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Abstract: Recurrent neural networks (RNNs) have been widely used to solve sequence problems
due to their capability of modeling temporal dependency. Despite the rich varieties of RNN models
proposed in the literature, the problem of different sampling rates or performing speeds in sequence
tasks has not been explicitly considered in the network and the corresponding training and testing
processes. This paper addresses the problem of different sampling rates or performing speeds in
the skeleton-based action recognition with RNNs. Specifically, the recently proposed independently
recurrent neural network (IndRNN) is used as the RNN network due to its well-behaved and easily
regulated gradient backpropagation through time. Samples are extracted with variable sampling
rates and thus of different lengths, then processed by IndRNN with different time steps. In order
to accommodate the differences in terms of gradients introduced by the backpropagation through
time under variable time steps, a learning rate adjustment method is further proposed in the paper.
Different learning rate adjustment factors are obtained for different layers by analyzing the gradient
behavior under IndRNN. Experiments on skeleton-based action recognition are conducted to verify its
effectiveness, and the results show that the proposed variable rate IndRNN network can significantly
improve the performance over the RNN models under the conventional training strategies.

Keywords: skeleton-based action recognition; independently recurrent neural network; deep learning

1. Introduction

Recurrent neural networks have been widely used for sequence problems, such as
action recognition, speech recognition and language modeling [1–5]. For different tasks,
different sampling strategies may be used. Even for one task, the sampling strategy, such
as the sampling rate, may be different due to the different sensors used for capturing
data. In spite of a rich varieties of the RNN models, the training strategies are usually the
same and not adaptively adjusted to different situations. Taking skeleton-based action
recognition [6,7], for example, a common strategy is to divide an instance into equal-length
segments, and one frame is drawn from each segment to compose the final input. In this
way, samples of the same length are drawn from sequences and used as input. Models
trained with such inputs may not generalize well in practice when the sensors used to
capture data are changed with a different sampling rate. On the other hand, the performing
speeds of different samples may also be different. However, the number of actors performed
in each dataset is usually limited (for example, 40 for the NTU RGB+D dataset containing
56,880 sequences [6]), and they are usually in a rather similar range of age, rendering similar
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action speeds of the whole dataset. By contrast, in real-world applications, the speeds of
one action performed by different people are usually different. Consequently, the models
trained with inputs of fixed speed may not generalize well. With samples obtained with
different or non-uniform sampling rates and performing speeds between the training data
and test data (in practice), the underlying semantic meaning of the observation at a time
step is misaligned and, thus, the network cannot perform well.

Another problem in training RNNs is the learning with sequences of varying lengths.
When one sequence is extracted with different sampling rates, the lengths of the extracted
samples are correspondingly different. Therefore, the RNN network needs to process
sequences of varying lengths. With the recurrent connections of RNNs, RNNs can be
naturally extended to process sequences of different lengths. However, the time steps
gradient backpropagated is different when the lengths of the sequences are different.
Accordingly, to make RNNs work with sequences of different lengths, the learning rate
needs to be adjusted to adapt to the gradient changes. In spite of that, in most of the
training strategies, the learning rate is set to be the same for different lengths. There are
only few works [8,9] on using RNNs with different lengths in the literature, which linearly
adjusts the learning rate based on the length of the sequence (the longer, the larger). In
contrast, in this paper, based on the recently proposed IndRNN [10–12], the learning rate
adjustment can be obtained analytically and we demonstrate that the opposite works (the
longer, the smaller), although it is not simply the inverse of a linear function.

The contributions of this paper can be summarized as follows.

• A variable rate IndRNN model is proposed to solve the problem of varying sampling
rates or performing speeds that may exist between different sequences or between
training and test (in practice). The model processes inputs of different lengths and
extracted with different sampling rates.

• An adaptive learning rate adjustment method is proposed based on the lengths of
the sequences that the IndRNN network processes. Different adjustment factors are
obtained for different layers with different gradient propagation properties.

