
R-CNN model [7]. This model uses spatial recurrent neural networks to combine contextual
features and the output of the features from different convolutional layers and uses them
as multiscale features for target detection.

The above studies mainly focus on target detection in visible images. However, deep
learning in target detection research of infrared images is not yet common. Inspired by
the idea of transfer learning, this paper migrates the target detection algorithm on visible
images to the infrared image target detection field. Firstly, we propose a target detection
model CMF Net to solve the problem of the existence of target multiscale features. The
CMF Net model is based on the VGG16 network (a convolutional neural network) and uses
two multiscale feature extraction mechanisms for image feature extraction and fusion. This
makes the final feature map input from the backbone network to the classification network
contain low-level visual features that facilitate target localization and high-level semantic
features that enable target recognition. Secondly, to solve the problem of low detection
accuracy of the algorithm when the target is occluded, we propose the CMF-3DLSTM model.
The model improves the classification network into a 3D long- and short-term memory
network based on the CMF Net model. We use an attention mechanism to assign weights to
the contextual features extracted in different dimensions. Finally, target detection features
include multiscale features and contextual features to achieve the fusion of spatio-temporal
features.

The rest of this paper is organized as follows: Section 2 summarizes the infrared image
target detection algorithm-related work. Section 3 introduces the details of the CMF Net
model. Section 4 introduces the structure and details of the CMF-3DLSTM model in detail.
Section 5 describes the design and results of relevant experiments. Section 6 summarizes
the work of this paper.

2. Related Work
2.1. Target Detection Framework Based on Deep Learning

Target detection aims to locate and identify each target instance using a bounding box.
Traditional target detection algorithms include edge detection [8], module matching [9],
Hough transform [10], etc. These target detection algorithms use edges, contours, and
textures for target detection. These features rely on a priori knowledge and have limited
expressiveness, limiting the accuracy of target detection algorithms. With the rapid devel-
opment of deep learning, the field of computer vision has achieved remarkable success
in target detection tasks using deep-learning algorithms [11]. Deep-learning-based target
detection frameworks have also been proposed one after another [12,13].
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Target detection frameworks based on deep learning mainly fall into two categories:
two-level detection framework and single-level detection framework [14]. The two-level
detection framework includes a pre-processing step for region recommendations. That
is, candidate regions are selected and then classified. Such representatives include Faster
R-CNN and Mask R-CNN [15], etc. They adopt the R-CNN proposed by Girshick et al. [16]
as the target suggestion method [17], which significantly reduces the amount of calculation
compared with the traditional method. The conventional method usually uses superpixel,
edge [18], and shape to score Windows, containing objects to generate region suggestion
boxes. Deepbox [19] used a lightweight ConvNet model for training, which rearranged
the regional suggestion boxes generated by the Edge box. Compared with R-CNN, these
traditional methods often require a more extensive calculation. The single-stage detection
framework adopts the regression method to directly regress the position and type of the
target from the feature graph. The grid method or convolution of different scales is used to
operate the feature graph to obtain the position and classification information of the target
directly. Such representatives include YOLO and SSD. Generally speaking, the two-stage
detection frame has higher accuracy, and the single-pole detection frame is faster. In order
to improve the performance of CMF-3DLSTM, we use an infrared image target detection
model based on multiscale feature fusion and context analysis proposed in this paper, and
we adopt the target detection framework of Faster R-CNN as its basic framework.

2.2. Transfer Learning

The main idea of transfer learning is to transfer labeled data or knowledge structures
from related domains to accomplish or improve the learning of the target domain or task.
One of the main assumptions in traditional machine learning algorithms is that training
and test data must be in the same feature space and have the same distribution. Transfer
learning relaxes the basic assumption that training and test data may be in different feature
spaces or follow other data distribution [20]. Specifically for the target detection task of
this paper, the task of the source domain is defined as the target detection based on the
sizeable visible dataset ImageNet, and the task of the target domain is defined as the target
detection based on the small infrared dataset FLIR. Since both infrared imaging and visible
imaging are similar, they collect target information for imaging through optical systems.
The migration learning approach can be used to initialize the parameters of the infrared
image target detection model with the pre-trained model on the visible image dataset.
Eventually, the model can be fine-tuned and trained using the infrared image dataset.

