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Faculty of Computer and Information Science, University of Ljubljana, 1000 Ljubljana, Slovenia;
uros.pascinski@fri.uni-lj.si (U.P.); vlado.stankovski@fri.uni-lj.si (V.S.)
* Correspondence: petar.kochovski@fri.uni-lj.si (P.K.); mojca.ciglaric@fri.uni-lj.si (M.C.)
† These authors contributed equally to this work.

Abstract: (1) Background: Cloud storage is often required for successful operation of novel smart
applications, relying on data produced by the Internet of Things (IoT) devices. Big Data process-
ing tasks and management operations for such applications require high Quality of Service (QoS)
guarantees, requiring an Edge/Fog computing approach. Additionally, users often require specific
guarantees in the form of Service Level Agreements (SLAs) for storage services. To address these
problems, we propose QoS-enabled Fog Storage Services, implemented as containerised storage
services, orchestrated across the Things-to-Cloud computing continuum. (2) Method: The placement
of containerised data storage services in the Things-to-Cloud continuum is dynamically decided
using a novel Pareto-based decision-making process based on high availability, high throughput,
and other QoS demands of the user. The proposed concept is first confirmed via simulation and
then tested in a real-world environment. (3) Results: The decision-making mechanism and a novel
SLA specification have been successfully implemented and integrated in the DECENTER Fog and
Brokerage Platform to complement the orchestration services for storage containers, thus presenting
their applicable value. Simulation results as well as practical experimentation in a Europe-wide
testbed have shown that the proposed decision-making method can deliver a set of optimal storage
nodes, thus meeting the SLA requirements. (4) Conclusion: It is possible to provide new smart
applications with the expected SLA guarantees and high QoS for our proposed Fog Storage Services.

Keywords: Fog Storage Services; Quality of Service; Service Level Agreement specification; decision
making; Pareto

1. Introduction

The Internet of Things (IoT) as a paradigm facilitates various devices to communicate
between each other and also integrate them with various smart applications in practically
all domains [1–3]. IoT-produced data may be processed and stored starting from the sensors
and devices on the field, through different levels of computing infrastructures to the users’
smartphones. Hence, smart applications and systems are expected to operate under greatly
varying computing and networking conditions. IoT devices generate large quantities of
unstructured, semi-structured or structured data that are collected, analysed, and processed
by smart applications and usually raise multidimensional concerns (e.g., volume, velocity,
veracity, variety) that must be addressed in the course of their processing and storage. It is
therefore necessary to provide innovative storage mechanisms to deal with the influx of
IoT-produced Big Data.

Depending on the application scenario, the IoT data are collected, analysed, processed
and stored at different stages of the Big Data pipeline, starting from the highly distributed
and less-powerful microprocessors at the Edge, through heterogeneous infrastructures
under various administration domains, up to powerful Cloud data centres. For example,
some smart applications that are time-critical by nature are required to rapidly respond
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(e.g., early-warning systems) to the users, hence, the storage and processing of data must
be performed in close proximity to the sources of the information [4]. Fog storage can
be considered as an ability to develop, deploy and orchestrate various database manage-
ment services, such as databases and file systems closer to the edge of the network with
sufficiently high performance towards the end users (e.g., low network latency and high
bandwidth). Due to the better performance and limited storage capacities, Fog storage
can be also used as a temporary storage until smart applications’ data are analysed and
processed, whilst data centres in the Cloud may still take the role of dependable long-term
data storage.

Different smart application designs can significantly affect various Quality of Ser-
vice (QoS) database-service-related metrics. In order to address these types of problems,
currently various DevOps approaches aim at achieving operationally high QoS by introduc-
ing specific orchestration and application control technologies, for example, deployment
decision-making algorithms, monitoring tools and similar. With regard to database-service
operations, previous studies have investigated a variety of non-functional requirements
(NFRs) and their trade-offs [5]. The present study focuses on three NFR attributes, namely,
data storage availability, throughput and costs. However, the presented approach is flexible
and can be extended towards consideration of multiple NFRs that are related to database-
service operations.

For any smart application to reach its business objectives, it is necessary to provide
assurances that the application will satisfy the necessary QoS. Providing QoS is an essen-
tial task because the database-services potentially have to be deployed across different
providers, closer to the IoT devices, that is, at the Edge of the network. Hence, stipulating
Service Level Agreements (SLAs) between the software engineers and the infrastructure
providers is a requirement that should be addressed in the process of providing guarantees
that the required QoS will be maintained above the requested thresholds at all times. At this
time, to the best of our knowledge, there is no SLA design for database-services that oper-
ates under greatly varying conditions between the Things and the Cloud. The present work
focuses on the SLA specifications that are necessary to facilitate optimal QoS negotiated
between Fog storage providers and software engineers as storage customers.

This work is set in the context of the European Union–Republic of Korea DECENTER
project (https://www.decenter-project.eu/, accessed on 5 January 2022), which investi-
gates a variety of IoT-based smart applications. The project’s use cases in areas, such as
smart city crossing safety, robotic logistics, smart and safe construction site, and ambient
intelligence operate under different conditions; thus, they have different requirements for
availability, throughput and costs. The project delivered a Fog Computing platform, where
an important feature is the need to provide QoS assurances for databases-service operations.
The Kubernetes-based [6] orchestration mechanisms allow to dynamically integrate and
orchestrate containers across the Things-to-Cloud computing continuum.