Experiments were conducted on the skeleton-based action recognition task. Results
show that the proposed variable rate IndRNN model achieves better performance than the
conventional fixed-rate model and achieves state-of-the-art performance using RNNs.

The rest of the paper is organized as follows. Section 2 describes the related work in
the area of skeleton-based action recognition with RNNs, and Section 3 explains the basic
backgrounds on the recently proposed IndRNN, including its structure and gradient back-
propagation process. The proposed method is presented in Section 4, and the experiments
are shown in Section 5. Finally, the conclusion is drawn at Section 6.

2. Related Work

With the increasing popularity of depth sensors, such as Kinect, skeleton-based action
recognition [6,7,13,14] has drawn lots of interest over the last few years. Many conventional
methods with handcrafted features have been proposed, such as the HON4D [15], using
histograms of the surface normal orientation in the 4D space of time, depth, and spatial
coordinates to obtain features. Similarly, the dynamic skeletons method [16] uses a modi-
fied HOG (histogram of oriented gradients) method to dynamically collect features at each
frame and then extract features again with HOG. With the rapid development of deep learn-
ing, deep learning models, including the convolutional neural networks (CNNs) [17–23],
graph convolution neural networks (GCNs) [24–26] and the recurrent neural networks
(RNNs) [6,7,13,14,27–31], have been widely studied for skeleton-based action recognition
methods. Among them, CNN- and GCN-based methods mostly focus on the extraction of
spatial features, especially the GCN-based ones. For example, in AGNN [24], the skeletons
are treated as an undirected graph, and graph convolution is used to extract spatial features
in a way of spectral graph filtering. For the temporal processing, RNNs are also used
to gather the temporal information. Considering that this paper mainly addresses the
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temporal processing for action recognition, in the following, only some typical RNN-based
methods are reviewed.

Most of the existing RNN-based methods investigate the grouping property of skeleton
joints, where the joints move together in a group. Such a property was explored in [6,13,32]
with hierarchical RNNs, joint co-occurrence RNNs, or part-aware RNNs. In these methods,
several joints (such as joints on the left hand) are usually considered as a part by adding
extra layers or constraints to group the joints, and then the models process the parts instead
of the joints. There are also methods [14] using geometric features of the skeleton joints
to explore the geometric relationships between different joints. Another type of method
employs the attention models [29,30] to exploit the property that joints may not show
equal importance in classifying different actions. The attention weights on the joints at
different time steps are different to focus on different joints for different actions. Another
method worth mentioning is the recently proposed independent recurrent neural network
(IndRNN), which effectively solves the gradient vanishing and exploding problem and can
be used to construct deep models and process long sequences. It reported the best results
so far achieved by the RNN-based methods on the NTU RGB+D dataset (the largest dataset
with skeleton for action recognition) [6]. While the above methods investigate specific
features and models for skeleton-based action recognition, none of them explicitly consider
the effect of different performing speeds and different sampling rates of the actions. The
current prevailing ad hoc approach to dealing with this is to sample sequences of a fixed
length by separating the action sequence into fixed-length segments and extracting one
frame from each segment. In this way, for each sequence, the sampling rates are the same at
different extractions, although variations may exist for each frame. The proposed method
deals with both variable performing speeds and variable sampling rates (due to the PC
used for capturing and the RGB-D sensors for instance).

Furthermore, while RNNs are widely used in action recognition, the training strategies
are usually the same, with one learning rate for all equal-length inputs, and there is
not much research on training RNNs with inputs of variable lengths. In [9], an unbiased
truncated gradient backpropagation through time (BPTT) was proposed, where the learning
rate is adjusted based on the probability of the sequence with different lengths in order to
compensate for the difference between truncated backpropagation through time (BPTT)
and the un-truncated one. However, the learning rate for the original (un-truncated) BPTT
is still empirically set, and the learning rate is increased with the increase in the input length.
This strategy was also adopted in [8], where the learning rate is linearly increased with
the increase in the input length. By contrast, in this paper, based on the recently proposed
IndRNN, we show that the opposite works, where the learning rate drops with the increase
in the input length.

