
����������
�������

Citation: Anguiano-Gijón, C.A.;

Cid-Gaona, A.; Chávez-Delgado,

J.M.; Vázquez, C.R. On the Design of

Regulation Controllers for

Automation Systems with RCPetri.

Appl. Sci. 2022, 12, 3294. https://

doi.org/10.3390/app12073294

Academic Editor: Dimitris Mourtzis

Received: 2 February 2022

Accepted: 15 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

On the Design of Regulation Controllers for Automation
Systems with RCPetri

Carlos Alberto Anguiano-Gijón, Anibal Cid-Gaona, José Manuel Chávez-Delgado and Carlos Renato Vázquez *

Escuela de Ingenieria y Ciencias, Tecnologico de Monterrey, Av. Ramón Corona 2514, Zapopan 45201, Mexico;
a00834072@itesm.mx (C.A.A.-G.); a01066506@tec.mx (A.C.-G.); a01375065@tec.mx (J.M.C.-D.)
* Correspondence: cr.vazquez@tec.mx

Abstract: Regulation control for Petri nets is a control framework that allows the design of sequence
controllers for automation systems in a systematic and efficient way. In order to implement this
control framework, the MATLAB® app RCPetri has been developed. In this work, the RCPetri
tool functionalities are described, including model generation, automatic specification generation,
automatic control design, model and control simulation, automatic translation to PLC code, and
communication by Modbus TCP/IP and OPC UA. Furthermore, three examples are presented to
illustrate the application of the tool and the regulation framework: an electro-pneumatic device, a
process control system, and a robotic manufacturing cell under a decentralized control scheme.

Keywords: automation; industrial informatics; discrete event systems; Petri nets; regulation control

1. Introduction

Petri nets (PNs) is a family of mathematical models that have been extensively used for
representing and analyzing systems that evolve through the occurrence of events named dis-
crete event systems [1–3]. Applications include the analysis of traffic [4], risk assessment [5],
biological systems [6], logistics [7,8], and manufacturing systems [9], among others.

One application of PNs that has received a lot of attention in the literature is the
design of control algorithms for manufacturing systems. The most common approach
consists of the design of places (monitors) that control the firing of transitions, in order to
impose a requirement described as a linear inequality, named generalized mutual exclusion
constraint (GMEC) [10–13]. These constraints are useful to enforce safety specifications,
avoiding states when two or more processes use the same resource. This control technique
has also been extensively investigated to avoid blocking states in particular classes of PNs
(see, for instance, [14–17]). A recent survey on the control of PNs can be found in [18].

Regulation control [19–21] is a different control paradigm, the objective of which is to
design controllers that impose sequences of sensors and actuators activation. In detail,
the system to be controlled, named Plant, is modeled as an Interpreted Petri net (IPN),
which is an extension of PNs with labels associated with places (representing sensors)
and transitions (representing actuators). The required behavior is described as an IPN
as well, named Specification, representing required sequences of sensors and actuators
activation. Then, a controller is designed as an IPN that enforces the Plant to evolve
according to the given Specification. Common problems in automation systems, where
the engineer requires to program a routine so the Plant describes a required operations
sequence, can be addressed by this approach. The advantage of using this scheme is that
the engineer only specifies the required tasks in a high-level description; next, the controller
can be automatically generated by using the algorithms that have been developed for this
purpose [19–21]. Furthermore, once the IPN controller is designed, it can be automatically
translated into programmable logic controller (PLC) code for implementation.

In order to perform a practical implementation of the regulation control approach,
we have developed a MATLAB® app named RCPetri [22], which is described in this work.

Appl. Sci. 2022, 12, 3294. https://doi.org/10.3390/app12073294 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12073294
https://doi.org/10.3390/app12073294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4191-4143
https://doi.org/10.3390/app12073294
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12073294?type=check_update&version=1

Appl. Sci. 2022, 12, 3294 2 of 19

The app was designed to help the user to design and implement regulation controllers by
following a control design workflow. In a first step, the app allows us to define an IPN that
represents the Plant in a graphical way. Next, the user can define the required behavior
in high-level fashion by using standard Excel tables, which are automatically translated
by the app to an IPN Specification. Later, the controller can be automatically generated.
Furthermore, the closed-loop system can be simulated to verify the behavior of the Plant
under control. Moreover, the IPN controller can be automatically translated into PLC code,
for its final implementation. Furthermore, a communication module has been implemented,
which allows synchronization with other software or hardware through protocols Modbus
Internet Protocol Suite (Modbus TCP/IP) and object linking and embedding for process-
control-unified architecture (OPC UA). In order to illustrate the use of the app for the
synthesis of controllers and their application, three examples are described, as follows:

1. An electro-pneumatic arm that can perform four different tasks, whose controller is
implemented in a PLC;

2. A process control system simulated in a supervisory control and data acquisition
(SCADA) software synchronized to the app via Modbus TCP/IP;

3. A manufacturing system with two robotic cells, simulated in a dedicated software
and synchronized to the app via an OPC UA server, under a decentralized control
scheme.

Different research groups have developed software tools for modeling and analyzing
different PN types. For instance, GreatSPN [23] and PIPE2 [24] are well-known tools for
performance analysis in generalized stochastic PNs. TimeNET [25] allows the analysis
of non-Markovian stochastic PNs. Similarly, GPenSIM [26] can be used for performance
evaluation in event graphs. CPN Tools [27] and Access/CPN [28] were proposed for
the modeling, simulation, and analysis of colored PNs. Continuous and hybrid PNs
can be simulated in HYPENS [29] and SimHPN [30]. PNetLab [31] was developed to
model and simulate timed/untimed PNs and colored PNs, allowing the possibility to
simulate PNs under control, where the controller is a subroutine that provides a conflict
resolution policy. In [32], a combination of the graphical editor Petri Net Editor and
the toolbox Petri Net Engine is used to implement a PN conflict resolution policy into a
microcontroller. All of these tools allow us to graphically define a PN system, simulate
the system, and perform particular types of analysis (mainly performance analysis and
structural analysis). Nevertheless, despite the large amount of PN software, none of the
existing tools allow us to define IPN with place and transition labels, and to synthesize
regulation controllers. Moreover, to the best of our knowledge, none of the tools allow us
to synchronize PN simulations with external software/hardware via standard protocols,
and to automatically generate PLC code. Furthermore, the implementation of RCPetri on
MATLAB® will allow other researchers to use it for the analysis and application of other
algorithms, such as GMEC control, PN observers, and PN diagnosers, among others.

This paper is organized as follows: Section 2 presents basic definitions on IPN.
Section 3 explains the regulation control framework. Section 4 introduces the RCPetri
app with its main features, and the algorithms implemented for the main functionalities.
Section 5 presents the application of RCPetri in the three examples previously mentioned.
Section 6 summarizes the conclusions.

