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Abstract: This study proposes a design for unmanned chemical factories and implementation based 

on ultra-low-cost Internet of Things technology, to combat the impact of COVID-19 on industrial 

factories. A safety and private blockchain network architecture was established, including a three-

layer network structure comprising edge, fog, and cloud calculators. Edge computing uses a 

programmable logic controller and a single-chip microcomputer to transmit and control the motion 

path of a four-axis robotic arm motor. The fog computing architecture is implemented using Python 

software. The structure is integrated and applied using a convolutional neural network (CNN) and 

a fractional-order proportional-integral-derivative controller (FOPID). In addition, edge computing 

and fog computing signals are transmitted through the blockchain, and can be directly uploaded to 

the cloud computing controller for signal integration. The integrated application of the production 

line sensor and image recognition based on the network layer was addressed. We verified the image 

recognition of the CNN and the robot motor signal control of the FOPID. This study proposes that 

a CNN + FOPID method can improve the efficiency of the factory by more than 50% compared with 

traditional manual operators. The low-cost, high-efficiency equipment of the new method has 

substantial contribution and application potential. 

Keywords: smart factory; IoT; machine learning; robot control; COVID-19 

 

1. Introduction 

The COVID-19 crisis has had a substantial effect on the economy of many 

countries with increased risk to the lives of many people. The Internet of Things (IoT) 

has the potential to improve the transformation of manufacturing technology, and it  

has also attracted attention from academia and industry. The IoT envisages the 

seamless integration of the physical world and cyberspace by being ubiquitous. 

Devices are widely deployed with embedded identification (ID), sensing, and driving 

functions, and can be extended to the physical field of the IoT [1–4]. Miniature 

electronic devices are embedded to interact in the physical world and are connected 

to the network system to make them intelligent and seamlessly integrated into the 

final network infrastructure. Therefore, the IoT can be extended to include 

manufacturing resources/capabilities in different stages of the manufacturing and 

business planning processes. In addition, it enables vertical integration at different 
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hierarchical system levels. This mechanism can provide existing or new 

manufacturing services and applications with unprecedented opportunities [5,6].  

An advanced interconnected network system includes connections between smart 

machines, storage systems, and production facilities. It can exchange network information 

independently, trigger actions, and control systems. In addition, the universal perception 

ability of the IoT systems generate a large and diverse amount of data, which can be used 

to assist manufacturing engineering in achieving the best decision-making mechanisms 

for all aspects of the manufacturing process. For this reason, sensors and driving devices 

can cover the entire range of industrial tools. They are still in the early stages of 

development; however, manufacturing datasets are growing rapidly, and IoT devices can 

be deployed quickly. In addition, cloud-based computing and big data technologies are 

indispensable [7,8]. 

These technologies play an important role in the management and large-scale 

manufacturing of resources. They provide users with great flexibility and service 

opportunities, such as signal storage, signal processing, visual manufacturing of big data, 

and other powerful functions. Modern factories are often equipped with robots that 

satisfy the requirements of the production line. The IoT enables users to confirm the 

position and shape of the robot’s work, as well as to manage the interactive information 

transmission of the state of multiple objects, regardless of the situation. 

The robot has a third type of perception ability, which is a sensor system platform. It 

is not necessary to communicate unilaterally with other robots [9,10]. To communicate the 

signals, the motion behavior of the robot can be monitored and understood at any time. 

This is the interaction between handling work and the dimensions of the working space. 

The robot itself has multiple signals linked to environmental signals, which poses a great 

challenge in obtaining greater performance stability of the robot. Therefore, for a factory 

with an automation system, a 3D image detection device with the ability to sense depth is 

required, which can be used to enable the interception of data in 3D space for detection 

robots. To realize the robot’s operating status, it can immediately allow the robot to reflect 

the specific requirements of the working environment in the space, regardless of touch or 

the characteristics of the objects to be transported. It includes the properties of weight, 

shape, and size, and a suitable and optimized calculation capability for load handling can 

be made immediately. Industrial technology must be constructed using a collaborative 

system for IoT applications. The following issues must be addressed in advance to enable 

industrial manufacturing capabilities. 

• Immediate response. 

Faster connections for the control of equipment can master the complete production 

process and furnish customers with production history information. 

• Prevent errors. 

To ensure product quality, it is necessary to monitor abnormalities in the production 

process. To reduce the loss of defective products, possible equipment failures or errors 

must be monitored according to enterprise requirements. 