2.3. Cross-Layer Connection Mechanism

The cross-layer connection mechanism is a classical idea of direct routing from the
lower to the higher, ignoring the middle layer. The specific details of the cross-layer con-
nection method vary in different models. A cross-layer connection mechanism is proposed
in this paper to solve the problem of multiscale feature detection in images. This method
implements two multiscale feature extraction mechanisms and feature fusion mechanisms,
which can adapt to the multiscale features of the target and improve the target detection
performance of the model. The cross-layer connection mechanism used in this paper is
closest to the pedestrian target detection method [21]. In contrast, the two multiscale
feature extraction mechanisms proposed in this paper use parameter sharing to process the
feature images output from the first, third, and fifth convolution layers in different ways.
To keep the resolution consistent, we took the resolution of the feature graphs output by
the third convolution layer and the fifth convolution layer as the benchmark, adjusted the
resolution of the feature graphs output by other convolution layers, and finally realized the
cross-layer connection.
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3. CMF Net

This section introduces the CMF Net target detection model in detail. Its innovation
lies in using multiscale feature extraction mechanisms of parameter sharing to extract
multiscale feature information and carry out feature fusion.

3.1. Network Structure of CMF Net

The network structure of CMF Net is shown in Figure 1, which consists of four parts:
backbone network, region proposal network RPN, ROI pooling layer, and classification
network. The first part is the backbone network, which mainly adopts the migration
learning method, two multiscale feature extraction mechanisms, and a feature fusion
mechanism. The output feature map contains both low-level visual features and high-level
semantic features. The second part is the region proposal network RPN [22], which is
mainly used to extract the region proposal frames containing the target for the feature
map output from the backbone network and filter out about 300 high-scoring regions
proposal frames. The third part is the ROI pooling layer, mainly used to map ROI regions to
convolutional regions and pool them into feature maps of fixed size. The fourth part is the
classification network, which is used mainly for target location correction and classification
recognition after mapping the ROI pooling layer and achieving target detection.
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Figure 1. CMF Net architecture.

3.2. Multiscale Feature Extraction I

In the vgg16 network, the visual features extracted from the lower convolutional layer
play an important role in the target location, while the semantic features extracted from
the higher convolutional layer play an important role in target recognition. The multiscale
feature fusion method can retain the low-level visual and high-level semantic features and
avoid extracting redundant features from the two adjacent convolutional layers. The first
multiscale feature fusion method is shown in Figure 2. Considering that the intermediate
convolutional layer contains visual and semantic features, which combine the two, it is
essential for target detection. Therefore, the feature map output by the third convolutional
layer is retained completely, and the resolution of the feature map is taken as the benchmark.
The feature map extracted from the first convolutional layer is divided into two pools, and
the feature map extracted from the fifth convolutional layer is deconvoluted [23]. This can
further study the feature map output of the first layer and the fifth volume layer, resolve
the feature maps of the low-, middle-, and high-volume outputs that are adjusted to the
same level, and, finally, connect them to achieve feature fusion.
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3.3. Multiscale Feature Extraction II

In the first multiscale feature extraction mechanism, the feature graph output from
the third convolution layer is retained completely. Then, based on the resolution of the
feature images output from the third layer, the feature images output from the first con-
volution layer are pooled, and the feature images output from the fifth convolution layer
is deconvolution processed. This makes the feature images output by the first, third, and
fifth convolution layers maintain the exact resolution. However, this processing method
loses the high-level semantic features learned by the fifth convolution layer to some extent,
which affects the accuracy of the target detection model. Therefore, a second multiscale
feature extraction method is proposed, whose structure is shown in Figure 3. The feature
map output from the fifth convolutional layer is retained completely, and the resolution
of the feature map is taken as the benchmark. The feature map extracted from the first
convolutional layer is pooled twice. The feature map extracted from the third convolutional
layer is pooled once. The resolution of the feature map output from the first, third, and fifth
layers is adjusted to be the same and connected to achieve feature fusion.
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3.4. Feature Fusion Strategy