In the domain of Fog computing, costumers do not deal with physical resources.
Instead, underlying physical resources enable the existence of virtual resources in a form
of virtual machines or containers, which can be developed, set up for execution, started,
stopped or even rented by customers, each targeting their specific purpose. Virtual re-
sources usually share a common physical infrastructure, in addition to some overhead
introduced by the virtualisation, these virtual resources compete for physical resources.
This usually leads to reduced performance compared to the model of having one physical
instance for each service. However, the resource sharing model and virtualisation enable
lower costs of data centre operation while serving more customers at the same time. Hence,
there are two opposing sides, the customers who wish to obtain best possible QoS for
their virtual resources, and the service providers who wish to achieve lowest possible
operational costs.

Considering that customers pay for the services offered by the providers, they must
be provided with assurance on the QoS, similarly to the case of buying a physical product,
which includes a warranty. On-demand computing and storage providers usually offer

https://www.decenter-project.eu/
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service guarantees under certain terms, commonly referred to as SLAs. SLAs are agreements
between service providers and customers, specifying Service-Level Objectives (SLOs) as
rates and conditions about the operability and performance of specific services, usually
within certain time intervals, together with SLA violations and SLA exclusions. SLA
violations define under what terms an SLA does not meet the agreed objectives and what
legitimate actions the customer can take when a violation occurs. In case of SLA violations,
the providers usually compensate the affected customers by offering discounted prices in
the next billing period. SLA exclusions specify the terms and conditions under which the
the providers are exempted from the compensations caused by the violations.

Until now, SLA specifications have been investigated in relation to offered computing
infrastructures as a service. To the best of our knowledge, this is the first work that
introduces an SLA specification and SLA management approach for Fog Storage Services,
which includes, but is not limited to, structured databases and file system operations. In the
remainder of this section we summarize the research regarding SLAs, especially targeting
SLAs and their specification in Fog Computing. For our work, approaches, solutions
and techniques for data management operations close to the Edge of the network are of
particular interest. The State-of-the-Art review results are presented in Table 1.

Table 1. State-of-the-Art analysis summary for Fog storage. Works are compared with respect to the
QoS attributes, the SLA implementation, the SLA specification, the type of nodes and the utility.

Work QoS Attributes SLA Impl. SLA Spec. Type of Nodes Utility

Gill and Buyya, 2019 [7]
Reliability
Availability
User satisfaction

Yes No Cloud Data storage
and processing

Wang et al., 2015 [8]

Cost
Reputation
Availability
Response time

Yes No Cloud Data storage
and processing

Serrano et al., 2016 [9]

Cost
Reliability
Availability
Response time

Yes Yes Cloud Data storage
and processing

Jrad et al., 2015 [10]

QoS
Cost
Time complexity
Network throughput

Yes No Cloud Data Processing

Yang et al., 2012 [11]

RTFThroughput
RTFTickDuration
AveragePacketLatency
ClientConnectionCount

Yes No Cloud Data storage
and processing

García et al., 2014 [12] Cost
Number of failed requests Yes Yes Cloud Data storage

and processing

Yin al., 2020 [13] Cost
I/O performance Yes Yes Cloud Data storage

Wang et al., 2020 [14] Storage
Throughput Yes No Cloud Data storage

Conejero et al., 2016 [15] Cost
Energy-efficiency Yes No Cloud Data processing

Kessaci et al., 2014 [16] Cost
Energy-efficiency Yes No Cloud N/A
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Table 1. Cont.

Work QoS Attributes SLA Impl. SLA Spec. Type of Nodes Utility

Mayer et al., 2017 [17] Latency
Usage-context No No Fog Data storage

Gedeon et al., 2018 [18] Data type
Usage-context No No Edge Data storage

Proposed solution
Cost
Availability
Throughput

Yes Yes
Things-to-Cloud
computing
continuum

Data storage and
processing

There are many relevant challenges related to Fog computing [19,20]; however, the fo-
cus of our research is narrowed down to assuring high QoS for highly dynamic storage
operations, which may be used in the emerging IoT and smart city scenarios (e.g., smart
applications executing low-latency operations). Such applications require high QoS for
successful real-time processing of Big Data. Virtualised databases in containers can be
deployed dynamically on a variety of infrastructures. So far, various studies related to
load balancing [21–24], resource allocation and management [25–27], as well as resource
provisioning [28–31] have provided means for selecting an optimal IaaS provider.

When data from multiple sources are processed in a shared distributed computing
infrastructure, it is necessary to provide QoS guarantees for each data stream. The re-
quirements can be specified in a well-defined SLA. The SLA defines the participants and
their responsibilities, terms of the contract, contract’s validity period, violation types and
respective penalties. In the context of cloud computing, SLA is an officially exchanged
document that describes in quantitative or qualitative terms the service that is going to be
delivered to the costumer [32]. Due to the lack of studies addressing SLA management
for storage in the Fog, the analysis for the state of the art of SLA management is for more
generic Cloud computing services.

Gill et al. [7] proposed an SLA management that resides on the side of the service
providers. The proposed framework for self-management of Cloud resources is composed
of software components that are described in few consecutive studies [33–35]. Their frame-
work provisions and schedules cloud resources, whilst maintaining SLAs and reducing
SLA violation rate.

Wang et al. [8] presented an algorithm for selecting optimal web services to build
a service composition in geo-distributed Cloud environments. The algorithm chooses
the optimal service from a set of functionally equivalent services with respect to SLA
constraints and minimises the number of SLA violations.

Serrano et al. [9] proposed a new Cloud model for SLAs and a general control-theoretic
approach for QoS-oriented SLA management in which SLA specification are translated into
a utility-based objective function. For the selected case studies, the SLA management is
illustrated with different QoS aspects of Cloud services, such as performance, dependability
and financial energetic costs.