3. Overview of IndRNN

Independently recurrent neural network (IndRNN) was proposed in [10] as a basic
RNN component. It follows

ht = σ(Wxt + u� ht−1 + b) (1)

where xt ∈ RM and ht ∈ RN are the input and hidden state at time step t, respectively.
W ∈ RN×M, u ∈ RN and b ∈ RN are the weights for the current input, the recurrent
input, and the bias of the neurons. � represents the Hadamard product (element-wise
multiplication). σ is an element-wise activation function of the neurons, which is the
ReLU (rectified linear unit) in this paper, and N is the number of neurons in this IndRNN
layer. Each neuron in one layer is independent from others as shown in Figure 1 and
the correlation among neurons is explored by stacking two or more layers of IndRNNs.
IndRNN solves the gradient vanishing and exploding problems, and can be used to process
long sequences and construct deeper networks. Better results than the existing RNN
networks on various tasks, including skeleton-based action recognition, were reported
in [10].
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Figure 1. Illustration of the difference between RNN and IndRNN. IndRNN removes the crossed
recurrent connections among neurons (in dotted lines) to simplify the recurrent computation and,
thus, the gradient backpropagation.

Since neurons in one IndRNN layer are independent from each other, the gradient
backpropagation through time can be calculated for each neuron individually. For the n-th
neuron hn,t = σ(wnxt + unhn,t−1), where the bias is ignored, suppose the objective trying
to minimize at time step T is Jn,T . Then the gradient backpropagated to the time step t is

∂Jn,T

∂hn,t
=

∂Jn, T
∂hn,T

uT−t
n

T−1

∏
k=t

σ′n,k+1 (2)

where σ′n,k+1 is the derivative of the element-wise activation function. For more details on
the above derivation, please refer to [10,11].

4. Proposed Variable Rate IndRNN

In this section, we first present the variable rate sampling strategy and the correspond-
ing network architecture, then deduce the learning rate adjustment method for different
layers in the network architecture.

4.1. Variable Rate Sampling Strategy and Network Architecture

To make the network more robust to various sampling rates and performing speeds of
different sequences, inputs of different sampling rates and performing speeds need to be
provided for training. With respect to the performing speeds (per frame) of the captured
data, it can be changed in the same way by changing the sampling rates used to generate
the input to the network. Therefore, in the proposed method, variable sampling rates
are used to provide inputs of both different sampling rates and performing speeds to the
network. In the following, the variable rate sampling strategy based on the equal-length
sampling used in the skeleton-based action recognition task is explained, and it can be
easily extended to other tasks.

For one skeleton sequence, the inputs extracted with different sampling rates would
be of different lengths. Figure 2 illustrates the sampling strategy with different sampling
rates. First, the conventional sampling method is shown in Figure 2a, where N is the length
of the sampled input. Assume there are L frames in the sequence, then the sampling rate is
L/N. In the training process, the sequence is separated into N segments, and each frame
is sampled from one segment to compose the final input. Although for different inputs,
frames sampled from one segment may be different, the overall sampling rate and speed
are the same. The proposed variable rate sampling strategy uses different sampling rates
to generate inputs of different rates and speeds. Figure 2b,c illustrates two examples with
higher (2×) and lower (1/2×) sampling rates, respectively. It is obvious that with higher
sampling rates, more frames are contained in the input, and vice versa.
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Frames in an action sequence

Sampled frames 

used as input

1 2 N-1 N

1 2 N-1 N

(a)

Frames in an action sequence

Input with 2x 

sampling rate

1 2 2*N

1 2 2*N-1 2*N

3 4 2*N-1

3 4

(b)

Frames in an action sequence

Input with ½x 

sampling rate

1 N/2

1 N/2

(c)

Figure 2. Illustration of the sampling strategy with different sampling rates. (a) Conventional
sampling with a sampling rate to extract N frames as the input. (b) Sampling with 2× sampling rate
to extract 2*N frames as the input. (c) Sampling with 1/2× sampling rate to extract N/2 frames as
the input.