2. Basic Concepts

Basic concepts and definitions concerning PNs and IPN are recalled in this section
(for more details see, for instance [3,33]).

Definition 1. A Petri net (PN) structure, N , is a bipartite digraph represented by the 4-tuple
N = 〈P, T, I, O〉, where P = {p1, p2, ..., pn} is the finite set of places, T = {t1, t2, ..., tm} is the
finite set of transitions, I : P× T → N0 is a function representing weighted arcs connecting places
to transitions, and O : P× T → N0 is a function representing weighted arcs connecting transitions
to places.

Appl. Sci. 2022, 12, 3294 3 of 19

The incidence matrix of N is defined as a |P| × |T| matrix C, such that C[i, j] =
O(pi, tj)− I(pi, tj), ∀pi ∈ P, ∀tj ∈ T. Graphically, places are represented by circles, transi-
tions by rectangles, and arcs by arrows. Given a node v ∈ P ∪ T, •v (resp. v•) denotes the
set of nodes directly connected to v (resp. nodes directly connected from v). A PN is said
to be a state machine if each transition has only one input and one output place (i.e., ∀t ∈ T
|•t| = |t•| = 1) and the Petri net graph is strongly connected.

Definition 2. An Interpreted Petri net (IPN) system is a 8-tuple Q = 〈N , M0, ΣI , ΣId, ΣO, λI ,
λId, ϕ〉, where:

• N is a PN;
• M0 is the initial marking, defined as a function, M0 : P → N0, describing the number of

tokens (dots) initially residing inside each place;
• ΣI is the input alphabet—each element of ΣI is an input symbol;
• ΣId is the identity alphabet—each element of ΣId is an identity symbol;
• ΣO is the output alphabet—each element of ΣO is an output symbol;
• λI : T → 2ΣI is the input labeling function that associates transitions to input symbols.

A transition can be associated with several input symbols. If λI(tj) 6= ∅, then the transition
tj is said to be controllable, otherwise it is uncontrollable;

• λId : T → ΣId ∪ {ε} is the identity labeling function, where two transitions cannot have the
same identity label and each transition can have one identity label at most; ε represents that
the transition has not identity label;

• ϕ : P→ 2ΣO is the output labeling function that associates places to output symbols. A place
can be associated with several output symbols.

The marking distribution of an IPN describes the state of the represented dynamical
system; the marking changes according to the following rules:

• Given a current marking distribution, Mk : P → N0, an external observer reads the
symbols associated with the marked places, whose set is denoted as ϕ(Mk) = {o ∈
ΣO|o ∈ ϕ(p), Mk(p) > 0}. ϕ(Mk) is said to be the current output of the IPN and the
symbols of ϕ(Mk) are said to be indicated at Mk.

• A transition tj is said to be marking-enabled at marking Mk if ∀pi ∈ •tj, Mk(pi) ≥
I(pi, tj).

• A transition tj is said to be label-enabled at marking Mk if every symbol a ∈ λI(tj) is
indicated by either the current marking Mk or an external agent. If λ(tj) = ∅, then tj
is always label-enabled.

• If tj is marking-enabled and label-enabled at Mk, then it is said to be enabled, and it
can be fired (denoted as Mk[tj >). Otherwise, it is said to be disabled.

• The firing of a transition tj, enabled at Mk, leads to a new marking Mk+1 (denoted as
Mk[tj > Mk+1), caused by removing I(pi, tj) tokens to each place pi ∈ •tj and adding
O(pi, tj) tokens to each place pi ∈ tj

•.

The marking function M can be expressed as a column vector M ∈ N|P|0 , such that
M[i] = M(pi), ∀pi ∈ P. In this work, both M and M will be called marking, since both
represent the same information. Thus, a marking Mk+1, reached from Mk after firing a
transition tj, can be computed as Mk+1 = Mk + C~tj, where ~tj is the j-th column of the
identity matrix of dimension |T|. The function ϕ can be represented by a |ΣO| × |P| matrix
ϕ, in which ϕ[i, j] = 1, if pj is labeled with the i-th output symbol and ϕ[i, j] = 0 otherwise.
The output vector of the IPN at Mk is defined as yk = ϕMk.

A firing sequence is a sequence of transitions σ = titj . . . tk, such that M0[ti > M1[tj >
· · ·Mm[tk > Mm+1. The marking M′ reached after the firing of σ from a marking M can be
computed as M′ = M + C~σ, where~σ ∈ N|T|0 is a column vector, named the Parikh vector,
defined such that~σ[j] = k, if tj is fired k times in σ. This is denoted as M[σ > M′, and M′

is said to be reachable from M.

Appl. Sci. 2022, 12, 3294 4 of 19

A PN system is said to be bounded if ∃k ∈ N, such that ∀p ∈ P and for any M reachable
from M0, it holds that M(p) ≤ k. A PN system is said to be safe if it is bounded with k = 1.
A PN system is said to be live if ∀tj ∈ T and for any M reachable from M0 there exists a
fireable sequence σ, such that M[σ > M′ and tj is (marking) enabled at M′.

IPN models for complex systems can be built from IPN component models, by using
the synchronous composition. Given two safe IPN Q1 and Q2, the synchronous composi-
tion results in another safe IPN Q3 = Q1‖Q2, defined as the union of Q1 and Q2 in which
the transitions sharing the same identity label are merged, keeping all the transition and
place labels. The synchronous composition is commutative and associative.

Example 1. Consider the double-acting electro-pneumatic actuator driven by a 5/2 valve and its
IPN model shown in Figure 1. The incidence matrix C and the output labeling matrix ϕ is given by
the following:

C =

−1 1 0 0 0 0
1 −1 0 0 0 0
0 0 1 0 −1 0
0 0 −1 1 1 −1
0 0 0 −1 0 1

, ϕ =

[
0 0 1 0 0
0 0 0 0 1

]
.

The input alphabet is defined as ΣI = {a, b}, where each symbol represents a command signal
that allows the change of the valve position (i.e., energizing a coil), which leads to an actuator
movement. The output alphabet is defined as ΣO = {A, B}, where each symbol represents the
activation of a sensor witnessing the actuator position. Then, transitions {t1, t2} are controllable,
while transitions {t3, t4, t5, t6} are uncontrollable. At the initial state (Figure 1a), the actuator is
retracted, the initial marking is given by M0 = [0 1 1 0 0]T and the output vector is y0 = [1 0]T ,
meaning that sensor A is active. By indicating the symbol b, transition t2 fires (i.e., coil b is
energized), and eventually the sequence σ = t2t5t6 occurs, leading to the marking M3 = [1 0 0 0 1]T ,
where the actuator is extended (Figure 1b), resulting in the output vector y3 = [0 1]T , meaning
that sensor B is active.

Figure 1. IPN model for an electro-pneumatic assembly: (a) the pneumatic actuator is retracted;
(b) the actuator is extended.