• Ensure the manufacturing process. 

The production control process must be correctly implemented, and the human error 

rate must be minimized to improve the consistency of the manufacturing process. 

• Improve production utilization rate. 

Complete equipment production accuracy must be provided to reduce the 

appearance of defective products and increase the utilization rate of the equipment. 

Modern factory equipment typically uses programmable logic controllers (PLCs) to build 

robotic manufacturing processes. Programming and functions can be developed to satisfy 

the requirements of the equipment. 

With the advancement of science and technology, equipment must also improve over 

time to achieve the required communication technology capabilities and functions. A da-
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ta-communication network linking the production equipment is needed. This enables the 

robot PLCs on the production line to confirm the location and interaction of multiple sur-

rounding objects under any circumstance. The situation message can then be delivered. 

In other words, the robot PLC should have a higher sensing and perception function, 

which ensures that the exchange of signals with the other robots is independent (and 

event-driven). The robot’s motion and behavior in the working space is interactive. 

In ref [11], a sensing method was proposed to enable the widespread adoption and 

development of IoT technology in the manufacturing industry to be close to the user. This 

has played an important role in the manufacturing industry. For example, radio frequency 

identification (RFID) has been applied to electromagnetic field effects to transmit data for 

automatic identification and tracking of tags attached to the target product. The RFID 

system is composed of a tag and a reader. The tag stores the information being read. In 

other words, tag data can also be obtained through decryption without requiring 

additional signals to be provided to other systems. Therefore, the RFID reader can 

indirectly track the physical movement state mode of the tag. Therefore, it can indirectly 

track the physical movement of the object to which the tag is attached. In industrial 

manufacturing procedures, RFID can be applied to the management of the supply chain, 

production scheduling, part/vehicle tracking, etc. The sensors, wireless networks, and 

sensor networks (wire-less sensor networks, WSNs) can also be configured out of space 

from a node structure. The node structure is used to sense the surrounding environment, 

and can then be manipulated and other node communication signals obtained. Sensor 

nodes operate in a self-organizing and decentralized manner to maintain the best 

connection status as much as possible. RFID and WSNs represent two complementary 

technologies. RFID can be used to discover and identify the locations of objects that are 

difficult to detect or distinguish using traditional sensor technology. However, they 

cannot monitor the state of the objects. In contrast, wireless sensor networks not only 

provide information about objects and environmental conditions but also support multi-

hop wireless communication. Some WSNs may be equipped with actuators to perform 

the appropriate actions. Finally, RFID and WSNs could be combined to facilitate industrial 

development. In this study, we propose many controllers for constructing smart factories, 

including sensors, RFID, and WSN control methods. However, it is unfortunate that 

production line process objects are not fully monitored by lens imaging technology with 

artificial intelligence (AI) algorithms. In addition, the color of the production line with the 

recognition method has rarely been mentioned. 

Intelligent manufacturing technology, which is the core concept of the fourth 

industrial revolution (Industry 4.0), has received increasing attention worldwide. In 

recent years, technologies such as the IoT, big data analysis, AI, cloud computing, and 

cyber-physical systems, have been developed to promote intelligent manufacturing [12–

14]. In this study, we discuss research related to intelligent manufacturing, including big 

data and AI, to optimize mechanical equipment, the integration of computer numerical 

controlled machine tools and robots, and the parameter design and optimization of 

intelligent factories. Previous studies have reported on an effective technical solution for 

integrating and controlling all joints, driven by hydraulic actuators for heavy robots, in 

which the robot controller is constructed based mainly on industrial PLC units. The PLC 

controller was designed to link the central control unit and all components of the entire 

forging station at the same time. In addition, a hybrid robot that establishes a new method 

for kinematics and dynamics has been proposed. The main contribution is to demonstrate 

the hybrid robot system with generalized velocity analytic relations, and finally, to 

demonstrate and verify the newly designed hybrid robot, which is feasible in kinematic 

and dynamic modelling results. 

The main contribution of this study is the research results of the proposed AI image 

recognition system constructed for the PLC production line. The organizational structure 

of this study is as follows. Section 1 presents an introduction. Section 2 describes the 

construction method of the IoT in a smart factory. Section 3 describes the realization of a 
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smart factory based on a PLC production line. Section 4 presents the experimental results 

and discussion, and Section 5 presents the conclusions. 