In the proposed method, IndRNN is used as the classification network. The archi-
tecture of the IndRNN network with variable sampling rates is shown in Figure 3. It
is composed of several (denoted by L) IndRNN layers (with batch normalization layers
inserted after each IndRNN layer). A fully connected (FC) layer with the softmax function
is used for the output. With the inputs of variable lengths, the RNN network also processes
dynamic time steps. As shown in Figure 3, when the sequence is longer, IndRNN will keep
processing more inputs, and the fully connected layer will be added at the end of the time
steps for classification. The same applies to shorter sequences, where fewer time steps are
processed. Since the network processes inputs of different lengths, the statistics of the batch
normalization layers at each time step are kept individual, while the weight parameters are
shared over time.

IndRNN+BN
h0,t

h1,t

hL,t

xt

IndRNN+BN

IndRNN+BN

IndRNN+BN
h0,N-1 h0,N

h1,N

hL,N

xN

IndRNN+BN
h1,N-1

IndRNN+BN
hL,N-1

h0,t-1

h1,t-1

hL,t-1

FC+softmax

Classes

IndRNN+BN
h0,2*N-1 h0,2*N

h1,2*N

hL,2*N

x2*N

IndRNN+BN
h1,2*N-1

IndRNN+BN
hL,2*N-1

FC+softmax

Classes

Figure 3. Architecture of the proposed variable rate IndRNN.

4.2. Learning Rate Adjustment

As shown in Figure 3, the gradient behaviors for the final FC layer, the last IndRNN
layer and the other IndRNN layers are different. For the final FC layer, the gradient
is directly backpropagated from the objective and no backpropagation through time is
required. For the last IndRNN layer, the gradient is only backpropagated from the final
FC layer, but the gradient is further backpropagated through time. For the other IndRNN
layers, the gradient is backpropagated from its previous layers at each time step and further
backpropagated through time. In the following, the learning rate adjustment for these three
groups are discussed separately.
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4.2.1. Learning Rate Adjustment for the First L− 1 IndRNN Layers

For the first 1, 2, . . . , L− 1 IndRNN layers, the gradient consists of two parts: the gra-
dient backpropagated from the previous layer and the gradient backpropagated from the
previous time steps. For IndRNN, the neurons are independent from each other at each
layer, and the gradient can be calculated for each neuron independently. For the gradient
of the n-th neuron at time step t, it can be obtained according to Equation (2) as

gn,t =
∂Jn,t

∂hn,t
+ [

∂Jn,t+1

∂hn,t+1
u1

n

t

∏
k=t

σ′n,k+1 + . . . +
∂Jn,T

∂hn,T
uT−t

n

T−1

∏
k=t

σ′n,k+1] (3)

where ∂Jn,t
∂hn,t

is the gradient of the current step, and ∂Jn,t+1
∂hn,t+1

u1
n ∏t

k=t σ′n,k+1, . . . ,
∂Jn,T
∂hn,T

uT−t
n ∏T−1

k=t σ′n,k+1 are the gradients of the future time steps.
Since here we mainly focus on the gradient backpropagated through time, the small

differences among the gradients backpropagated from the previous layer at different time
steps are ignored, and the gradients ∂Jn,t

∂hn,t
, ∂Jn,t+1

∂hn,t+1
. . . , ∂Jn,T

∂hn,T
are all denoted by go. In this paper,

the ReLU (rectified linear unit) is considered the activation function and its gradient is
either 0 or 1 based on whether the neuron is activated. Denoting the probability of a neuron
being activated by p, ∏l−1

k=t σ′n,k+1 can be statistically simplified to p(l−t). Thus, the above
Equation (3) can be simplified as

gn,t = go · [1 + (un · p)1 + . . . + (un · p)T−t] (4)