The work of Jrad et al. [10] deals with the implementation of SLAs for computing
Clouds and assured the required QoS during complex computations, such as DNA se-
quencing workflows. They focused on the problem of matching the workflow functional
and non-functional SLA requirements to the compute and storage services provisioned by
underlying Clouds with different service cost and quality. The study provides a design of
an ontological model for a semantic description of the problem and develops a novel utility-
based genetic matching algorithm for selecting Cloud services with respect to the user
requirements and the properties of the Clouds. The results present the effectiveness of the
approach in reducing the total cost and fulfilling the requested QoS even with large-scale
service compositions.

Yang et al. [11] proposed a business-oriented federated Cloud computing model where
multiple independent infrastructure providers can cooperate seamlessly to provide scalable
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infrastructure and QoS-assured hosting services. The business layer in the proposed
model provides an enhanced security features and can trigger the on-demand resource
provisioning across multiple infrastructure providers, hence helping to maximise the
customer satisfaction, business benefits and resources usage.

The work of García et al. [12] proposes the Cloudcompaas platform that allows rep-
resentation, scheduling and management of Cloud resources. The proposed platform
features an extension of the SLA specification, called WS-Agreement, which enables Cloud
providers with a generic SLA model to deal with higher-level QoS metrics, closer to end-
user perception.

Yin et al. [13] described an SLA-driven deduplication framework for large-scale cloud
storage systems. The proposed solution is composed of an SLA notation and dedupli-
cation mechanism that facilitates discovery and removal of abundant data in the Cloud,
through a performance-cost trade-off to maintain high deduplication quality and meets the
necessary SLA.

Wang et al. [14] presented a resource scheduling algorithm for efficient exploitation of
cloud storage. The described solution utilizes throughput and storage space as constraints
in the decision making for the scheduling process. Its main objective is to reduce the SLA
violation rate for cloud storage services.

Conejero et al. [15] studied the trade-off between energy efficiency and performance.
They stated that a data centre hosting the Cloud environment is likely to achieve greater
energy efficiency (at a reduced cost) compared to a local deployment. With increasing
energy prices, it is estimated that a large percentage of operational costs within a Cloud
environment can be attributed to energy. This work provides some insight on the relation-
ship between power consumption and QoS related metrics, describing how a combined
consideration of these two metrics could be supported for a particular workload.

Kessaci et al. [16] presented an energy-aware multi-start local search algorithm that
optimises energy consumption of an OpenNebula-based Cloud. This study proposes the
implementation of Pareto Multi-Objective version to deal with both the energy consumption
and the SLA. The objective is to find a Pareto trade-off between reducing the energy
consumption of the Cloud while preserving the performance of VMs. Mayer et al. [17]
proposed a FogStore system, which allows distributing and storing the data of stateful
applications in the Fog. Its baseline algorithm utilises Fog-aware requirement (i.e., network
latency) and data-context requirements (i.e., geolocation and scenario type) to place the
data as close as possible to their clients, and to also place the replicas in close proximity
to each other. Similarly, Gadeon et al. [18] presented vStore, which is a framework that
facilitates context-aware placement of mobile user data in the Cloud. It uses a rules engine
to place and locate data based on its context metadata.

This paper complements the above efforts by delivering a new software engineering
technique for dynamic orchestration of containerised databases and file systems across the
overall Things-to-Cloud computing continuum. It is supported by DECENTER’s novel
Kubernetes-based orchestration technology and its Ethereum-based resource brokerage
platform. Our solution of Fog Storage Services consists of a novel SLA specification and
Pareto front decision-making method that facilitate orchestration of database and file
system containers across the Things-to-Cloud computing continuum.

The contributions of this work can be summarised as follows:

• A new Fog Storage Services (an infrastructure layer) for database and file systems
storage operations;

• A new SLA specification that is used in the orchestration of Fog storage containers;
• A new Pareto-based decision-making method for the placement of Fog storage contain-

ers (e.g., containerised databases and file systems) which is used to provide specific
QoS guarantees.

This paper is organised as follows. In Section 1, we presented the background for our
research and in the remainder, we review related research in the area of SLAs in Fog com-
puting. Section 2 presents the research methodology. Section 3 explains the infrastructure
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for our proposed data storage services. Section 4 introduces SLA from a formal high-level
perspective by describing the SLA life-cycle and its relation to Fog storage, followed by de-
tailed SLA design and specification. Section 5 describes the implemented decision-making
solution that is based on the selection of non-dominated solutions. Section 6 presents the
test environment and the experimental evaluation results. Section 7 concludes the paper
and suggests directions for future work.

2. Methodology

Our research methodology follows the main purpose of our research, which is to
propose the Fog Storage Service, which is able to provide high QoS guarantees across
the Things-to-Cloud computing continuum. To tackle with the QoS requirements, we
needed to define a new formalism for SLA specification, which is suitable for use in the
orchestration of containerised storage services in the Fog. The last challenge is to define a
decision-making process for choosing the optimal location of containers with Fog Storage
Services, with regard to the required QoS guarantees. The necessary steps, described in
detail in the remainder of this paper, are as follows:

1. Specification of infrastructure that is considered as deployment option in the Things-
to-Cloud continuum. This also covered the consideration of deployment requirements
for the proposed Fog Storage Services.

2. Definition of SLA specification for the Fog Storage Services, which includes: mapping
of the Fog Storage Services’ life cycle to the SLA life cycle stages, designing an SLA
specification (language) for its use in Fog Storage and selection of relevant SLA
parameters for the scenario.