2. Materials and Methods 

2.1. Construction of IoT in the Smart Factory 

The IoT devices include hardware and software that can be used to establish and 

realize factories. It covers the main physical resource structure, and all manufacturing 

resources that are involved in the life cycle of the manufacturing process. These resources 

represent the realization of smart manufacturing. Based on the production line, efficient 

manufacturing equipment and production lines were developed using data collection for 

product development, as shown in Figure 1. The smart factory is a cyber-physical 

production system (CPPS) with the characteristics of a network entity, which integrates 

smart sensors, embedded terminal systems, smart control systems, and communication 

facilities [15]. Through a CPPS, peer-to-peer interactive transmission is realized, including 

transmission between users and equipment, between devices, and between services. 

 

Figure 1. Schematic diagram of IoT smart-factory communication system. 

2.1.1. Smart Factory Network Construction 

The construction of smart factories should consider the characteristics of 

manufacturing plants to meet rapidly changing market demand. The following planning 

auto-mated production was used for a smart-factory laboratory platform, and many 

typical features of smart factories were explored. Figure 1 is a prototype mechanical 

electronic construction platform for industrial production lines [16]. According to the 

conceptual smart-factory architecture, the prototype platform of the intelligent structure 

has four layers: a physical resource layer, cloud service layer, terminal layer, and network 

layer. The prototype layer is introduced as follows. 

• Physical resource layer. 

This consists of basic smart sensors or equipment, conveying equipment, and pack-

aging products. It is mainly responsible for performing tasks, such as processing, 

monitoring, and assembly. After receiving basic analogue/digital data sources, 

manufacturing process information is very important to enable the transfer of signals for 

upper-level applications. 

• Cloud surface layer. 

This contains a cloud platform (service cluster system based on the Hadoop 

architecture), which provides data storage and computing resources for data applications. 

The ontological model of the packaging line was constructed on a cloud platform, and the 

relationship between the two dimensions of structure and interaction was established 

objectively. The complex restricted grammar of the Web Rule Language is mainly used to 

upload the manufacturing data to the cloud platform and to the data model. A 
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knowledge-based reasoning system was used for device operations. Resource allocation 

and factory-optimized scheduling work are supported to provide a fault alarm [17]. 

• Terminal layer. 

This mainly includes end-user equipment such as smartphones, computers, and 

circuit boards. They are distributed in different manufacturing locations, monitoring 

centers, and other areas. Terminal devices are used to visualize the results of cloud 

processing and support remote monitoring operations and maintenance. In addition, 

customers can use smart terminals to check the order status at any time. 

• Network layer. 

This connects the networks in a smart factory. Following this rule, the connection 

between the distributed control, controller and actuator, Modbus, and EtherCAT is 

realized. The connection between the devices is realized through a combination of 

Ethernet and a data distribution service, which is a self-organizing network structure. In 

addition, the connection between the devices and the cloud platform can be achieved 

through a combination of Ethernet and Open Platform Communications (OPC, unified 

architecture-automation technology, and machine-to-machine network transmission 

protocol), which was used to provide data exchange [16,18]. 

The design factors of a smart factory must consider parameters such as equipment 

availability, equipment performance, and product qualification rate. It has a cloud-

assisted manufacturing system that allows equipment to self-organize the scheduling and 

optimization process and propose effective solutions. Many verification experiments have 

proposed a specific time slot to verify the operation of production line equipment. Among 

them, power measurement by smart meters is used to evaluate the total power of 

laboratory equipment, and to calculate the power parameters and operation cycle values, 

and upload the data to the cloud. It is necessary to compare the efficiency improvement 

rate for the manufacturing and test equipment. This result verifies that the cloud-assisted 

manufacturing system and self-organizing scheduling both have a significant positive 

effect. 

The network layer is an important component of a smart factory. The system devices 

induced many signals when it started its operation. Such data are typically unstructured 

and cannot be used. Big data and IoT occur [19,20]. Unstructured data can be easily 

analyzed. This analysis provides valuable information for the factory production lines. 

The equipment needs to be ready to intercept the data, transmit it to a platform, and wait 

for it to be analyzed. The equipment must be equipped with many sensors and support 

international communication standard protocols, such as the Semiconductor Equipment 

Materials Initiative, Equipment Communications Standard/Generic Equipment Model, 

OPC, and Transmission Control Protocol/Internet Protocol (TCP/IP). 