The final gradient can be obtained by summarizing the gradients over all the time
steps from 1 to T, and can be expressed as

gn = go · {1 + [1 + (un · p)1] + [1 + (un · p)1 + (un · p)2] + . . . + [1 + (un · p)1 + . . . + (un · p)T−1]}

= go · {
1− (un · p)1

1− un · p
+

1− (un · p)2

1− un · p
+ . . . +

1− (un · p)T

1− un · p
} = go · {

T − un ·p·(1−un ·p)T

1−un ·p
1− un · p

} (5)

when un · p does not equal 1. When un · p equals 1, gn = go · (1 + 2 + . . . + T) = go · [T · (T +
1)/2]. Usually un is no larger than 1 when the sequence length is large, and p is smaller
than 1. Therefore, un · p is smaller than 1, and the above equation stands.

On the other hand, suppose there is no gradient backpropagation through time; at
each time step, the IndRNN network becomes the conventional feedforward network, and
the training process becomes training a network with a large mini batch (but the gradient
is summarized instead of being averaged over batches, which is go · T). As shown in [33],
when the mini batch size is multiplied by k, the learning rate multiplied by k usually
provides good performance by assuming that the gradients of the mini batches equal the
gradients at different training iterations. In this case, when no gradient backpropagation
through time is considered, the learning rate of the conventional feedforward network can
be directly used since the summation (instead of average) of the gradients works as the
linear scaling of the learning rate.

To accommodate the gradient differences introduced by the gradient backpropaga-
tion through time, the learning rate needs to be adjusted accordingly. The learning rate
adjustment factor can be obtained based on their gradients as

flr = (go · T)/gn = T/[
T − un ·p·(1−un ·p)T

1−un ·p
1− un · p

] (6)
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where flr is the learning rate adjustment factor. With flr, the magnitudes of the changes to
the network parameters under gradient backpropagation through time are similar to those
of the conventional feedforward network.

The basic probability of the neurons activated is assumed to be p = 0.5 since half of the
input range is activated for the ReLU function. With the recurrent connection, the neuron
is more likely to be activated, as the recurrent input is usually no smaller than 0 (with
positive recurrent weight). The larger the recurrent weight, the higher the probability of the
neuron being activated. In the implementation, the probability of the neurons activated is
set as 0.5 + 0.4 ∗ un , where the highest probability reaches 0.9 when un equal 1. Figure 4a
illustrates the learning rate adjustment factors over different lengths of inputs when the
recurrent weight is set to 1. It can be seen that the learning rate adjustment factor drops
quickly at first, and then decays steadily around 0.1 when the length of the input is over
30 steps.
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Figure 4. Illustration of the learning rate adjustment factor over different lengths of inputs for the
first 1, 2, . . . , L − 1 IndRNN layers (learning rate adjustment factor versus length of the input).
(a) Learning rate adjustment factors for neurons with recurrent weight 1; (b) average learning rate
adjustment factors.

To avoid the complex calculation for each recurrent neuron, the average learning rate
adjustment factor is used for all the neurons. With the recurrent weight uniformly initialized
in the range of [0, 1], the average learning rate adjustment factor can be obtained as

flr,ave =
1

∑
un=0

T/[
T − un ·p·(1−un ·p)T)

1−un ·p
1− un · p

] (7)

It can be numerically obtained as shown in Figure 4b, where 1000 recurrent weights
with interval 0.001 is used. Similar behavior as above for the recurrent weight 1 can be
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observed, which is shown in Figure 4b. The learning rate adjustment factor drops quickly
at first and decays steadily around 0.5 when the length of the input is over 30 steps. Note
that if two IndRNN layers are directly stacked together, the gradient of the first IndRNN
layer go, backpropagated from the second IndRNN layer, has already been affected by the
gradient backpropagation from the time of the second IndRNN layer. In such a case, go is
different from the conventional feedforward network. However, in the proposed IndRNN
network, batch normalization layer is inserted between IndRNN layers, and the statistics
of the input to each layer is changed, which also affects the gradient backpropagation
process. Therefore, for simplicity, go of all the IndRNN layers is considered the same as the
conventional feedforward network, and no further adjustment is used for different layers.