Two multiscale feature extraction methods use different strategies to extract multiscale
feature maps. The final output of the feature map has its unique advantages. The first
multiscale feature extraction method ultimately retains the mixed features of target location
and target recognition extracted from the middle convolutional layer. Still, it loses some
high-level semantic features and affects target recognition. The second multiscale feature
extraction method preserves the semantic features of a high-level convolutional layer but
loses some mixed features, which affects the target location. Therefore, it is necessary to
fuse the two kinds of feature maps so that the final output feature map simultaneously
contains rich mixed features and semantic features.
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The final feature maps obtained by the multiscale feature extraction mechanism suffer
from inconsistent resolution and inconsistent amplitude of feature values. Therefore, these
feature maps cannot be directly fused with features. The feature fusion method proposed
in this paper makes the feature maps output by the first multiscale feature extraction mech-
anism consistent with the resolution of the feature maps output by the second multiscale
feature extraction mechanism through a pooling process. Secondly, L2 normalization is
performed in the feature maps outputted by the two feature extraction methods, so that
the amplitudes of feature values in the two feature maps are consistent. Then, we connect
two feature maps to get a feature map containing rich visual features, mixed features, and
semantic features. Finally, we input it to RPN to extract ROI information.

We assign a binary class label to each box (including the target or excluding the target).
We set a binary class label (include target or not) to each box. We assign a positive title to a
box with an IoU threshold higher than 0.7 with any ground truth box and then assign a
negative label to a box with an IoU threshold lower than 0.3 with all ground truth boxes.
Our goal is to minimize a multitask loss function.

L(k, k∗, t, t∗) = Lcls(k, k∗) + λLreg(t, t∗) (1)

Lcls is the classification loss, Lreg is the coordinate regression loss of the box with a
positive label assigned. k∗ and k are true to label and predicted labels separately, respectively.
Lreg(t, t∗) = R(t− t∗) where R is the smoothed loss function defined in Faster R-CNN. We
express the coordinates of the positive box as t =

(
tx, ty, tw, th

)
and the coordinates of the

predicted box as t∗ =
(

t∗x, t∗y , t∗w, t∗h
)

.

tx = (Gx − Px)/Pw·ty =
(
Gy − Py

)
/Ph

tw = log(Gw − Pw)·th = log(Gh − Ph)
(2)

where Pi =
(

Px, Py, Pw, Ph
)

specifies the coordinates of the center point of the predicted box.
Gi specifies the coordinates of the center point of the positive box.

The RPN module first resamples the unbalanced sample set of positive and negative
samples, using the oversampling method in random sampling to obtain more sample first
data balance by randomly repeating examples from a small number of class sample sets.
Then, the gradient descent method is used for training, and the classification loss error Lcls
and regression loss error Lreg are back-propagated to update the model parameters until
the RPN module converges. The parameters for the training of the RPN module are set as
shown in Table 1.

Table 1. RPN training parameters list.

Description Value

The Anchor scale 32, 64, 128
MiniBatch Quantity 256
PRN foreground–background ratio 1:1
IOU threshold used by NMS for RPN training 0.3
IOU thresholds used by NMS for RPN prediction 0.7