Appl. Sci. 2022, 12, 3294 5 of 19

3. Regulation Control for IPN

Regulation control is a paradigm, proposed for systems modeled by IPN, developed
to induce sequences of output symbols on the system to be controlled, called the Plant.
These sequences are specified in a high-level fashion by an IPN, called Specification (see,
for instance [19–21]). Then, an IPN, named Controller, is designed for this purpose. Figure 2
shows a scheme describing the closed-loop system. In this, the controller indicates input
symbols to the Plant transitions in order to make a selection of the Plant output (Ω · y)
to be equal to the Specification output (y̆), otherwise stated, to cause the output error
e = y̆−Ω · y to be null. For this, the controller has access to the complete marking of
the Specification (M̆), since the controller and the Specification are implemented in the
same hardware, but it only has access to output signals from the Plant (y), since only
this information is available through the sensors connected to the controller hardware.
In addition, the controller stops the Specification when the output error is not null. The Plant
and Specification are formally defined as follows.

Figure 2. Regulation control scheme for IPN.

Definition 3. The Plant is a safe live IPN, Q = 〈N , M0, ΣI , ΣId, ΣO, λI , λId, ϕ〉, that models
the discrete event system to be controlled. Two places cannot generate the same output symbol;
moreover, input and output alphabets are disjointed.

Definition 4. A Specification is a safe, live-state machine IPN. Q̆ = 〈N̆ , M̆0, Σ̆I , Σ̆Id, Σ̆O, λ̆I ,
λ̆Id, ϕ̆〉, together with a function Ω : ΣO → Σ̆O ∪ {ε} that relates output symbols from the Plant
to Specification output symbols. Each transition of the Specification has a unique identity symbol
that is different from those of the Plant.

Methodologies for modeling automated manufacturing systems as IPN have been
proposed in [19,21]. Moreover, a methodology for designing IPN specifications has been
presented in [34], in which the designer only provides a high-level description of what he
wants to observe from the Plant.

Definition 5. A regulation controller is a safe IPN, Q̂ = 〈N̂ , M̂0, Σ̂I , Σ̂Id, Σ̂O, λ̂I , λ̂Id, ϕ̂〉,
fulfilling Σ̂Id ∩ ΣId = ∅ (i.e., plant transitions do not share their identity symbols with controller
transitions). The closed-loop system is defined as the IPN Qcl = Q‖Q̆‖Q̂.

The regulation control problem consists of the synthesis of a controller that enforces
the closed-loop system to exhibit the following behavior:

• if the output error is not null, then all the Specification transitions are disabled, and any
fireable sequence drives the Plant to a marking where the output error is null;

• if the output error is null, then all the Plant transitions are disabled, but none of the
Specification transition is disabled by the controller.

Appl. Sci. 2022, 12, 3294 6 of 19

A synthesis method for computing such controller was presented in [20]. This method
consists of the following three steps:

1. A marking mapping Π is computed, which relates each specification marking M̆k to a
Plant marking Mk, such that the output error is null, i.e., ϕ̆M̆k −ΩϕMk = 0. Thus,
if the Specification is at M̆k, the Controller should drive the Plant to Mk = ΠM̆k.
The mapping Π is computed by a linear integer programming problem (LIPP) that
minimizes the number of firings between the plant markings (described by Parikh
vectors ~σk), subject to ϕ̆ = ΩϕΠ, ΠM̆0 = M0, ΠC̆~̆tk = C~σk for all t̆k ∈ T̆, and the
entries of Π and vectors ~σk are non-negative integers.

2. For each specification transition t̆k, such that M̆k[t̆k > M̆k+1, for some reachable M̆k,
a fireable controllable Plant sequence σk is computed, such that ΠM̆k[σk > ΠM̆k+1.
Thus, if t̆k is fired in the Specification, reaching M̆k+1, then the Controller must
induce the firing of σk to reach ΠM̆k+1, so the output error becomes null. This is
performed by the A∗ Algorithm 1, which computes a sequence with the minimum
length that drives the Plant from ΠM̆k to ΠM̆k+1. In the algorithm, the starting node
is the empty sequence σε; next, for each new node σ, the cost function is defined as
f (σ) = |σ|+ ||~σ−~σk||1 (where || • ||1 denotes the 1-norm), and the reached marking
Mreached(σ) is computed (i.e., ΠM̆k[σ > Mreached(σ)). Some conditions are included
to ensure controllability (lines 7–10 and 12).

3. Finally, an IPN controller Q̂ is built, which enforces the previously computed Plant
sequences σk, through the indication of Plant input symbols, when the corresponding
specification transitions t̆k have been fired.

Algorithm 1: Computation of a controllable sequence σk.

1 Input: IPN Plant structure Q, starting marking ΠM̆k, ending marking ΠM̆k+1,
Parikh vector~σk.

2 Output: Controllable sequence σk.

3 Initialize Open = {σε} and Closed = ∅. Set Mreached(σε) = ΠM̆k. Set
f (σε) = ||~σk||1.

4 while Open 6= ∅ do
5 Find the sequence σ ∈ Open with the lowest cost f (σ)
6 Compute the set of transitions that are marking-enabled at Mreached(σ) as

TM = {tj ∈ T|∀pi ∈• tj, Mreached(σ)[i] ≥ I(pi, tj)}
7 if ∃ti, tj ∈ TM, such that λI(ti) = λI(tj) = ∅ then
8 Update TM = ∅

9 if ∃ti ∈ TM, such that λI(ti) = ∅ then
10 Update TM = {ti}
11 for each t ∈ TM do
12 if @t′ ∈ TM, such that λI(t′) ⊆ λI(t) then
13 Define σ′ = σt
14 Define Mreached(σ

′) = Mreached(σ) + C~t
15 Define f (σ′) = |σ′|+ ||~σ′ −~σk||1
16 if Mreached(σ

′) = ΠM̆k+1 then
17 Define σk = σ′

18 Stop the algorithm.

19 if σ′ /∈ Closed ∪Open then
20 Set Open = Open ∪ {σ′}

21 Update Closed = Closed ∪ {σ}, Open = Open \ {σ}

Appl. Sci. 2022, 12, 3294 7 of 19

The closed-loop system under the synthesized regulation controller is safe (i.e., bounded),
since the Controller only constraints the behavior of the Plant, which is already safe.
Moreover, the closed-loop system is live, since the Controller induces the occurrence of
each computed sequence, which is fireable and controllable by construction, when the
corresponding specification transition fires, and the Specification is live by definition.

4. RCPetri MATLAB® App

Figure 3 shows the steps that a practitioner should follow to implement the regulation
control framework. The RCPetri MATLAB® app was designed to aid engineers to perform
each of these steps. The app’s interface (shown in Figure 4) includes a main “Menu area”,
a “Visualization panel”, a “Drawing area”, and a “Tab panel”. The app functionality is
organized in Tabs, which can be accessed from the “Tab panel” and the “Tabs menu”.