3. Definition of decision-making process for placement of service containers on nodes
that guarantee optimal QoS.

4. Implementation and integration of the research and developed decision-making
method and SLA specification within the DECENTER Fog and Brokerage Platform.

5. Proof of concept by means of simulation with a set of 100 nodes.
6. Proof of concept in an experimental testbed with a set of 13 nodes and real-time metrics.
7. Interpretation and discussion of results.

3. Dynamic Fog Storage Services

Typical IoT environments are usually composed of many different components, such
as: sensors, gateways, computing and storage nodes. Essentially, such environments
generate large quantities of unstructured data. However, the type and amount of data
differ between use cases. For instance, a smart and safe construction site that facilitates
smart, automated, secure and sustainable building process might operate with more than
500,000 data operations per minute [1]; whereas, a scenario for a smart city crossing
environment might operate with significantly lower amounts of data [36]. Due to such
significant differences between IoT scenarios, the QoS requirements for data storage and
processing differ as well, which represents a challenging task for SLA management.

In the investigated case (see Figure 1), a user, who is located in Slovenia, may require
a smart application that will operate with data from IoT devices that frequently change
their geolocation (e.g., smart vehicles, smartphones or wearable devices). To operationally
achieve and maintain high QoS, the data are required to be dynamically stored in close
proximity to the data sources. The complete workflow is composed of six consecutive steps,
which are as follows: (1) the user defines QoS requirements for the preferred storage, (2) the
Kubernetes-based orchestrator allocates available resources (i.e., storage infrastructures),
(3) the decision-making mechanism derives a set of Pareto non-dominated storage infras-
tructures, (4) the user manually selects a Pareto-optimal Fog storage node from the set
of non-dominated storage nodes by choosing the preferred trade-off between the desired
NFRs and signs the SLA agreement, (5) deploy containerised database and commence
persisting data, (6) SLA monitoring and reporting.
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Figure 1. Introducing dynamic Fog Storage Services.

4. SLA Specification for the Fog Storage Services

This section provides detailed insight into the design, specification and implementa-
tion of a novel SLA model for our Fog Storage Services. The SLA is used by the users to
specify their QoS requirements and by the Pareto-based decision-making process which
helps decide an optimal placement of the fog storage containers across the Things-to-
Cloud computing continuum. This represents a significant novelty compared to existing
SLA specifications.

4.1. SLA Life Cycle

SLA life cycle (see Figure 2) is composed of several phases: Negotiation, Deployment,
Monitoring, Violation detection, Reporting and SLA termination [37]. Each phase of the
SLA life cycle is explained as follows.

Negotiation: Parties involved in the SLA specify service terms and levels of the provided
service on which to agree and may contain also monetary elements. If negotiation
adapts to changing QoS demands of the user, the negotiation is dynamic. For example,
the user might request for more Fog storage instances. SLA terms might be formalised
either by standardised application-agnostic templates, such as WSLA [38] and WS-
Agreement [39], or in ad hoc manner that is understood by the enclosed parties. This
paper contributes to formalisation of the SLA negotiation by defining custom SLA
templates, as described in Section 4.3.

Deployment (Establishment): Service requests from users are provisioned in respective
Fog storage nodes. The SLA specification and evaluation define the allocation capacity
of resource nodes. It is common to classify SLAs in various classes, such as gold,
silver and bronze, to which users are assigned. In our work, SLA is established by
applying user-specified QoS requirements and cost constraints in the SLA template,
and then invoking the Multi-objective optimisation framework to enforce them.

Monitoring: The deployed services, as well as the resource nodes where the services are
run, are being monitored periodically for their health status. In case of substantial
service disruptions, the terms of the SLA might get violated. Monitoring can span
many dimensions, such as FRs and NFRs of the job, status of resource nodes and
network conditions. We use monitoring to estimate performance-related metrics to
detect SLA violations.
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Violation: The likelihood of a job failing or not meeting its defined service levels represents
a violation alert and may be sometimes reported as part of monitored data. Our work
focuses on SLA control mechanisms in order to maintain QoS as agreed by the SLA.

Reporting: Provisioning of services and audits is reported in log files that can be securely
stored on trusted storage infrastructures, immutable ledgers or similar.

Termination: An SLA may end either when the service is finished or as a response to the
violation of one of the parties.

This work is mainly focused on the negotiation and deployment stages, whereas the
implementation of the monitoring, violation detection, reporting and termination stages in
the context of SLA management are elaborated in our previous work [40].

Figure 2. Modelling and implementing the SLA life cycle for Fog storage.

4.2. SLA Specification

In the context of Fog computing, one of the most important components of SLA are
the terms of operation, which define SLA parameters of consideration and their respective
Service Level Objectives (SLOs). For instance, given that cost is an SLA parameter, then an
SLO for it could be

cost ≤ $5/month.

Therefore, SLOs behave as constraints to the agreed SLA parameters. Essentially, SLA
parameters can be considered to be the QoS attributes (e.g., availability, throughput and
operation cost), whereas software engineers’ QoS requirements can be considered as the
SLOs. In the scope of this work, the contract is made between two entities: the service
customer and the service provider. Essentially, the service customers are the software
engineers, whereas the service providers are the Fog node providers. In this paper, it is
considered that software engineers that develop applications for various IoT scenarios,
have specific QoS requirements and demand their data to be dynamically stored in the Fog.
Fog node providers, on the other hand, own the Fog nodes whose computing and storage
resources belong to the pool of available sources and are responsible of assuring that their
Fog nodes deliver the guaranteed QoS.