4. CMF-3DLSTM

The infrared image target detection model CMF Net based on multiscale feature fusion
proposed in Section 3 adopts two multiscale feature extraction mechanisms and feature
fusion methods for the final output feature graph of the backbone network. It adapts to the
multiscale characteristics of the target. It can be regarded as the feature fusion of spatial
dimension, which is of great help to improve the performance of infrared image target
detection. CMF Net can achieve better target detection performance when the background
environment is the relatively simple spacing between targets. However, the problem with
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CMF Net is that it is easy to misjudge when multiple targets are close together, overlapping,
and semantically confusing, as shown in Figure 4.
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This section proposes CMF-3DLSTM, an infrared image target detection model based
on spatio-temporal feature fusion and attention mechanism. This model first inherits
the multiscale feature fusion strategy of CMF Net to achieve feature fusion in the spatial
dimension. Then, the model is based on 3DLSTM, which extracts contextual information
along with the positive and negative directions of each dimension from the length, width,
and height dimensions of the 3D feature map. Meanwhile, the model uses an attention
mechanism to assign weights to the contextual features extracted in various dimensions and
directions. CMF-3DLSTM effectively improves target detection performance in complex
situations such as multiple targets approaching each other, overlapping each other, and
semantic confusion.

4.1. Network Structure of CMF-3DLSTM

CMF-3DLSTM target detection model includes four modules, namely trunk network,
regional proposal network, ROI pooling layer, and classification network, as shown in
Figure 5.
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The trunk network still adopts a 16-layer VGG16 network. The model file saved after
pre-training the target detection model Faster R-CNN on the visible light domain dataset
Image Net is used for parameter initialization in CMF-3DLSTM utilizing the idea of transfer
learning, and two multiscale feature extraction mechanisms are still used for multiscale
feature extraction and feature fusion. The process of generating candidate boxes for regional
proposal network RPN is unchanged. It still extracts and screens regional proposal boxes
that may contain targets from the feature graph output by the trunk network, and about
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300 high-scoring regional proposal boxes are screened. The ROI pooling layer mainly
generates a fixed-size feature map based on region proposal mapping of candidate box
generated by RPN network recommendation for subsequent classification and regression.
The classification network primarily uses the multiscale feature map processed by ROI
pooling layer mapping and uses the 3D six-way long- and short-term memory network
3DLSTM, constructed based on BI-LSTM, to extract context information. At the same time,
the attention mechanism is used to assign different weights to the context features extracted
from other dimensions and directions to achieve the fusion of spatio-temporal features.
Finally, the input is given to the classification and location layers for target classification
recognition and position correction.

4.2. Context Information Extraction Network

Figure 6 shows a 3D long- and short-term memory network, which can extract context
information. The 3DLSTM network firstly transforms the 3D feature image into the 2D
feature image. Then, each row in the two-dimensional feature graph is regarded as a vector
or a sequence, and each column in the two-dimensional feature graph is considered to be a
time step. Finally, the context information of feature map extraction is transformed into the
extraction of vector or sequence relations.
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We fix the feature map’s length, width, and height separately and stretch the other two
directions. In this way, the shape of the 3D feature map can be transformed into a 2D feature
map. This two-bit information is then input into Bi-LSTM to extract contextual information
along the fixed direction of the original feature map. Taking the length direction of the
fixed feature map as an example, the 3D feature map becomes a 2D feature map (length,
width × height) after transformation, and the specific transformation process is shown in
Figure 7.
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Finally, the features generated are connected. At this time, the feature graph input to
the classification regression network contains the context information extracted from the
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length, width, and height of the original feature graph, so the network is called 3DLSTM.
Compared with RNN, LSTM, and BI-LSTM, which extract 2D context information, this
network is more conducive to improving the performance of the target detection model.

4.3. Attentional Mechanism

Attention mechanisms are generally used in natural language processing. As the
length of text sequence increases in practical applications, the more advanced information
in the series is lost more seriously, leading to a significant decline in model performance. A
common solution is to input text sequences in both sequential and reverse order or LSTM.
Although the two methods can improve the model performance to a certain extent, it is
still difficult to effectively solve the problem of a too-long sequence.