Figure 3. Workflow for the synthesis of controllers using regulation control framework.

Figure 4. RCPetri app interface, showing the simulation of an IPN model of a 3-DoF pneumatic arm
with a suction cup. The transition marked in green is enabled, while the transitions marked in yellow
are marking-enabled. The current output symbols are {XA, YA, ZA, VB}.

Appl. Sci. 2022, 12, 3294 8 of 19

4.1. Defining IPN Models

The first step is to define an IPN model in the “IPN Tab”, by adding places and
transitions to the “Drawing area”. Later, arcs can be defined by clicking on the “Arc icon”
at the “Arc subtab” and then selecting the nodes to be connected through the arc. Identity
and input symbols can be associated with selected transitions on the “Transition subtab”.
Output symbols and tokens can be associated with selected places on the “Places subtab”.
Arcs are defined by a set of control points, new control points are added to a selected arc by
clicking on the button (“o”) (MATLAB® apps can be slow. MathWorks does not currently
provide a solution to speed up apps. In the case of RCPetri, the speed depends on the
number of nodes and labels to be drawn. It is advised to use the “Zoom tool” to maintain
the number of drawn nodes as small as convenient. Additionally, the “Menu Options”
provides the possibility to avoid writing labels. Another issue in MATLAB® apps is the
mismatch between the cursor and axes coordinates. To correct this, press the “Calibration
button” and next click at the center of the red cross).

Once an IPN is drawn, a name must be given and the “Generate button” must be
pressed. This will compute all the IPN matrices as defined in Section 2, which are packed
in a MATLAB® struct variable with the name of the IPN with the fields Draw (information
for drawing the IPN), M0 (M0), I (I), O (O), AO (ΣO), LP (ϕ), AI (ΣI), LT (λI), AID (ΣId),
and LTI (λId). This variable is accessible and editable from the MATLAB® Workspace, and it
is used for simulation, composition, and control synthesis. A struct variable containing a
previously generated IPN can be uploaded to the app, by using the “Load from WS button”.

Additionally, the “IPN Tab” allows us to design IPNs in a modular way, by composing
IPNs previously generated. However, the app does not currently allow us to define
neither subnets nor subsystems. Thus, once a set of nets are composed, they integrate one
monolithic IPN system. The “Tree panel” at the right lower corner allows us to change the
current IPN by clicking on the name of the desired IPN.

4.2. Simulation

The “Simulate Tab” is used to simulate the current IPN system. Before starting a
simulation, the user must click on the reset button (“R”), in order to compute the initially
enabled transitions. The simulation can be driven in three ways: by clicking on the enabled
transitions on the drawing area, by selecting the transition to fire and pressing the “Step
button”, or by pressing the “Play button”; in the last case, a randomly selected enabled
transition will fire after a number of milliseconds specified by the user (“Delay”). Marking-
enabled transitions are drawn in yellow, while enabled transitions are drawn in green
(see Figure 4). External input symbols can be specified by the user at any time in the
“Input Symbols” text field, symbols must be separated by commas (e.g., a, b means the
simultaneous indication of a and b). Drop down items allows us to select places, transitions
and labels in order to visualize their values during the simulation.

4.3. Specification

The Specification IPN can be defined by drawing and generating an IPN (In this case,
remember that each specification transition must have a unique identity symbol, which
can be automatically generated in the subtab “IPN > Labels”). A more efficient option
is to apply the specification generation algorithm of [34], implemented in the “Spec Gen
Tab”, which translates a set of standard tables (named “Task table”, “Subtask table’,’ and
“Shortcuts table”) into an IPN. These tables can be provided in the Book Editor app (which
can be open directly from the “Spec Gen Tab”) or in an Excel file. To automatically compute
the Specification IPN, the app applies two steps: first, the description of subtasks and
shortcuts are substituted into the “Task table”; later, Algorithm 2 is applied to translate the
“Task table” to an IPN.

Appl. Sci. 2022, 12, 3294 9 of 19

Algorithm 2: Building the IPN Specification.

1 Input: Task table.
2 Output: IPN model Q̆ representing the Specification.

3 Define the place p̆0 with one token. Label p̆0 with the symbols that define the first
operation.

4 for each taskk do
5 Define a transition t̆0

k . Connect p̆0 to t̆0
k .

6 Remove the first operation from taskk, and let r be the number of remaining
operations.

7 for j = 1 to r do
8 Define a place p̆j

k. Connect t̆j−1
k to p̆j

k. Denote as opj
k the j-th operation of

taskk. Label p̆j
k with the symbols that define opj

k.

9 if guard signals are defined for opj
k then

10 Label t̆j−1
k with the guard signals of opj

k.

11 Define a transition t̆j
k. Connect p̆j

k to t̆j
k.

12 Connect t̆j
k to p̆0.

The “Task Table” must have three columns for the following:

1. The workstation name (the Plant can be split in workstations).
2. The task name (one workstation can perform several tasks).
3. The operation sequence (each task is defined as a sequence of operations).

Each operation is described by the output symbols that are active when it is completed,
these must be separated by commas and enclosed by curly brackets; round brackets can
be used to define a set of guard signals that must be active to perform the operation
(e.g., (start, a){A, B, C} denotes that both signals start and a must be active to execute the
operation {A, B, C}, characterized by the simultaneous activation of sensors A, B, and C).
The first operation in all tasks must be the home position. For clarity, operations can be
defined by using subtasksand shortcuts. Subtasks are defined in the “Subtasks table” as
sequences of operations. Shortcuts are defined in the “Shortcuts table” as sets of output
symbols. Figure 5 shows the tables in an Excel file that describe a specification for the IPN
arm model of Figure 4, notice that tasks include subtasks (e.g., HomeArm, TakeIn, etc.),
which are defined using shortcuts. In an Excel file, the Tasks, Subtasks, and Shorcuts tables
must be located in the first, second, and third sheets, respectively.

Figure 5. “Task table” (upper left), “Subtask table” (lower left) and “Shortcuts table” (right) in an
Excel file describing the Specification of the 3-DoF pneumatic arm of Figure 4. Afterwards, the IPN
Specification is automatically computed from the tables.

Appl. Sci. 2022, 12, 3294 10 of 19

4.4. Control Synthesis

Once the Plant and the Specification are defined as IPN, a regulation controller can be
computed in the “Controller Tab”, which implements the methodology introduced in [20]
and resumed in Section 3, synthesizing an IPN controller that enforces the occurrence of
sequences σk in the Plant to make the output error to be null. For this, the app modifies the
Specification output labels (character # is added to each symbol) in order to distinguish
them from the Plant output labels, and later, the labels mapping Ω is computed. The com-
putation of the marking mapping Π is performed by the MATLAB® solver intlinprog().
Next, sequences σk are computed with Algorithm 1. Finally, Algorithm 3 is executed to
build the IPN Controller. Moreover, the app generates the IPN representing the control
program (Q̆||Q̂) and the closed-loop system (Q||Q̆||Q̂).