SLAs are specified either formally or sometimes via natural language, as a standalone
agreement or as a part of general terms of service conditions. For autonomous comput-
ing, a representation in natural language is not desired because computers are still not
good enough at interpreting natural text in a precise way. Thus, several proposed SLA
specification formats and frameworks exist; some of them are standardised.

Bilateral [41] is Java, .NET and Web Service-based protocol, originating from resource
reservation in Grids. It supports negotiation, dynamic establishment and management,
metrics specification, definition of management actions, reuse, type systems and most of
the SLA life cycle steps. Standard Web Services Agreement (WS-Agreement) [39], defined
by the Open Grid Forum, offers a framework and protocol, both based on XML syntax.
Contrary to the bilateral protocol, WS-Agreement does not support metrics specification,
but it does support all the SLA life cycle steps. Web SLA (WSLA) [42], proposed by IBM,
is similar and also supports metrics specification. Additionally, a language for Quality of
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Service Specification (QML) [43], proposed by HP, also supports type systems. Web Service
Offerings Language (WSOL) [44] is not suitable for negotiation. SLAng [45] is feature-wise
similar to WS-Agreements, while covering less SLA life cycle steps. Finally, QUO [46] is a
CORBA-specific framework with similar features to SLAng.

So far, not much effort has been devoted towards using standards (e.g., WSLA and
WS-Agreements) or designing standards for SLA specifications, while most of the existing
papers rely on ad hoc representation of SLAs [37].

4.3. SLA Specification Language for Fog Storage

Business requirements addressing QoS can be translated into SLOs, which are formally
expressed in SLA specifications. While most existing public Cloud providers specify SLAs
in natural language, many attempts have been made to define machine-readable templates.
Some of them have been standardised, but their adoption in either academic or indus-
trial environments is still weak. Machine-readable SLA specifications are important for
portability reasons, for simplified SLA negotiations, ease of use and control. Furthermore,
most specifications are oriented towards IaaS, PaaS and SaaS Cloud types, while Cloud
federations and StaaS Cloud types in particular are less commonly addressed. Moreover,
only few existing SLA specifications are able to capture dynamic behaviour of Cloud and
network services. Nevertheless, in a federated Cloud environments with a large selection
of services with common functionality but distinct QoS, SLA negotiation should not only
result in satisfiable SLAs but also in the best possible SLA subject to multiple criteria.

To the best of our knowledge, SLA specifications targeting all of the above concerns
are non-existing; therefore, in this paper, we propose a new SLA specification language
that is based on CSLA [9]. The main features of our SLA specification are domain-specific
orientation (i.e., targeting QoS aspects of Fog computing nodes, cost, delivery and distri-
bution), support for dynamic nature of infrastructures, fine-grained validity time-frame
specification, infrastructure-based SLA contracting, differentiation of SLA customers into
Fog infrastructure owners and infrastructure users, and multi-criteria optimisation spec-
ification, which allows for controllable optimisation of objectives within a collection of
SLA-compliant solutions.

Figure 3 shows an SLA specification diagram. The core parameters in our SLA
specification are:

• Parties are entities specified with unique IDs that sign the SLA agreement. Namely,
the Signatory represents the service provider and service costumer, whilst Supporting
represents trusted third party entities (e.g., trusted monitoring service provider).

• Validity refers to the agreement validity in the specified time period.
• Fog Service Definition is a detailed description of a storage node in the Edge-Fog-Cloud.

It represents an IaaS, specified with attributes such as operating system, architecture
type, amount of resources and cost.

• Guarantees are a set of precondition rules and SLOs, where the precondition rules refer
to hard constraints (i.e., regional and/or tier restrictions) and SLO refers to a constraint
on which parties are obliged to respect, how long an SLO is valid and which service
an SLO applies to.

• Parameters are defined as a guarantee in an SLO definition. They are defined by a set
of metrics, where a metric is the smallest unit that can be measured, and is defined by
an arbitrary name, the type of its value, and the unit of measure. As future work, we
will investigate on using simple metrics on monitoring directions in order to specify
how often a metric should be monitored.

• Billing contains the total price of the reservation, which in our case is a single value.
However, as future work, we will investigate on the definition of penalties in case an
SLA is violated.

• Terminations contain a set of policies describing what events could terminate an SLA.
In the future, we will also investigate on potential termination policies and the different
associated penalties.
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Figure 3. SLA specification diagram for storage in the Fog.

In the SLA specification, section Parties lists exactly two stakeholders, both of which
are the holders of the agreement. One of the stakeholder is responsible for providing
services under the QoS constraints as specified in the SLA, while the other is a service
customer, either storage node owner or storage node user. The owner can also be a user
while the reverse is not true. Separation of the customer types allows for fine-grained SLOs
and billing specification.

Validity of the SLA specification allows for specification of time frames within which
the SLA should be enforced and maintained. The specification offers two different validity
time span declarations: (1) an explicit time interval declaration and (2) a lifetime declaration
that is valid as long as the storage node has not been deleted or structurally changed.
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Validity time spans can also be combined with the following restrictions. Only explicit
validity time spans can coexist and are interpreted as a union of time intervals, whereas
both the warm up and the lifetime declarations are mutually exclusive from the other two.
Explicit interval declarations can also be defined as periodically reoccurring time events.
To better understand the applicability of the described SLA specification, we provide
open access to an SLA instance (https://bitbucket.org/decenter-ul/sla-specification/src/
master/sla-specification, accessed on 5 January 2022) that has been created and used in
Section 6.