The final output size of the feature graph of 3DLSTM is 3256, which adopts bi-LSTM
to output vectors with the length of 256 from the three dimensions of length, width, and
height of the 3D feature graph, respectively. Each element in the vector represents the
neuron’s output under a time step. Such a feature map size has the problem of a too-long
sequence. Moreover, the weights of the three vectors are different, and the weight of each
element in each vector should also be different. Therefore, an attention mechanism is
adopted that can selectively screen out a small amount of important information from a
large amount of information and focus on this vital information.

A source in attention consists of a series of key–value pairs. The weight coefficient of
each key corresponding to value is obtained by calculating the similarity of each key in
input vector query and source. Formula (3) is the calculation of the similarity between the
query and the key. Formula (4) determines the weight coefficient of each key corresponding
to value by the So f tmax function.

Simi(Query, Keyi) =
Query·Keyi

‖Query‖·‖Keyi‖
(3)

ai = So f tmax(Simi) =
eSimi

∑N
j=1 eSimj

(4)

The weighted sum of values obtains the final attention value according to these weight
coefficients. The calculation formula of attention value is as follows:

Attention(Query, Source) =
N

∑
i=1

ai·Valuei (5)

Using the attention mechanism, you can assign different weights to the context in-
formation collected by 3DLSTM in different directions and to the different elements in
the context information in each direction. This enables the target detection model CMF-
3DLSTM to pay more attention to the salient features of the target, thus improving the
target detection performance of CMF-3DLSTM.

4.4. Model Training Strategy

CMF-3DLSTM uses the same training methods of pre-training migration and model
fine-tuning as CMF Net, but the training strategy of the classification module is different.
In the classification module, 3DLSTM is based on three bidirectional long- and short-term
memory networks, while the network structure of Bi-LSTM is based on LSTM. Therefore,
the ultimate goal of 3DLSTM is the same as that of LSTM, which is to minimize a loss
function L(t). The specific calculation formula is as follows:

L =
T

∑
t=1

l(t) (6)
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where t represents the current moment, T represents the total time step, and l(t) represents
the loss function at the current moment. The calculation formula of l(t) is as follows:

l(t) = f (h(t), y(t)) = ‖h(t)− y(t)‖2 (7)

h(t) represents the hidden layer output at the current time t, and y(t) represents the
output layer output at the present time t. To minimize l(t) loss function, the 3DLSTM
network is trained by the gradient descent method. When the error is propagated back,
the chain derivative method is used to update the model weight parameters. The specific
calculation formula is as follows:

∂L
∂w

=
T

∑
t=1

M

∑
i=1

∂L
∂hi(t)

·∂hi(t)
∂w

(8)

i represents the memory unit of the hidden layer. M is the number of memory units. w
represents the model weight parameter. hi(t) represents the output of the memory unit in
the hidden layer at the current time t. After calculating the gradient of weight parameter
w of all models, 3DLSTM uses the gradient descent method to update the parameters
iteratively. Finally, it minimizes the loss function L to achieve the purpose of training the
classification module.

For infrared image target detection model CMF-3DLSTM, a joint optimization 10-step
training process is designed in this paper, as shown in Algorithm 1.

Algorithm 1: CMF-3DLSTM training process

Input: Infrared image dataset.
Output: Target detection model CMF-3DLSTM.
Step 1: Initialize the network parameters in Step2 and Step3 using the pre-training model on the
VOC2007 dataset.
Step 2: Use the first multiscale feature extraction mechanism to extract feature information.
Step 3: Using the second multiscale feature extraction mechanism to extract feature information.
Step 4: CMF Net is used to carry out feature fusion for the feature information extracted by Step 2
and Step 3.
Step 5: Train the RPN network to generate the proposals using the characteristic information
obtained from Step 4.
Step 6: Implement ROI Pooling of Step 5 and adjust them to the same size.
Step 7: The 3DLSTM network is used to extract the context information of ROI in Step 6.
Step 8: The attention mechanism is used to assign weight to the output of the features by Step 7.
Step 9: Classification layer and regression layer are used for target detection for the output of the
features by Ste p8.
Step10: The unified network of Step 5 and Step 9 joint training is taken as the final model.