Algorithm 3: Building the IPN Controller.

1 Input: Plant Q. Specification Q̆. Matrix Π and sequences σk.
2 Output: IPN model Q̂ representing the Controller.

3 for each t̆k ∈ T̆ do
4 %Build a controller subnet Q̂t̆k as follows:
5 Denote the corresponding sequence σk = t1

kt2
k ...tr

k, and let M̆k−1[t̆k >

6 Define a new transition t̂0
k with identity label λ̆Id(t̆k). Set s = 0.

7 for q = 1 to r do
8 if tq

k is controllable then
9 Update s = s + 1.

10 Define a new place p̂s
k and connect t̂s−1

k to p̂s
k. Add the symbols λI(t

q
k) to

p̂s
k.

11 Define a new transition t̂s
k and connect p̂s

k to t̂s
k. Add the symbols ϕ(M′)

to t̂s
k, where ΠM̆k−1[t1

k ...tq
k > M′

12 Define a new identity label δk and add it to t̂s
k.

13 for each p̆j ∈ P̆ do
14 Build a controller subnet Q̂ p̆j consisting of a place p̂j, an input transition t̂k

(identity-labeled as δk) for each t̆k ∈• p̆j, and an output transition t̂k
(identity-labeled as λId(t̆k)) for each t̆k ∈ p̆•j .

15 Then, the Controller IPN model is Q̂ = Q̂t̆1 ||...||Q̂t̆|T̆| ||Q̂ p̆1 ||...||Q̂ p̆|P̆|

Example 2. Figure 6 shows the automatically generated IPN control program (i.e., the synchroniza-
tion of Specification and Controller) for the Plant of Figure 4 and the Specification of Figure 5. Let
us explain the behavior of the closed-loop system. For this, keep in mind that the IPN Plant output
symbols are read by the IPN control to enable control transitions, and vice versa. At the initial state,
the Plant provides the sensor signals {XA, YA, VB, ZA} (operation HomeArm at the Specification
tables). The first task (In_2_RFID) starts when the guard signals {S1On, TagO f f , RFIDIdle}
are simultaneously active, leading to the firing of the control transition t1, removing tokens from
p1 and p11 and marking control places p2 and p7. The marking of the control place p7 indicates
the output symbol Zb, i.e., the controller commands the firing of a Plant transition labeled with
Zb (t18 in Figure 4, which represents energizing coil b of the valve of actuator Z), allowing the
Plant to reach the state characterized by the symbols {XA, YA, VB, ZB} (i.e., the vertical actuator
Z is down, corresponding to operation "InDownReleased"). These symbols coincide with those of
the control transition t7, becoming enabled and thus firing, moving a token from p7 to p12. Next,
the control transition t2 becomes enabled and it fires, removing tokens from p2 and p12 and marking
the control places p3 and p8. Place p8 indicates to the Plant to fire the transition labeled with Va (t9
in Figure 4, which represents energizing coil a of the valve of the suction cup), allowing us to reach
the Plant state characterized by the following symbols: {XA, YA, VA, ZB} (i.e., the suction cup V

Appl. Sci. 2022, 12, 3294 11 of 19

is active, corresponding to operation "InDownTaken"). These symbols coincide with those of the
control transition t8, becoming enabled and firing, moving a token from p8 to p13. Thus, the control
transition t3 becomes enabled and it can fire. This process is repeated until the first task is executed,
and then the closed-loop system (both the Plant and the control program) returns to the initial state.

Figure 6. IPN control program generated for the 3-DoF pneumatic arm model of Figure 4 and the
four tasks defined in the Specification of Figure 5. Due to the size of the IPN, it is shown in detail
(zoomed in) with the first instructions for the first task.

4.5. PLC Code Generation

For implementation, the IPN control program (Q̆||Q̂) can be translated to PLC code
in the “PLC Code Tab”. Two languages are supported, Instruction List (IL) and Structured
Text (ST). In both cases, the application generates the code in a .txt file that is saved in
the current MATLAB® folder. The user can specify the input/output PLC ports for each
symbol by means of a “Symbols Table”, which is provided by either the Book Editor app
table or an Excel file (in the fourth sheet). The table format in both cases is equal, having
four columns: input symbol, input port address, output symbol, and output port address.

Let us explain the translation algorithm. Each place pi of the IPN program is associated
with a memory bit ‘M1x’, where x represents the number i. First, a reset button is added,
which sets the memories associated with the initially marked places to 1, and the other
memories to 0. The second step codifies the dynamic behavior of the IPN program,
each tj is codified following the structure: If Precondition Then Postcondition, where the
Precondition is such that all the memories associated with the input places of tj must be
1 and all the input ports associated with the symbols in λI(tj) must be active, and the
Postcondition is that all the memories associated with the input places of tj are set to 0 and
all the memories associated with the output places of tj are set to 1. Finally, each output
port associated with an output symbol oi ∈ ΣO is activated when the memory associated
with a place in {p|oi ∈ ϕ(p)} is 1.

4.6. Modbus TCP/IP and OPC UA

The app can synchronize input/output symbols with other software or hardware via
Modbus TCP/IP or OPC UA. The app works in a similar way to Client. The “Modbus
TCP/OPC-UA Client Tab” allows us to configure the connection. For this, a “Symbols table”
must be provided, which relates the input/output symbols with the input/output ports (in
the case of Modbus TCP/IP, the ports are numbered consecutively; in the case of OPC UA,
the ports must be defined on the OPC UA server as Boolean variables). A Write/Read panel
is included to help the user to check for the connection and the correct port assignation.

Once the app is linked, the “Simulate Tab” will allow us to simulate the IPN syn-
chronized with the server. For this, the “Reset button” (R) must be pressed and later the

Appl. Sci. 2022, 12, 3294 12 of 19

“Sync button” must be pushed. The input signals (input symbols) will be shown in a text
field. Signals are read with a frequency specified at the “Refresh Delay text field” in the
“Modbus/OPC-UA Client Tab” (delay between consecutive readings in ms). When an
output symbol is generated during the simulation, this is immediately converted to a signal
according to the symbols table and sent to the server.

5. Application Examples

In this section, three different examples are presented to illustrate different features of
the RCPetri app, involving representative devices and automation systems: a pneumatic
system, a process under logic control, and a robotic manufacturing system.