4.4. SLA Parameters

SLA parameters, as already mentioned, are observable service properties that are used
to define the SLOs. The SLA parameters are initially used as input parameters in the Pareto
decision-making process to determine optimal storage nodes and then are continuously
monitored during the runtime of the application. The selection of SLA parameters in this
work is based on in-depth research undertaken by several H2020 research and innovation
projects. The baseline information used for the selection of SLA parameters is based on:

• Analysis of the various public Cloud providers and their currently offered SLA con-
tracts (e.g., AWS S3 availability SLA (https://aws.amazon.com/s3/sla/, accessed on
5 January 2022));

• Information gathered from a detailed analysis of the available literature related to
SLA contracts for Cloud storage and wider SLAs related to Cloud computing (e.g.,
WSLA [38], CSLA [9], SYBL [47], Contrail [48] and SLA@SOI [49]);

• Analysis of the monitoring and control possibilities for SLA parameters, which can be
implemented as a monitoring system.

In this research, the following SLA parameters are chosen for Fog storage services:
availability, throughput and cost. In the following paragraphs, each of the selected parame-
ters is defined and described.

4.4.1. Availability

Service availability a is commonly defined as a = u
u+d , where uptime u and downtime

d respectively refer to the percentage of time a service is being up and functional or being
down, i.e., not functional [50]. For example, many public Cloud service providers expose
storage service over an HTTP API and the storage service is considered non-functional if
an HTTP request towards the storage returns “HTTP 50x” errors. To the Cloud provider
this means that a particular HTTP request cannot be fulfilled with respect to the expected
result, where the causes of the error could be many, such as hardware equipment failures
(e.g., disks, network switches, cables), software bugs, software updates, misconfiguration,
and high requests rate. However, the availability SLA does not account for API service or
network failures that might happen before a request reaches the API service.

In our setting, we attempt to take into account any Cloud provider, being private
or public, as well as any Fog and Edge provider. Another consideration is the service
availability from client’s perspective rather than service provider’s. This means that any
failures in delivering a storage service to a client that could be attributed to the respective
service provider, count towards the unavailability. Therefore, SLA for the storage availabil-
ity also includes uptimes of the corresponding API service, DNS service and the network
paths between the client and the service provider. Under a reasonable assumption that
the public Internet offers sufficient redundancy in network connectivity, we claim that
long-term observations of storage service through periodic monitoring should lead to good
estimations of the actual service availability figures.

4.4.2. Throughput

Throughput refers to the volume of application data that are transmitted over a period
of time, excluding the bits from protocol overhead and retransmission, such as TCP/IP and

https://bitbucket.org/decenter-ul/sla-specification/src/master/sla-specification
https://bitbucket.org/decenter-ul/sla-specification/src/master/sla-specification
https://aws.amazon.com/s3/sla/
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HTTP headers, and acknowledgements. In the context of storage, throughput differs for
read and write operations (i.e., download and upload operations).

Within this work, read throughput refers to the expected number of bytes received
per unit of time at the client from a storage server, whereas write throughput refers to the
expected number of bytes sent per unit of time from the client to the file server. In both
cases, only the bytes that comprise the file are counted. In some published works, such
as [51], this metric is also known as the goodput (or application throughput).

4.4.3. Cost

Cost is another important SLA parameter. Public Cloud storage providers define
several separate cost units: storage cost, operation cost, data transfer cost, storage API access
cost, Content Delivery Network cost, early object deletion penalty, transfer acceleration
cost and other costs. Deriving cost as a single amount billed per month to a user for storing
and using a file requires compounding of the individual cost units with the respective
information about the file size, the number of read and write operations, the file life-span
and so on. In addition to that, commercial Cloud storage providers usually implement a
multi-tariff block pricing model [52], in which the storage cost per stored byte decreases
for larger accrued amount of stored data. As a result, modelling cost precisely is overly
complex and for our purposes unnecessary, yet we do agree that a different cost model
could affect the results presented in this work. The complexity is likely one of the reasons
why in the literature cost models vary significantly. For a fine-grained cost model, we refer
the reader to the work of Weibel et al. [53]. However, in their work, the pricing model
specifically targets the pricing schemata of commercial Clouds or, in more general terms,
the schemata that follow such a model.

In the literature, there is no common definition of cost models for Fog environments
to be found. In the context of this work, we define cost as a composition of three cost
parameters: (1) storage cost cs, which is the price that the user has to pay to the storage
provider for storage of data on the Fog node; (2) data transfer cost ct, which is the accrued
transferred amount of bytes per some time unit; and (3) operation cost co, which is the cost
of read and write operations (i.e., API call costs) per time unit.

Given a file f , which has to be stored over time t in storage s. Then, the cost of storing
cs can be expressed as

cs(s, f , t) = t · size( f ) · cs(s), (1)

where size( f ) designates the size of file f in GB, time t is measured in months and cs(s) is
the unit storage price of storage s, expressed in a chosen currency per GB per month.

Furthermore, the data transfer cost ct for transferring file f from storage s to client p is
defined as follows:

ct(s, p, f ) = size( f ) · ct(s, p) (2)

with ct(s, p) designating the unit cost per GB for transferring data from storage s to client p.
It is a common practice among commercial Cloud providers to only charge for downstream
transfers while keeping the upstream transfers free of charge. Thus, without sacrificing the
practicality, we follow the same assumption.

The operation cost co(s) refers to the cost of a single request for read or write operation.
Most often, a batch of bytes is read or written in a single API call.