The training parameters of CMF-3DLSTM, CMF Net, and Faster R-CNN are shown
in Table 2, in which Faster R-CNN has 136,708,989 training parameters, and CMF Net has
152,048,765 training parameters. The number of training parameters of CMF-3DLSTMA
is 40,761,469, which drops to the level of 10 million and dramatically reduces the space
complexity of the algorithm. However, the 3DLSTM network and attention mechanism
introduced in the classification module of CMF-3DLSTM is more complex than the fully
connected layer in the classification module of CMF Net, thus causing an increase in
time complexity. The CMF Net model performs target detection at a speed of about 0.87
s/pc on a machine with a graphics card configuration of GeForce GTX 1080. In the same
experimental environment, the Faster R-CNN performs target detection at about 0.75 s/pc,
and the CMF-3DLSTMA has a reduced target detection speed of about three s/pc.
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Table 2. Experimental environment.

Model Backbone
Network RPN ROI Pooling Classification

Network Total

Faster R-CNN 14,714,688 2,382,893 0 11,961,1408 136,708,989
CMF Net 17,077,824 7,691,309 0 127,279,632 152,048,765
CMF-3DLSTM 17,077,824 7,691,309 0 15,992,336 40,761,469

5. Experiment and Analysis of Experimental Results
5.1. Description of Dataset

We have trained and evaluated our model on FLIR, a public infrared driving image
dataset, and achieved excellent results. The introduction of the dataset is shown in Table 3.

Table 3. Dataset specifications.

Content Synced annotated thermal imagery and non-annotated RGB imagery for reference. Camera
centerlines approximately 2 inches apart and collimated to minimize parallax

Images >10 K from short video segments and random image samples.

Image Capture Refresh Rate Recorded at 30Hz. Dataset sequences sampled at 2 frames/s or 1 frame/s. Video
annotations were performed at 30 frames/s recording.

Frame Annotation Label Totals

10,228 total frames and 9214 frames with bounding boxes.

1. Person (28,151);
2. Car (46,692);
3. Bicycle (4457);
4. Dog (240);
5. Other vehicle (2228).

Driving Conditions Day (60%) and night (40%) driving on Santa Barbara, CA area streets and highways from
November to May with clear to overcast weather.

Dataset File Format

1. Thermal—14-bit TIFF (no AGC);
2. Thermal—8-bit JPEG (AGC applied) w/o bounding boxes embedded in images;
3. Thermal—8-bit JPEG (AGC applied) with bounding boxes embedded in images for

viewing purposes;
4. RGB—8-bit JPEG;
5. Annotations: JSON (MSCOCO format).

5.2. Description of Evaluation

In this paper, the target detection performance of the method on the FLIR infrared
driving image dataset is evaluated from mAP (mean average precision), which is widely
used as a standard measure in previous target detection research. The calculation formula
is as follows:

Precision =
TP

TP + FP
(9)

MAP(Q) =
1
|Q|

|Q|

∑
j=1

1
mj

mj

∑
k=1

Precision
(

Rjk

)
(10)

where TP indicates that the prediction is true and the label is true, FP indicates that the
prediction is true and the label is false. Q is the set of target categories to be detected, mj is
the number of pictures of all categories corresponding to Qj, Rjk is the set of all pictures in
the returned result until picture k is found. That is to say, the corresponding precision is
calculated in this set.

5.3. Experimental Analysis

The training set of Infrared image dataset FLIR contains 7860 IR images, and the
test set has 1360 Infrared images. To facilitate the experiment, we converted the image
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annotation files of the Infrared image from JSON format (MSCOCO format) to XML format
(VOC2007 format).