5.1. Pneumatic Arm

This example describes the application of the complete workflow of Figure 3 for the
synthesis and implementation of a regulation controller for the electro-pneumatic arm with
three degrees of freedom (3-DoF), as shown in Figure 7, which belongs to a small-scale
manufacturing cell that assembles wood parts, named caps. According to the workflow,
the first step is to obtain the Plant model. For this, the methodology of [19] was used,
obtaining the IPN depicted in Figure 4, which consists of four submodels, one for each
double-effect pneumatic actuator and another for the suction cup.

Figure 7. Small-scale manufacturing cell. The pneumatic arm has 3-DoF controlled by the same
number of double-effect pneumatic actuators and a suction cup. This arm moves caps between the
conveyor, the RFID station, and the CNC station (see the schematic from top view at the right).

The arm must perform four different tasks:

1. If there is a cap at the conveyor’s In position without a radio-frequency identification
(RFID) tag, then the arm moves it to the RFID station (to attach a RFID tag to it);

2. If the cap has a RFID tag, then the arm moves it to the computer numerical control
(CNC) station (to drill 10 holes on it);

3. If the RFID station has collocated a tag on a cap, then the arm moves the cap to the
CNC station;

4. If the CNC has drilled a cap, then the arm moves it to the conveyor’s Out position.

This Specification was written in the tables depicted in Figure 5. For instance, the first
task In_2_RFID starts from the HomeArm state, characterized by {XA, YA, ZA, VB}. This
task is enabled by the signals S1On (the cap is at the conveyor’s In position), TagO f f
(the cap does not have a RFID tag) and RFIDIdle (the RFID station is available). When
these are active, the subtask TakenIn must be executed, defined as the operation sequence
InDownReleased, InDownTaken and InUpTaken, characterized by {XA, YA, ZB, VB} (i.e.,
at the In position, the suction cup is down and inactive), {XA, YA, ZB, VA} (i.e., at the In
position, the suction cup is down and active) and {XA, YA, ZA, VA} (i.e., at the In position,

Appl. Sci. 2022, 12, 3294 13 of 19

the suction cup is up and active), respectively. The IPN Specification depicted in Figure 5
was automatically computed with the app.

Next, the Controller, the control program, and the closed-loop behavior were computed
with the “Controller tab”. The obtained control program is depicted in Figure 6 and
described at the end of Section 4.4, which was translated to an IL PLC code with the “PLC
Code tab”, obtaining 554 code lines. This code was used to implement the program in a
PLC connected to the actual pneumatic arm, obtaining the desired closed-loop behavior,
depicted in Figure 8. Let us remark that the engineer only provided the model of Figure 4
and the Specification tables of Figure 5, from this point, the app automatically transformed
the tables to the IPN model, automatically computed the IPN control program of Figure 6,
and automatically translated it to PLC code.

Figure 8. Displacement–time diagrams showing the sequences performed by each actuator during
each of the four tasks defined in the Specification. Times are approximated, obtained by visual
inspection.

5.2. Tank Filling Process

This example exhibits the use of RCPetri for the design and simulation of a logic
controller for a tank filling process, simulated in the SCADA software LabVIEW®, in real-
time through the Modbus TCP/IP protocol.

The tank filling process considered here (adapted from [35]) is described by the piping
and instrumentation diagram (P&ID) of Figure 9. The Plant model was obtained by using
the industrial process modeling methodology presented in [21]. In this case, the sensors
and actuators were modeled as two-state devices. Tank levels were model as variables with
three discrete states (empty, low, high), excepting the water tank that also includes the state
medium. These states can be inferred by level sensors LT, for instance, for Soap Tank 101,
both sensor LT-1 and sensor LT-2 are inactive when the tank is at the empty state, named
T1empty; sensor LT-1 is active and LT-2 is inactive at low state, named T1low; both sensors
LT-1 and LT-2 are active at the high state, named T1high. In order to ensure controllability,
additional input symbols δ were added to transitions representing a level change, these

Appl. Sci. 2022, 12, 3294 14 of 19

allow actuators’ controllable transitions to preempt level transitions (δ means waiting until
the level change).

Figure 9. P&ID of a tank filling process (Plant for the tank filling process example).

For the Specification, two different filling sequences were considered. In the first one,
called “Small”, Soap Tank 103 is supplied by Soap Tank 101, the Water Tank 104 is supplied
up to the middle level, next the fluids of Soap Tank 103 and Water Tank 104 are mixed
in the Mixing Tank 105. In the second sequence, called “Large”, Soap Tank 103 is filled
by both Soap Tank 101 and Soap Tank 102, while Water Tank 104 is filled up to the high
level, then the fluids are mixed in the Mixing Tank 105. The Specification is described in
the tables in Figure 10.

Figure 10. Tasks, Subtasks, and Shortcuts tables describing the Specification for the Plant of Figure 9.

Once the IPN Specification was synthesized, the Controller was computed. The IPN
closed-loop system is validated by simulation for implementation. The Plant was simulated
on LabVIEW® as a hybrid dynamical system (the tank levels evolve with continuous
dynamics while pumps, valves and sensors evolve as state machines). Figure 11 depicts
the tank filling dynamics during the “Large” sequence, under the control program being
simulated in the app and connected through Modbus TCP/IP. Note that at the end of the
filling of Tank 101, the control program allows the Tank 102 to start filling immediately.
The simulation showed the effectiveness of the control program, as well as the interaction
between RCPetri and other software (in this case LabVIEW®) in real-time. Figure 12 shows
the simulation of the Plant synchronized through Modbus TCP/IP with the IPN control
program, when the Water tank is filling the Mixing Tank during the “Large" task sequence.

Appl. Sci. 2022, 12, 3294 15 of 19

Figure 11. Dynamic behavior of the tanks levels through the “Large” sequence. First, Soap Tank 1
(blue) is filled until sensor LT-2 101 is active; next, Soap Tank 2 (orange) is filled until LT-2 102 is
active; then, Water Tank (violet) is filled until LT-3 104 is active; then, both Soap Tank 1 and Soap Tank
2 are drained into Soap Tank 3 (yellow); after this, both Soap Tank 3 and water Tank are drained into
Mixing Tank (green); finally the Mixing Tank is drained and the system returns to the initial state.

Figure 12. Simulation and control of the tank filling process. When the high-level sensor LT2-105
is activated, it will send a signal for the enabled transition to be fired. On the other hand, in the
“Simulation Tab” the user can see the output symbols present in the plant.

Appl. Sci. 2022, 12, 3294 16 of 19

5.3. Robotic Manufacturing System

In this example, a manufacturing system composed of two robotic cells is considered.
The objective is to show the effectiveness of RCPetri for the implementation of a decentralized
control scheme using the OPC UA protocol. For this, the Plant is simulated in the PLC training
platform FACTORY I/O (see Figure 13), and two controllers are simulated in different app
instances.

Figure 13. Simulation and control of the robotic manufacturing system. Controller A drives the
lids production (left cell), while Controller B drives the bases production (right cell). Each control
program is running in a different instance.