Finally, by combining the storage cost, data transfer cost and operation cost, the ac-
crued cost of storing and accessing file f in storage s from client p over time t is expressed
in the following way:
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c(s, p, f , t) =

cs(s, f , t) (cost for storing)

+ nr · (ct(s, p, f ) + co(s)) (cost for reading)

+ nw · co(s) (cost for writing)

with nr read and nw write API calls. In our case, we assume that the SLA is defined
separately for each file (thus we know its size) and that the client p is known in advance.
In addition, we assume that the number of reads nr and writes nw are also known, or at
least, we know their tight upper bounds. In an SLO, this cost parameter is expressed as an
accrued cost per month. One may see such a definition of cost also as a monthly budget
for storing and accessing file f , although it may happen that the budget is exceeded if the
respective SLO is violated.

5. Pareto-Based Decision Making for Placement of Storage Containers

The users of Cloud storage services usually need to consider multiple quality require-
ments, which often appear to be conflicting. Finding an optimal placement option for
the necessary storage containers, that is, the deployment of the storage infrastructure is
a complex task. Particularly, altering one parameter may strongly influence the other
parameters. For instance, higher storage availability requires increased system redundancy,
which could lead to higher operational costs. In order to facilitate the process, the proposed
solution implements the concept of domination and Pareto optimality. This concept of
domination in the field of multi-criteria decision making has been used and described in
prior studies [54,55].

Pareto front is an efficient tool in the decision-making process, because the shape and
spread of the Pareto front can provide efficient exploration of the non-dominated solutions’
space and investigate the trade-offs.

In this section, we briefly introduce the reader to the multi-objective optimisation
problem and to some of the related terms, and then finally express the investigated problem
as a multi-objective optimisation problem.

For a set of solutions X = {x1, x2, . . . , xn} and a set of objective functions fi : X → R,
i ∈ {1, 2, . . . , m}, the efficient set is a set of non-dominated solutions. A solution xk
dominates solution x` if and only if xk is not worse than x` in any of the objectives and
is strictly better in at least one objective. The Pareto front is the objective space of non-
dominated solutions. The efficient set is the solution to the corresponding multi-objective
optimisation problem.

In our problem, we are concerned with storage nodes selection in such a way that the
SLOs are respected. This can be effectively translated to the constrained multi-objective
optimisation problem, as follows. The set of solutions is represented by storage nodes.
The objective functions characterise the storage nodes in terms of the SLA parameters
as defined in Section 4.4; thus, the number of objectives is three. What means better
depends on each of the SLOs. For the availability and throughput, higher values are better
than smaller while for the cost, smaller values are better than higher. By negating the
availability and throughput values, the dominance relation translates to minimisation in all
the objectives.

The method used to calculate the efficient set (and the Pareto front) is non-dominated
sorting, such as the algorithm in NSGA-II [56] used for deriving the Pareto front of one
generation of solutions. However, in our setting, no genetic operations of crossover and
mutations are required, because all the solutions are known in advance. In other words,
as we do not implement data partitioning (i.e., split a single file into data chunks and
distribute them into several storages), no service composition is required.

In terms of SLA, all the solutions presented in a Pareto set are feasible, i.e., they
comply with the SLOs. Essentially, the Pareto set is important from the user perspective
as it provides control over the optimisation step. It enables a user to express the QoS
requirements and later on select the preferred storage option among the offered Pareto
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optimal storage infrastructures (deployed storage containers). After a point is selected,
the point is translated to a decision vector, expressing the relative preference over multiple
objectives. The decision vector is written into an SLA specification (see Section 4.3 for the
format). Let x∗ ∈ X∗ denote a selected point in the Pareto set X∗. Then, the decision vector
w is obtained as

w =
x∗

|x∗| ,

i.e., w equals to the selected point normalised by its second norm.
Let (c, r, p) respectively denote storage cost, reliability and performance objectives.

Then, the above formulation allows for simple expression of various preferences, which
can be predefined, such as “best storage cost” (1, 0, 0), “best reliability” (0, 1, 0) and “best
performance” (0, 0, 1). Whenever the Pareto front is recomputed for a set of Fog storage
nodes, both the number of points in the Pareto set as well as their positioning might change.
Therefore, it is unlikely that in the newly recomputed Pareto set X∗, there would exist a
point x ∈ X+ that will exactly match the decision vector w, i.e., Pr(∃λ ∈ R : x = λw) = ε
for some small ε. The reason for this is that at least one of the QoS aspects is very likely
to change very often with time as, for example, performance. For the same reason, the
existing mapping between storage nodes no longer complies with at least one of the SLOs,
which causes the re-computation of the Pareto set in the first place.

6. Experimental Evaluation

The recently developed DECENTER Fog and Brokerage Platform is used to orchestrate
containers across the Things-to-Cloud computing continuum. The DECENTER Platform is
used to evaluate the applicability of the proposed decision-making mechanism alongside
the SLA specification. This section presents results from the experimental evaluation.

6.1. Implementation

The DECENTER platform offers means to compose AI-empowered applications that
perform AI processing and storage operations over large quantities of data gathered from
IoT devices; discover and orchestrate resources across the Edge-Fog-Cloud continuum. It is
organised in three functional layers:

• Application Services offer services for the composition of smart applications;
• Brokerage Platform facilitates resource sharing among infrastructure owners. This

layer allows brokerage and negotiation of resources that can belong to different admin-
istrative domains by implementing blockchain-based mechanisms. These mechanisms
are described in our prior works [40,57];

• Fog Platform facilitates resource allocation, monitoring and orchestration in the Edge-
Fog-Cloud continuum. Hence, the proposed SLA specification (i.e., SLA manage-
ment component and Pareto-based decision-making mechanism) is part of this layer.
The SLA specification is represented by a JSON structure that is exchanged among the
components in this layer. In particular, the SLA management component dynamically
certifies SLAs stipulated with other cloud/fog providers when some resources are
rented through the Brokerage Platform, by taking as input the needed monitoring
data and notifying the Brokerage Platform if any SLA violations occur. Essentially,
the Pareto-based decision-making mechanisms complement the set of (re)deployment
algorithms that are available in the platform [58,59]. The Pareto-based decision-
making mechanisms are implemented as a RESTful Java microservice that are run in a
Docker container.