We conducted a total of four experiments. The first set of experiments tested the
performance of the Faster R-CNN target detection model under various network layer
combinations. The second group of experiments analyzed the performance comparison
between CMF Net (Faster R-CNN model that adopts two multiscale feature extraction
mechanisms and carries out feature fusion) and those using two multiscale feature ex-
traction mechanisms alone. The third group of experiments analyzed the performance
comparison between CMF Net and other target detection models. The fourth group of ex-
periments analyzed the performance comparison between CMF-3DLSTM (using 3DLSTM
network to replace the full connection layer in CMF Net) and other target detection models.

(1) Experiment I: The performance of the target detection model depends mainly on
whether the feature map contains rich features or not. To investigate which network
layers and network layer combinations can make the model the best performance, we
conduct seven sets of tests based on the Faster R-CNN target detection model. The
final target detection performance of the feature maps output by convolutional layer
1 (single 1), convolutional layer 3 (single 2), and convolutional layer 5 (single 3) are
first tested separately. Then, the target detection is performed for the feature maps
output by the convolutional layer combination 1+2+3 (Group 1) and 3+4+5 (Group
2), respectively. Finally, the target detection is performed for the feature maps output
by the convolutional layer combination 1+3+5 with two different multiscale feature
extraction mechanisms (Group 3 and Group 4). The experimental results are shown
in Table 4.

Table 4. Results of combining different convolutional layers.

Layers Single 1 Single 2 Single 3 Group 1 Group 2 Group 3 Group 4

mAP 0.514 0.605 0.583 0.567 0.618 0.636 0.661

Experimental results show that the target detection model of convolution layer combi-
nation 1+3+5 with two different multiscale feature extraction mechanisms (Group 3 and
Group 4) has better detection performance on FLIR. Therefore, the proposed infrared image
target detection model uses a 1+3+5 convolution layer combination.

(2) Experiment II: To verify the performance of the two multiscale feature extraction
mechanisms and CMF Net, we carried out three experiments, and the experimental
results are shown in Figure 8. We found that our target detection model CMF Net has
a great improvement.

The mAP of CMF Net improved about 6.8% and 4.4% compared to the first multiscale
feature extraction mechanism and the second multiscale feature extraction mechanism,
respectively. Although the target detection accuracy of CMF Net decreased in the bicycle
category, it improved by 6.1% and 24% in the car and person categories, respectively, com-
pared to the first multiscale feature extraction mechanism, and 13.2% and 9.3%, respectively,
compared to the second multiscale feature extraction mechanism, CMF Net’s accuracy
only in the bicycle target. The accuracy of CMF Net is reduced by 9.6% compared to the
first multiscale feature extraction mechanism and 9.3% compared to the second multiscale
feature extraction mechanism. This experimental result illustrates the importance of feature
fusion based on two multiscale feature extraction mechanisms compared to one multiscale
feature extraction mechanism alone to improve the performance of the target detection
model.

(3) Experiment III: To fully prove the correctness of our multiscale feature extraction
strategy, we still adopted the idea of transfer learning to migrate the pre-training
networks of Faster R-CNN, YOLO, and SSD, which are currently popular in the
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visible light domain, to FLIR infrared driving image dataset, continue training until
the model converges.
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The experimental results are shown in Figure 9 We evaluate the performance of CMF
Net on the test set of FLIR infrared driving image dataset. Using the above methods, we get
about 71% of mAP by CMF Net, 58% by Faster R-CNN, 65% by YOLO, and 54% by SSD.
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Compared with other common target detection model’s mAP, our multiscale feature
fusion model CMF Net achieved significant improvement in accuracy, about 13 percentage
points higher than Faster R-CNN’s mAP, about 6 percentage points higher than YOLO’s
mAP, and about 17 percentage points higher than SSD’s mAP.