3. PLC Production Line Signal and IoT Connection 

A smart factory is required to establish an internal ecosystem in which devices and 

applications are connected through standard protocols. Key applications, such as the 

manufacturing execution system (MES), enterprise resource planning (ERP), and product 

lifecycle management tools, should be integrated with each other. The PLC equipment 

core is integrated into the MES to adjust each step, as shown in Figure 2. Devices, such as 

handheld scanners, mobile phones, and tablets, should communicate with the 

applications in the workshop. This ensured a closed-loop information collection and 

control system. 

The PLC is an industrial-grade device. Therefore, it does not allow direct connection 

to the Internet, as it can only communicate with other devices through a special protocol 

developed by the PLC manufacturer. Furthermore, these protocols have limited 

functionality, and require specific additional knowledge and different software to be fully 

functional. The main purpose of this study is to recommend a simple, efficient, and low-

cost technique to connect any type of PLC to the Internet, thereby moving data to high-
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performance servers where it can be processed quickly and easily. This adds a new 

dimension to data storage, processing, and interpretation as data moves from limited-

resource devices such as PLCs to unlimited-capacity devices such as cloud servers. The 

device that plays a major role in the entire framework is the Raspberry PI, which helps to 

transfer data from the PLC to the cloud server by facilitating the conversion between the 

PLC and the server. The Raspberry PI establishes a connection with the PLC through the 

Modbus TCP. The main function of the Raspberry PI is to map data from the PLC and 

encapsulate it in a hypertext transfer protocol (HTTP) request that the server can handle. 

After the connection is established, the following steps are repeated for signal processing 

at specific time intervals. 

• Step 1: The PLC performs electromechanical integration through drivers and sensors 

to form the basic edge computing controller (edge layer) of the smart factory and 

stores parameters for electrical devices such as motor speed, current, operating 

temperature, machine operating status, and alarms in temporary storage in the 

memory. 

• Step 2: Machine image recognition uses convolutional neural network (CNN) 

technology to detect the status of the unmanned factory, sends its information 

through the Raspberry PI fog computing controller (fog layer) conversion and 

uploads it to the cloud. 

• Step 3: The Raspberry PI connects to the PLC through an analogue and digital signal 

converter, reads data from the I/O port of the PLC, and sends it to the server through 

an HTTP request. 

• Step 4: Raspberry PI reads these values and wraps them into HTTP requests with a 

machine ID and timestamp before sending them to the cloud server. To obtain real-

time information, the interval of the Raspberry PI loop is adjusted to 100 ms. 

• Step 5: When the server receives a request from the Raspberry PI, it stores the 

received data, machine ID, and timestamp in a database. Authorised users can view 

the information collected in a secure network environment using an Internet-

connected device. 

• Step 6: The cloud controller was a dual-core MT7697 (using Cortex-M4 with a FPU 

Max frequency @192 MHz, with a UART/I2C/SPI/I2S/PWM/ADC/IrDA function. 

CNN technology passes a video signal, and a PLC intercept signal is used for 

terminal monitoring. A general view of the proposed system architecture is shown 

in Figure 2. 

 

Figure 2. The smart factory uses PLC devices to monitor various equipment signals. 
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3.1. Realization of Smart Factory Based on PLC Production Line 

The design concept of the smart factory in the production line using an automated 

PLC monitoring system is shown in Figure 3. The main module has many integrated 

systems and the smart factory has a high degree of complexity. It involves a combination 

of connected systems, automation, the IoT, and cloud computing. This is a key module of 

a smart factory, which is distinguished by the following items. 

 

Figure 3. Schematic diagram of the physical architecture of the automated production line. 

3.2. Smart-Factory with Data Security and Models 

The smart-factory architecture must meet several requirements: confidentiality, 

integrity, and availability [21–25]. Device confidentiality ensures that only authorized 

users can read the emails. The integrity message ensures that the received and sent 

messages are unchanged. The availability of the device is for every available data service. 

The basic model architecture properties are defined as follows: 

S = {𝑆1, 𝑆2, 𝑆3, … , 𝑆𝑛 , },

O = {𝑂1, 𝑂2, 𝑂3, … , 𝑂𝑛, },

μ = {𝑀1, 𝑀2, 𝑀3, … ,𝑀𝑛 , },

A = {w, r, c},

p = {𝑙1, 𝑙2},

 (1) 

where S is the theme set; O is the set of objects; μ is the set of access matrices, which 

represents the subject’s access privileges to the object; A is a set of access attributes, w 

represents storage, r represents read, and c represents control; and p represents different 

privilege levels, where 𝑙1 < 𝑙2. 