6.2. Experimental Evaluation and Discussion

The process of deriving a Pareto front starts by selecting all available Fog storage nodes
that meet the minimal objectives’ criteria, requested by the user. Once the nodes that meet
the minimal requirements are selected, they are pair-wise compared and a non-dominated
sorting is performed. The result provides a subset of optimal Fog storage nodes that have
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optimal balance in relation to the three conflicting objectives. Hence, the user is offered a
reduced number of storage nodes, which are closest to the chosen requirements.

To prove the feasibility of the described decision-making method, the Pareto front
is evaluated in two separate cases: (1) with randomly generated set of 100 nodes with
simulated metrics and (2) with a set of 13 storage nodes with real-time metrics (see Table 2).
All available storage nodes are situated in the countries within the European Union.

Table 2. Experimental testbed infrastructures with metrics measured from Slovenia.

Infrastructure Location Availability
[%]

Throughput
[Mb/s] Cost [$]

aws-eu-west-3 France 99.999 12.1 0.306
aws-eu-south-1 Italy 99.999 5.41 0.297
aws-eu-central-1 Germany 99.999 11.81 0.237

gck-eu-west-3 Germany 99.999 21.35 0.200
gck-eu-west-6 Switzerland 99.999 20.73 0.221

azr-de-central Germany 99.95 18.22 0.021
azr-eu-west The Netherlands 99.95 19.62 0.020

si-node-0

Slovenia

89.0 12.01 0.001
si-node-1 89.0 17.99 0.015
si-node-2 90.0 10.88 0.050
si-node-3 90.0 20.49 0.022
si-node-4 90.0 15.1 0.001
si-node-5 90.0 12.3 0.001

The metrics for the 13 real storage nodes were gathered from Slovenia in a period of
two months prior to the evaluation process.

The Pareto front is derived on the basis of the SLA parameters that are described in
Section 4.4. Essentially, the Pareto front is built based on the trade-offs between storage
availability, network throughput and cost as conflicting objectives. The result of the
decision-making process for the simulated environment is illustrated in Figure 4. From the
plots, it is noticeable that in the moment when the user has to choose a storage from
100 available storage nodes, the Pareto front significantly narrows down the choice to
the non-dominated nodes by removing up to 85% of the nodes that do not belong to the
Pareto front.

Figure 4. Pareto front derived from the experimental evaluation with simulated input data. The plot
on the left illustrates all available Fog storage nodes, whereas the plot on the right illustrates only the
non-dominated nodes that form the Pareto front.

Similar to the simulated environment, the Pareto-based decision-making mechanism
successfully derived the optimal nodes among the pool of available Fog nodes in the DE-
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CENTER Fog and Brokerage Platform, where it narrowed the choice of optimal Fog storage
nodes to five possible non-dominated solutions, as illustrated in Figure 5. Upon deriving
the Pareto-optimal storage nodes, the user has a significantly easier task selecting the most
desired storage infrastructure, which is done by performing a trade-off between the SLOs
as illustrated in Figure 6.

Figure 5. Pareto front derived from the experimental evaluation with existing storage nodes located
in Europe. The plot on the left illustrates all available Fog storage nodes, whereas the plot on the
right illustrates only the non-dominated nodes that form the Pareto front.

Figure 6. Trade-off between the nodes forming the Pareto front.

In summary, the proposed decision-making method successfully derived optimal
storage nodes by utilising the newly proposed SLA specification that consisted of the chosen
input parameters for the decision-making process. The proposed method successfully
highlights the optimal storage nodes and reduces the number of possible choices to only a
few, hence simplifying the selection process for the service user.

7. Conclusions

With the rise of the IoT and the number of smart applications in various domains,
there is an increased demand to provide assurances that the applications will satisfy the
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requested QoS. Hence, providing means to establish the connection between software
engineers and service providers by stipulating SLAs is of high importance.

By introducing a novel SLA specification and Pareto-based decision-making method,
this paper provides means to deploy databases and file systems with guarantees for high
QoS in the Things-to-Cloud continuum. The newly proposed SLA specification, extended
the existing CSLA specification with attributes allowing to define a node in the Things-
to-Cloud continuum. Moreover, this paper investigated specific QoS parameters that are
particularly important for data management operations. Significant effort was made to
precisely define SLA parameters, and chose explicit formulae for their calculation based
on lower-level QoS parameter measurements. In the context of this work, three distinctive
SLA parameters (i.e., throughput, availability and cost), are used, however, the choice can
be extended towards more parameters. In addition, the applicability of the Pareto-based
decision-making method for the provisioning stage was evaluated, which showed that the
proposed solution was able to select optimal storage nodes and thus remove up to 85% of
the initially allocated nodes that were not optimal storage nodes in respect to the defined
QoS requirements.

The usability of the proposed solution was validated by using the DECENTER Fog
Computing and Brokerage platform and can now be used with the platform. As a result
to the successful results, our specification can be used for interoperability purposes with
other Cloud storage platforms. In further research, the developed SLA approach will be
used in various smart applications involving the IoT and will be further improved with a
goal to become a standard.
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