In FLIR infrared driving image dataset, due to the different shooting distances, the
size of the car, person, and bicycle targets in the infrared image is different, which has
significant multiscale characteristics. Our model adopts two multiscale feature extraction
mechanisms and two-level feature fusion methods, which makes the final output of the
backbone network contains rich visual features and semantic features, so the detection
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accuracy of car, person, and bicycle is far higher than the other three networks. The accuracy
of CMF Net on car target is 11%, 5%, and 12% higher than Faster R-CNN, YOLO, and SSD,
respectively; the accuracy on person target is 23% and 17% higher than Faster R-CNN
and SSD, respectively, and the accuracy on bicycle target is 4%, 16%, and 21% higher than
Faster R-CNN, YOLO, and SSD respectively. Compared with YOLO, the accuracy of the
personal target is reduced by 3%. The importance of the combination of two multiscale
feature extraction mechanisms and two-level feature fusion methods is fully proved.

As shown in Figure 10, the target detection result of CMF Net is on the left, and the
target detection result of Faster R-CNN is on the right. The scenes on the left and right
are the same, with vehicles and pedestrians appearing on the street at different scales.
Faster R-CNN detected most targets in the image well but failed to detect pedestrians
appearing at a small scale in the middle of the image. CMF Net can adapt to the multiscale
characteristics of the target because it adopts two multiscale feature extraction mechanisms.
Therefore, the pedestrians on a small scale can be successfully identified and positioned
correctly.
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(4) Experiment IV: CMF Net, a target detection model based on multiscale feature fusion,
has a problem: it is easy to cause misjudgment in the complex situation of multi-
target detection. In particular, it is challenging to detect CMF Net effectively when
multiple targets are close to or even overlapping each other. It is imperative to use
the contextual information around the target effectively. This paper proposes an
infrared image target detection model CMF-3DLSTM based on multiscale feature
fusion and context analysis. CMF-3DLSTM is inherited from CMF Net. The difference
between CMF-3DLSTM and CMF Net is that it replaces the complete connection
layer of the classification regression network with a 3D long- and short-term memory
network. Context information can be extracted based on multiscale feature fusion.
CMF-3DLSTM improved target detection performance by about 2.9% on the infrared
image dataset FLIR compared to CMF Net’s mAP.

The experimental results are shown in Figure 11. The target detection model CMF-
3DLSTM and other target detection models are evaluated on the test set of FLIR. Using the
above methods, CMF-3DLSTM obtained about 73.3% mAP, while the mAP on CMF Net
was about 70.4%, the mAP on Faster R-CNN was about 68.7%, the mAP on YOLO3 was
approximately 64.8%, and the mAP on SSD was about 60.8%.

Although the CMF-3DLSTM model does not achieve optimal detection results for car,
person, and bicycle alone, the average detection accuracy is more important in complex
situations where multiple targets are nearby or even overlap or obscure each other. The
target detection results of CMF-3DLSTM on the infrared image dataset FLIR are illustrated
in Figure 12.
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6. Conclusions

This paper transfers the target detection model in the visible light domain to the
infrared environment by transfer learning. In our work, we creatively proposed the
method of feature fusion and multiscale feature extraction with two shared features. We
obtained the network architecture of CMF Net that makes full use of multiscale feature
fusion information for target detection. Through multiscale feature fusion, rich visual and
semantic features can be obtained to improve the accuracy of target detection and adapt to
the multiscale characteristics of the target to be detected. To improve the target detection
performance of the model in complex scenes such as mutual occlusion and overlapping
of multiple targets, we constructed a 3D long- and short-term memory network based
on CMF Net to extract context information and finally realized the CMF-3DLSTM model.
Compared with Faster R-CNN, YOLO3, and SSD, CMF-3DLSTM achieves higher target
detection performance on infrared image dataset FLIR. This proves the importance of
constructing an infrared image target detection model based on multiscale feature fusion
and context analysis.

However, we still need to make further improvements work. The target detection
model proposed in this paper improves the accuracy, reduces the number of parameters,
and decreases the spatial complexity compared with models such as Faster-RCNN, but it
increases the time complexity, making it challenging to meet the requirements of real-time
detection. We need to optimize the network structure further to improve the model’s
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real-time detection capability. At the same time, we need to train and evaluate the model
on more infrared image datasets with different scenes to meet the requirements of other
scenes in practical applications.
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