4.2.2. Learning Rate Adjustment for the Last (L-th) IndRNN Layers

For the last (L-th) IndRNN layer, the gradient is only backpropagated from the final FC
layer at the last time step and then further backpropagates to other time steps. Therefore,
based on Equation (4), by summarizing the gradients backpropagated from the last time
step to different time steps, its gradient can be expressed as

gn = go · [1 + (un · p)1 + . . . + (un · p)T−1] = go ·
1− (un · p)T

1− un · p
(8)

when un · p does not equal 1. In the case of un · p equaling 1, it simply follows gn = go · T.

Accordingly, the learning rate adjustment factor can be set as flr = 1/ 1−(un ·p)T

1−un ·p = 1−un ·p
1−(un ·p)T ,

when un · p does not equal 1. When un · p equals 1, the learning rate adjustment factor
can be set as 1/T, which decreases linearly based on the length of the input. However,
as noted before, un · p is usually smaller than 1; therefore, the first equation stands. For
the last IndRNN layer, since only the output at the last time step is used, the recurrent
weights can be initialized to relatively large values to only keep long-term memory, as
in [10]. Here, the recurrent weights are assumed to be in the range [0.5, 1]. Similar to the
learning rate adjustment factor for the first L− 1 layers shown above, the average learning
rate adjustment factor is used and can be numerically obtained as shown in Figure 5 over
different lengths of inputs. Similar behavior as that of the first L− 1 layers can be observed
but decays slightly faster than the neurons in the first L− 1 layers.
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Figure 5. Illustration of the learning rate adjustment factor over different lengths of inputs for the
last IndRNN layers.

4.2.3. Learning Rate Adjustment for the Final FC Layers

For the final FC layer, the gradient backpropagation process is the same as that of
conventional feedforward networks since no gradient backpropagation through time is
needed. Therefore, the learning rate adjustment factor is set to 1.
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5. Experiments

The proposed method is evaluated on two large-scale datasets, including the NTU
RGB+D dataset [6] (the largest skeleton based action recognition dataset so far), and the
UOW large scale combined (LSC) dataset [34]. Adam optimization [35] is used with the initial
learning rate 2× 10−3. The learning rate for each layer under the inputs of different lengths
is adjusted based on the learning rate adjustment factor as shown in Section 4.2. The overall
learning rate is decayed by 10 once the evaluation accuracy does not increase (with patience
100). Dropout is applied after each layer with the same dropping mask shared over time.
The detailed dropping probability for each dataset is further described in the following
Subsections. The lengths are sampled with a normal distribution normal(m, σ). For the
NTU RGB+D dataset [6], m is set to 20, which is the most widely used in the existing works.
For simplicity, the sequence length used in each batch is set to be the same, and the lengths
of different batches are different. The IndRNN network, consisting of 6 layers and 512
neurons, is used as in [10]. The other training setups are similar as in [10]. Following
the convention, the testing results are reported in the following experiments. Since this
paper focuses on the investigation of the RNN-based skeleton action recognition, the graph
convolution based ones [25,26] are not discussed nor compared.

5.1. Results on NTU RGB+D Dataset

The NTU RGB+D dataset [6] contains 56,880 sequences of 60 action classes, collected
by three Kinect v2 cameras with 17 different setups. A total of 40 subjects of ages from 10 to 35
years, are involved to performed the action sequences. Two evaluation protocols, including
cross-subject (CS) and cross-view (CV) settings, are suggested for evaluation. For the cross-
subject setting, the 40 subjects are equally split into training and testing groups. However,
the number of samples for different subjects is different, and according to the subject split
used in [6], 40,320 and 16,560 samples are used for training and testing, respectively. For
the cross-view setting, the samples of camera 1 are used for testing and cameras 2 and 3 are
used for training. Each camera is used in several capturing setups (different views), and
according to the detailed split used in [6], 37,920 samples and 18,960 samples are used for
training and testing, respectively. Additionally, as suggested in [6], 5% of the training data
is randomly selected and reserved as evaluation data. Two skeletons (25 joints per skeleton)
are used as input; if only one is present in the sample, the second is set as zero. Therefore,
the input is of 25 × 2 × 3 = 150 dimensions, containing the 3D coordinates of the skeleton
joints. The batch size is set to 128, and the dropping probabilities of 0.35 and 0.2 are used
for the CS and CV settings, respectively.