Each robotic cell is composed of a raw parts emitter (Lemit and Bemit), an input
conveyor belt (Lrc and Brc), a robotic arm (Ls and Bs), a CNC machine (Lpro and Bpro),
and two output conveyor belts (Lec1, Lec2, Bec1 and Bec2). In addition, both cells share
an output conveyor belt Ec and a manufactured parts remover Rem. Each robotic arm
has a predefined program, which consists of moving a part from the entry to the CNC
machine, wait for processing, and then moving the part to the exit. Each CNC machine
can manufacture either bases or lids. Four sensors, Len1, Len2, Ben1, and Ben2, indicate
the presence of raw parts at different positions on the input conveyors, while the sensors
Lex1, . . . , Lex6, Bex1, . . . , Bex6 indicate the presence of manufactured parts on the output
conveyors (Some sensors send a 1 as a logic signal when no object is present (sending a 0

Appl. Sci. 2022, 12, 3294 17 of 19

in the opposite case), this can be handled in the app by using negation symbols ¬ in the
output labels (e.g., ¬Lex1)).

The Plant was modeled according to the methodology of [19]. Output labels were
added to places representing actuator states, describing virtual sensors that allow the
computation of controllable sequences. The system was required to perform lids production
in the left cell and bases production in the right cell. This desired behavior was translated
into two different IPN Specifications, one Specification for the production of lids and
the other for the production of bases. Later, each corresponding IPN Controller was
synthesized, obtaining a decentralized control scheme, as explained in [19].

Figure 13 displays the control simulation. Here, the Plant under the two synthesized
control programs is running in FACTORY I/O. Both control programs are executed si-
multaneously, each one running in a different RCPetri instance, synchronized through the
OPC UA protocol. In this case, the Prosys OPC UA Simulation Server platform was used.
This communication architecture made possible to effectively implement a decentralized
control scheme.

6. Conclusions and Future Work

In this work, we have presented the main features of the RCPetri app, which allows us
to efficiently and graphically define IPN models, simulate IPNs, automatically generate
IPN specifications, automatically synthesize IPN controllers using the regulation control
approach, translate IPN control programs into PLC code, and communicate with other
software/hardware by using the Modbus TCP/IP and OPC UA protocols. In this way,
the app can assist users to efficiently design and implement controllers through the com-
plete control design workflow. In order to illustrate the features of the app, three examples
were presented, being representative of common industrial automation systems: the design
and PLC implementation of a controller for a pneumatic arm by applying the complete
control design workflow; the design and simulation of a logic control of a filling tanks
system, showing the synchronization of the IPN controller simulation in the app with the
tanks simulation in LabVIEW® ; finally, the design and simulation of a system composed of
two robotic cells, showing the possibility to synchronize two instances of the app, each one
controlling a different part of the Plant, with the Plant simulation in the software FACTORY
I/O via the OPC UA protocol, obtaining a decentralized control architecture.

There are some aspects that have been identified as limitations that will be addressed
in future releases. In particular, MATLAB® apps tend to be slow when drawing several
items, thus the drawing of large nets in the app becomes impractical. The current IPN
model does not integrate time information, which becomes relevant in some practical
applications. Moreover, even if the app can be used to define and simulate unsafe nets,
the current control synthesis algorithm cannot deal with unsafe nets. In future releases,
methods for dealing with large nets and verifying specifications and controllers will be
also included.

Author Contributions: Methodology, C.A.A.-G.; software, A.C.-G.; validation, J.M.C.-D.; investiga-
tion, C.R.V. All authors have read and agreed to the published version of the manuscript.

Funding: The research leading to these results has received funding from the Conacyt Program for
Education, project number 288470.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 12, 3294 18 of 19

References
1. Murata, T. Petri Nets: Properties, Analysis and Applications. Proc. IEEE 1989, 77, 541–580. [CrossRef]
2. Silva, M. Introducing Petri nets. In Practice of Petri Nets in Manufacturing; Chapman & Hall: London, UK 1993; pp. 1–62.
3. David, R.; Alla, H. Discrete, Continuous, and Hybrid Petri Nets; Springer: Berlin/Heidelberg, Germany, 2010.
4. Ng, K.M.; Reaz, M.B.I.; Ali, M.A.M. A review on the applications of Petri nets in modeling, analysis, and control of urban traffic.

IEEE Trans. Intell. Transp. Syst. 2013, 14, 858–870. [CrossRef]
5. Kabir, S.; Papadopoulos, Y. Applications of bayesian networks and Petri nets in safety, reliability, and risk assessments: A Review.

Saf. Sci. 2019, 115, 154–175. [CrossRef]
6. Liu, F.; Heiner, M.; Gilbert, D. Fuzzy Petri nets for modeling of Uncertain Biological Systems. Brief. Bioinform. 2020, 21, 198–210.
7. Cavone, G.; Dotoli, M.; Seatzu, C. A Survey on Petri Net Models for Freight Logistics and Transportation Systems. IEEE Trans.

Intell. Transp. Syst. 2018, 19, 1795–1813. [CrossRef]
8. Idel Mahjoub, Y.; Chakir El-Alaoui, E.h.; Nait-Sidi-Moh, A. Logistic Network Modeling and Optimization: An approach based on

(MAX,+) algebra and coloured Petri Nets. Comput. Ind. Eng. 2021, 158, 107341. [CrossRef]
9. Campos, J.; Seatzu, C.; Xie, X. Formal Methods in Manufacturing; CRC Press: Boca Raton, FL, USA 2014.
10. Giua, A.; DiCesare, F. Supervisory design using Petri nets. In Proceedings of the 30th IEEE Conference on Decision and Control,

Brighton, UK, 11–13 December 1991; pp. 92–97.
11. Giua, A.; DiCesare, F.; Silva, M. Generalized Mutual Exclusion Constraints on Nets with Uncontrollable Transitions. In

Proceedings of the 1992 IEEE International Conference on Systems, Man, and Cybernetics, Chicago, IL, USA, 18–21 October 1992;
pp. 974–979.

12. Moody, J.O.; Antsaklis, P.J. Supervisory Control of Discrete Event Systems Using Petri Nets; Kluwer Academic Publishers: Boston,
USA 1998.

13. Basile, F.; Cordone, R.; Piroddi, L. Integrated design of optimal supervisors for the enforcement of static and behavioral
specifications in Petri net models. Automatica 2013, 49, 3432–3439. [CrossRef]

14. Li, Z.; Zhou, M. On siphon computation for deadlock control in a class of Petri nets. IEEE Trans. Syst. Man Cybern. Part A Syst.
Hum. 2008, 38, 667–679.