The architecture contains three entities: device nodes, management center, and user 

nodes. Device nodes and management hubs belong to 𝑙2; and user nodes belong to 𝑙1. 

Data can flow from device nodes and management hubs to user nodes. The user node has 

no right to write or modify data. However, both the device node and the management 

center provide all each other’s permissions. This is an effective data interaction realization. 

The formula defines the determination of the current state as a safety condition [21–25]. 

V = S × O × A × μ × p (2) 

where S × O × A indicates that the object uses a certain method to access the object [24–

28]. Once all elements are safe and trusted, a safe state can be ensured. 
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3.3. Implementation of Smart-Production Configuration in the Manufacturing Plant 

For a smart factory, the architecture system is extended from the IoT. This section de-

scribes the design architecture during the operation of the processed object between the 

processes of data interaction in the production line. Therefore, the state of the processed 

object must be monitored. This study provides specific electromechanical integration 

experimental equipment and image-recognition algorithms to validate the experimental 

results, as shown in Figure 3. First, the proposed architecture implements data collection, 

which depends on the PLC using the edge/sensing-computing method. Normally, the 

PLC arranges one or more sensors and connects them to the hub management center. 

After receiving the data, fog computing is directly uploaded to the cloud computing 

system to register the ID, which is added to the whitelist of the connected management 

center. During the operation of a production line, management is obtained based on the 

essence of the IoT. According to the concept of IoT, the production line establishes edge 

computing for basic layer sensor data collection, such as infrared or electromagnetic 

sensors, and is used to control the production line scheduling signals. The fog-computing 

controller was applied to the CNN to analyze the signals. Based on IoT cloud system, the 

signal can be referred to as the basic requirement for the end-user needs [26–28]. 

The original production line can auto-change to a new production line when faulty 

equipment is on standby waiting for maintenance work. Meanwhile, the sensing (edge) 

computer is reconfigured with nearby production lines to reconstruct a new production 

capacity. To achieve continuous operation, the production capacity should be maintained 

until the production line breaks back to the system, as shown in the flowchart in Figure 3. 

The configuration of the automated production line for IoT method is presented in Table 

1. 

Table 1. IoT method for production line rearrangement. 

IoT Interaction for Smart Factory 

1 begin 

2    for i←1 to mComputer[1  . . . a] 

3 
     find the connected mComputer[j] for 

     mComputer[i] 

4      register ID 

5   end for 

6   Wait //wait for application 

7   if RequestReceived == true) 

8 
     if compare the mComputer with 

       whitelist[1 . . . a] == true) 

9        if execute production work == true) 

10 

          start the production manufacturing work and record subsequent data 

to upload the data to the database directly, including: 

1. Manufacture procedure optimization 

2. Smart factory with face ID of CNN method 

3. Edge-, fog-, and cloud-computing data communication 

11        Else 

12 

Detect the whether the production status is running or break; if a break   occurs, 

then arrange other production line to continuous fabrication and upload the 

situation to the cloud computer and record 

13      end if 

14         if Repair production can back to work == true); Run origin setting 

15      end if 

16    else 
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17 
   deny, wait for new production block to be 

   generated 

18    end if 

19   end if 

20 end 

3.3.1. Neural Algorithm Image-Recognition Application 

A CNN is a feedforward neural network. Artificial neurons respond to some of the 

surrounding units in the coverage area. It exhibits excellent performance in large-scale 

image processing. The CNN is composed of one or more convolutional layers with the top 

fully connected layer (corresponding to the classic neural network). It also includes the 

associated weights and pooling layer, as shown in Figure 4. This structure allows CNNs 

to use the 2D structure of the input data. Compared with other deep learning structures, 

CNNs can provide better results in image and speech recognition. This model can also be 

trained using back-propagation algorithms. Thus, for other methods, feed-forward neural 

networks and CNNs are necessary to consider certain parameters. The CNN yielded an 

attractive deep-learning structure in this study. Some related structures are listed below. 

 

Figure 4. The proposed architecture for CNN algorithm. 

• Convolutional layer. 