5.1.1. Verification of the Effect of Different Sampling Rates

First, to demonstrate the effect of different sampling rates on the testing performance,
inputs extracted with different sampling rates are generated and used for training and
testing, respectively. The same IndRNN model as in the proposed method is used for
training and testing. For training, the same sampling strategy as in [10] is used, where
20 frames are extracted for each sample. For testing, the sampling rate is doubled and,
accordingly, 40 frames are extracted from each sequence. The straightforward way of
testing is to directly test the sample of 40 frames with the trained network. However,
the network is trained with 20 frames, and testing with 40 frames does not work very
well. Therefore, 20 frames sampled from the middle half of a sequence to make the frames
sampled with a doubled rate is used for testing. The other settings are the same as [10]. The
results compared with the training and testing with the same sampling rate are shown in
Table 1. It can be seen that when the sampling rates of training and testing are different, the
performance drops significantly. The variable rate IndRNN is also tested under different
sampling rates, and the results are also shown in Table 1. It can be seen that the variable rate
IndRNN works fine for all test rates. The small differences between the baseline IndRNN
and the variable rate IndRNN is due to the different training and testing settings for which,
for variable rate IndRNN, the lengths of the training sequences are not exactly the same as
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those of the test sequences. Therefore, it is necessary to train with different sampling rates
in order to make the trained model more robust for different data.

Table 1. Results of training and testing with different sampling rates.

Method CS CV

Baseline IndRNN 81.55% 87.12%
Baseline IndRNN Test with 2× rate 63.5% 66.65%

Variable Rate IndRNN 79.52% 88.00%
Variable Rate IndRNN Test with 2× rate 79.04% 88.31%

5.1.2. Evaluation of the Proposed Method

Table 2 shows the results of the proposed method with variable sampling rates and
learning rate adjustment factors in comparison with the existing methods. It can be seen
that the proposed method achieves better performance than the existing methods as well as
the IndRNN [10]. Additionally, variable sampling rates are also used for the test sequences
and the probability of several predictions are averaged to obtain the final result, showing
better performance than the variable rate IndRNN with fixed test sampling rates as shown
in Table 1. Moreover, it can be seen that the improvement for the CS setting (2.52%) is
larger than the CV setting (1.74%). For the CS (cross subject) setting, the performing
speeds of different subjects are different, and thus the training and testing may deviate
from each other in terms of performing speeds. With the proposed variable rate IndRNN,
the deviation can be mitigated and thus the performance is improved significantly as
shown in Table 2. On the other hand, for the CV (cross view) setting, the subjects for
the training and testing are the same, and thus the effect of various performing speeds is
smaller. Therefore, the improvement of the proposed method is smaller than that of the
CS setting, although it still improves the performance. Note that the dataset is collected
with cameras of the same type, thus the sampling rates are the same. When the dataset is
further extended with multiple data sources, the performance may be further improved
with various sampling rates.

Table 2. Results of all skeleton-based methods on NTU RGB+D dataset.