15. Chen, Y.; Li, Z.; Khalgui, M.; Mosbahi, O. Design of a maximally permissive liveness-enforcing Petri net supervisor for flexible
manufacturing systems. IEEE Trans. Autom. Sci. Eng. 2011, 8, 374–393. [CrossRef]

16. Li, Z.; Wu, N.; Zhou, M. Deadlock control for automated manufacturing systems based on Petri nets. IEEE Trans. Syst. Man
Cybern. Part C Appl. Rev. 2012, 42, 437–462.

17. Wang, S.; Wang, C.; Zhou, M.; Li, Z. A method to compute strict minimal siphons in a class of Petri net based on loop resource
subsets. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 2012, 42, 226–237. [CrossRef]

18. Giua, A.; Silva, M. Petri nets and Automatic Control: A historical perspective. Annu. Rev. Control 2018, 45, 223–239. [CrossRef]
19. Vázquez, C.; Gómez-Castellanos, J.; Ramírez-Treviño, A. Petri nets tracking control for electro-pneumatic systems automation. In

International Conference on Informatics in Control, Automation and Robotics; Lecture Notes in Electrical Engineering; Gusikhin, O.,
Madani, K., Eds.; Springer: Cham, Swiztherland, 2019; Volume 613, pp. 503–525.

20. Guevara-Lozano, D.; Vázquez, C.; Ramírez-Treviño, A. Towards decentralized tracking control for Petri nets. In Proceedings of
the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Zaragoza, Spain, 10–13
September 2019; pp. 428–435.

21. Rozo-Ibañez, D.; Ruiz-León, J.; Guevara-Lozano, D.; Vázquez, C. Petri net modeling of industrial processes from a P&ID
description. In Proceedings of the International Conference on Control, Decision and Information Technologies, Prague, Czech
Republic, 29 June–2 July 2020; pp. 715–720.

22. Gaona, A.C.; Vazquez, C.R. RCPetri 1.2. 2022. Available online: https://github.com/CRVazquezT/RCPetri/find/main (accessed
on 1 February 2022).

23. Chiola, G.; Franceschinis, G.; Gaeta, R.; Ribaudo, M. GreatSPN 1.7: Graphical Editor and Analyzer for Timed and Stochastic Petri
Nets. Perform. Eval. Spec. Issue Perform. Model. Tools 1995, 24, 47–68. [CrossRef]

24. Dingle, J.; Knottenbelt, W.; Suto, T. PIPE2: A Tool for the Performance Evaluation of Generalised Stochastic Petri Nets. ACM
SIGMETRICS Perform. Eval. Rev. 2009, 36, 34–39. [CrossRef]

25. Kelling, C.; German, R.; Zimmermann, A.; Hommel, G. TimeNET: Evaluation tool for non-Markovian stochastic Petri nets. In
Proceedings of the IEEE International Computer Performance and Dependability Symposium, Urbana-Champaign, IL, USA, 4–6
September 1996; p. 62.

26. Davidrajuh, R.; Skolud, B.; Krenczyk, D. Performance evaluation of discrete event systems with GPenSIM. Computers 2018, 7, 8.
[CrossRef]

27. Jensen, K.; Kristensen, L.M.; Wells, L. Coloured Petri nets and CPN Tools for modelling and validation of Concurrent Systems.
Int. J. Softw. Tools Technol. Transf. 2007, 9, 213–254. [CrossRef]

28. Westergaard, M.; Kristensen, L.M. The Access/CPN framework: A tool for interacting with the CPN tools simulator. In Interna-
tional Conference on Applications and Theory of Petri Nets; Springer: Berlin/Heidelberg, Germany, 2009; p. 313–322.

29. Sessego, F.; Giua, A.; Seatzu, C. HYPENS: A Matlab tool for timed discrete, continuous and hybrid Petri nets. In International
Conference on Applications and Theory of Petri Nets; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2008; Volume 5062, pp. 419–428.

http://doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/TITS.2013.2246153
http://dx.doi.org/10.1016/j.ssci.2019.02.009
http://dx.doi.org/10.1109/TITS.2017.2737788
http://dx.doi.org/10.1016/j.cie.2021.107341
http://dx.doi.org/10.1016/j.automatica.2013.08.018
http://dx.doi.org/10.1109/TASE.2010.2060332
http://dx.doi.org/10.1109/TSMCA.2011.2159590
http://dx.doi.org/10.1016/j.arcontrol.2018.04.006
https://github.com/CRVazquezT/RCPetri/find/main
http://dx.doi.org/10.1016/0166-5316(95)00008-L
http://dx.doi.org/10.1145/1530873.1530881
http://dx.doi.org/10.3390/computers7010008
http://dx.doi.org/10.1007/s10009-007-0038-x

Appl. Sci. 2022, 12, 3294 19 of 19

30. Júlvez, J.; Mahulea, C.; Vázquez, C. SimHPN: A MATLAB Toolbox for simulation, analysis and design with hybrid Petri nets.
Nonlinear Anal. Hybrid Syst. 2012, 6, 806–817. [CrossRef]

31. Basile, F.; Carbone, C.; Chiacchio, P. Simulation and analysis of discrete-event control systems based on Petri nets using PNetLab.
Control Eng. Pract. 2007, 15, 241–259. [CrossRef]

32. Kučera, E.; Haffner, O.; Drahoš, P.; Leskovský, R.; Cigánek, J. PetriNet Editor + PetriNet Engine: New Software Tool For Modelling
and Control of Discrete Event Systems Using Petri Nets and Code Generation. Appl. Sci. 2020, 10, 7662. [CrossRef]

33. Ramírez-Treviño, A.; Rivera-Rangel, I.; López-Mellado, E. Observability of Discrete Event Systems Modeled by Interpreted Petri
nets. IEEE Trans. Robot. Autom. 2003, 19, 557–565. [CrossRef]

34. Guevara-Lozano, D.; Vázquez, C.; Ramírez-Treviño, A. Automatic Specification Generation for Tracking Control in Inter-
preted Petri nets. In Proceedings of the International Conference on Control, Decision and Information Technologies, Prague,
Czech Republic, 29 June–2 July 2020; pp. 341–346.

35. Gharte, M. Automation of soap windscreen washer filling machine with PLC and LabVIEW. In Proceedings of the 2016
International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), Pune, India, 9–10 September
2016; pp. 469–472.

http://dx.doi.org/10.1016/j.nahs.2011.10.001
http://dx.doi.org/10.1016/j.conengprac.2006.07.006
http://dx.doi.org/10.3390/app10217662
http://dx.doi.org/10.1109/TRA.2003.814503

	Introduction
	Basic Concepts
	Regulation Control for IPN
	RCPetri MATLAB® App
	Defining IPN Models
	Simulation
	Specification
	Control Synthesis
	PLC Code Generation
	Modbus TCP/IP and OPC UA

	Application Examples
	Pneumatic Arm
	Tank Filling Process
	Robotic Manufacturing System

	Conclusions and Future Work
	References