By using a small kernel, the entire image and the intermediate feature map can be 

convolved. This step allows the kernel to learn the functions in the image. The 

convolutional layer is a set of parallel feature maps that are composed of different sliding 

convolution kernels on the input image and perform certain operations. In addition, an 

element-corresponding product and summation operation at each sliding position are 

performed between the convolution kernel and the input image, which sets the project 

information in the receptive field to an element in the feature map. 

• Pooling layer. 

This layer typically follows one or several convolutional layers to reduce the size of 

the feature map and the risk of overfitting. The pooling layer is another important concept 

in CNNs, which is a nonlinear form of down sampling. There are many different forms of 

nonlinear pooling functions, and max pooling is the most common. It divides the input 

image into several rectangular regions and outputs the maximum value for each sub 

region. 
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• Fully connected layer. 

The final connected layer uses one or several convolution and pooling layers, and the 

2D feature maps are converted into 1D vectors for classification or other processes. After 

several convolution and max-pooling layers, advanced reasoning in the neural network is 

completed by the fully connected layers. 

This is like a conventional non-convolutional artificial neural network, and the 

neurons in the fully connected layer are connected to all activations in the previous layer. 

Therefore, their activation could be calculated as an affine transformation. The result was 

first calculated by multiplying it by a matrix. Subsequently, a bias offset was added to 

shift the values. 

• Total connection layer. 

For our application concept, CNN (machine learning) is widely used as a common 

image-recognition system. The image-recognition problem is much more difficult in video 

analysis than in still images. CNNs are often used to solve such problems. There is also 

natural language processing, for which CNNs are often used. The CNN model has been 

proven to be able to effectively deal with various natural-language-processing problems, 

such as semantic analysis, search result extraction, and sentence modelling. 

• CNN algorithm. 

Image recognition is highly challenging in smart factories. A high recognition 

performance is proposed, which is faced with the effects of changes in non-linear 

parameters, such as changing illumination, posture, facial expressions, and occlusion. 

This study proposes a four-layer convolutional neural network architecture. The CNN is 

proposed as a solution to this problem which includes face and morphological recognition 

of production artefacts of a smart factory. This study establishes an applicable method 

which has more than 1000 image recognition problems. A partial connection was 

introduced between the first two layers to ensure that different functions were learned 

during the training process. The results of the proposed CNN method. The general 

method requires two stages to perform convolution and subsampling, whereas the fusion 

method requires only one stage. 

The artificial neural network training process was as follows. The artificial neural 

network model is a multi-layer perceptron (MLP), in which a feedforward neural network 

is used to map the input dataset to a set of appropriate outputs. MLP is characterized by 

the LC2 layer of neurons (input layer, hidden layer L, and output layer), which has a non-

linear activation function at the hidden layer unit. To describe the non-linear relationship 

between different impact factors and reflectivity, feedforward MLP is used for the impact 

factor (𝑥) into a single predicted value y. In the MLP, the in-put layer is composed of the 

1D vector of the region of interest in the original depth image and the authenticity image 

on which they are based. The characteristic of the hidden layer is that the hidden neuron 

has an integer linear unit function, and the output layer is composed of only one output 

neuron (non-linear value y). The number of hidden neurons is determined by a simple 

method of trial and error. The input variable vector x is mapped to the neurons in the 

hidden layer, as shown below: 

{
ℎ𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑖 × 𝑥 + 𝑏𝑖), (𝑖 = 1)

ℎ𝑖 = 𝑅𝑒𝐿𝑈(𝑊𝑖 ∙ ℎ𝑖−1 + 𝑏𝑖), (𝑖 = 2,3… , 𝐿)
 (3) 

where ℎ𝑖 is the output value of the 𝑖-th layer, 𝐿 is the number of hidden layers, 𝑊𝑖 is the 

weight matrix between the previous layer 𝑖 − 1 and the current layer 𝑖, and 𝑏𝑖 is the bias 

parameter vector of the previous layer 𝑖 − 1 and the current layer 𝑖. Additionally, the y 

value represents the distance obtained from the depth image, which is also the output of 

each sample, which is obtained from the linear combination of the hidden neuron vector 

ℎ𝑖, as follows: 

y = 𝑓(𝑥;𝑊) = ℎ𝐿(ℎ𝐿−1(… ℎ2(ℎ1(𝑥; 𝑤1);𝑤2); … ;𝑤𝐿−1); )𝑤𝐿  (4) 
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The final cost function can be calculated as follows: 