Method CS CV

Deep learning on Lie Group [36] 61.37% 66.95%
JTM + CNN [17] 73.40% 75.20%
Res-TCN [19] 74.30% 83.10%
SkeletonNet (CNN) [18] 75.94% 81.16%
JDM + CNN [22] 76.20% 82.30%
Clips + CNN + MTLN [21] 79.57% 84.83%
Enhanced Visualization + CNN [37] 80.03% 87.21%
1 Layer RNN [6] 56.02% 60.24%
2 Layer RNN [6] 56.29% 64.09%
1 Layer LSTM [6] 59.14% 66.81%
2 Layer LSTM [6] 60.09% 67.29%
1 Layer PLSTM [6] 62.05% 69.40%
2 Layer PLSTM [6] 62.93% 70.27%
JL_d + RNN [14] 70.26% 82.39%
STA-LSTM [30] 73.40% 81.20%
ST-LSTM + Trust Gate [7] 69.20% 77.70%
Pose conditioned STA-LSTM [38] 77.10% 84.50%
IndRNN [10] 81.80% 87.97%
Proposed 84.32% 89.71%

5.2. Results on UOW Large Scale Combined (LSC) Dataset

The UOW LSC dataset [34] is a large dataset composed of nine publicly available
datasets including MSR Action3D Ext [39], UTKinect [40], MSR DailyActivity [41], MSR Ac-
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tionPair [15], CAD120 [42], CAD60 [43], G3D [44], RGBD-HuDa [45], and UTD-MHAD [46].
There are 94 actions in total. However, samples in some action classes do not contain skele-
ton modality and thus are excluded in the experiment, resulting in 88 action classes and
3897 samples. The protocols developed in [34] are used for evaluation, including a random
cross subject (similar as in the NTU RGB+D setting) and random cross sample. For the
random cross sample setting, in each action category, half of the samples are randomly
selected for training. The average recall and precision of all classes, as suggested in [34],
is used for comparison. The batch size is set to 64, and the dropping probability is set to
0.35 for both protocols. The other settings are the same as those used for the above NTU
RGB+D dataset. Table 3 shows the result of the proposed model compared with the existing
methods (results obtained from their original papers). It can be seen that better perfor-
mance can be achieved with the proposed method against the RNN-based ones. For the
cross sample setting, it also achieves similar performance as the graph-convolution-based
AGNN [24], but worse in the cross subject setting. It is known that graph convolution
can obtain better spatial features than simply providing joint coordinates to the RNNs.
Therefore, better spatial feature extraction methods are desired for the proposed method
and other RNN-based methods.

Table 3. Results on large scale combined (LSC) dataset.

Method
Cross Sample Cross Subject

Precision Recall Precision Recall

HON4D [15] 84.6% 84.1% 63.1% 59.3%
Dynamic Skeletons [16] 85.9% 85.6% 74.5% 73.7%
AGNN [24] 87.6% 88.1% 84.0% 82.0%
P-LSTM [6] 84.2% 84.9% 76.3% 74.6%
Proposed 89.20% 87.32% 80.47% 78.44%

6. Conclusions

This paper presented a variable rate IndRNN. It solves the problem of varying sample
rates and performing speeds by generating inputs with different sampling rates. Accord-
ingly, the IndRNN network processes inputs of different lengths through different time
steps. By processing inputs of variable lengths and sampling rates, the network learns
to be more adaptive and robust to samples captured with different setups and actions
performed with different speeds. Moreover, with the IndRNN dynamically processing
inputs of different lengths, the gradient behavior over different inputs is also changed,
and the learning rate needs to be adjusted accordingly. By investigating the gradient
backpropagation process under IndRNN, a new learning rate adjustment method was
proposed, which adaptively accommodates the gradient differences for different layers.
Compared with the existing methods, the proposed method can better handle the actions
performed under variable sampling rates and variable speeds. Experiments on two large
and widely used skeleton dataset were conducted, and better performance over the existing
RNN-based methods wa demonstrated by the proposed method.

The proposed method takes an approach of increasing training with sequences of
different sampling rates and the corresponding learning strategy, but it is also worth
investigating how to directly revise or formulate an IndRNN model dynamically with
different sampling rates, instead of just training. Moreover, the proposed method only
focuses on the temporal processing, while for the spatial processing, it takes the original
joint coordinates as input. Therefore, to further improve the overall action recognition
performance, better spatial processing methods are worth investigating, such as graph-
convolution-based ones.
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