Loss =
1

𝑛
∑[𝑦𝑗 − 𝑦𝑗

𝑔𝑡
]2

𝑛

𝑗=1

=
1

𝑛
∑[𝑓(𝑥𝑗;𝑊) − 𝑦𝑗

𝑔𝑡
]2

𝑛

𝑗=1

 (5) 

where loss function is a training set, validation set, or testing set, n is the number of 

samples, 𝑦𝑗  is the output value of sample 𝑗, and 𝑦𝑗
𝑔𝑡  is the true value of sample 𝑗 

(ground truth). The above formula shows the average error between the predicted value 

and the true value. Average-Error (AE) is used to adjust the model. 

AE = √𝐿𝑜𝑠𝑠 (6) 

3.4. Smart Robot Control and Visual Recognition 

This research is based on CNN theory. First, the MediaTek Company constructed the 

Linkit-7697 dual-core chip as an IoT information integration device. They also built a 

MediaTek Cloud Sandbox (MCS) as a cloud system, as shown in Figure 5. It is a cloud 

data-service platform that allows users to connect to IoT. This device uses MCS to quickly 

realize the prototype IoT product. Furthermore, the programming function database for 

machine vision through OpenCV software was obtained, including the users of OpenCV 

and Python/C++ to detect faces in the images. The Haar-based cascade classifier in 

OpenCV was used to realize facial recognition in the code. This is an effective object-

detection method. This method is a CNN algorithm in which the cascade function is 

trained using numerous positive and negative images. Thus, the images can be detected. 

OpenCV contains many retrained classifiers, such as faces, eyes, and smiles. 

 

Figure 5. The neural network’s design and structure for motor control. 

3.4.1. Robot Motor Control with FOPID 

This study aimed to establish camera vision with a neural algorithm for image 

recognition, combined with the joint module of the robotic arm, to control the motor with 

a power feedback method. This method included two sequential processes. First, the CNN 

was used for image recognition to apply the output control of the signal. Second, it 

estimated the external torque of each joint τ and used the feedback signal for the 

identification and detection processes. In addition, an AI method was constructed to 

control the motor. The position and speed control method was based on the detection 

results after deep learning. To evaluate the performance of self-detection, each joint of the 

motor was regulated by an external force. Two performance indicators were introduced 

to represent safety and efficiency. The control signal was sent to the cloud system for 

valuable collection and observation. The design and structure of the neural network used 
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for motor control are shown in Figure 5. Momentum-based observers were therefore 

widely used to estimate the torque of the external joints (the joint refers to the motor signal 

being measured) using the kinetic energy method. For an n degrees-of-freedom rigid-

body, the dynamic equations are as follows: 

M(q)𝑞̈ + 𝐶(𝑞, 𝑞̇)𝑞̇ + 𝑔(𝑞) = 𝜏𝑚 + 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 (7) 

where M(q) ∈ 𝑅𝑛×𝑛  is the inertia matrix, 𝐶(𝑞, 𝑞̇)𝑞̇ ∈ 𝑅𝑛  is the vector of Coriolis and 

centripetal torque, and 𝑔(𝑞) ∈ 𝑅  is the gravitational vector, 𝜏𝑚  is the control torque, 

𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙  is the external torque. The position control applied to the model is expressed as 

follows: 

𝜏𝑚 = 𝑀̂(q)𝑞𝑟̈ + 𝐶̂(𝑞, 𝑞̇)𝑞𝑟̇ + 𝑔̂(𝑞) + 𝜏𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒   (8) 

The parameters of the 𝑀̂, 𝐶̂  and 𝑔̂ are marked as nominal model, 𝑞𝑟̇ = 𝑞̇ + 𝐾𝑝 +

𝐾𝐼 ∫ 𝑒 𝑑𝑡  represents the reference trajectory, 𝑒 = 𝑞𝑑 − 𝑞  is the position error, and 𝑞𝑑  

represents the required trajectory, and 𝜏𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒  is the control input, which is defined as 

follows: 

𝜏𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = −(𝐾 +
1

𝑟2
) (𝑒̇ + 𝐾𝑝𝑒 + 𝐾𝑖 ∫𝑒 𝑑𝑡) (9) 

where r > 0, and 𝐾, 𝐾𝑝  and 𝐾𝑖 > 0 in the PID controller are symmetric gain matrices and 

satisfy 𝐾𝑝
2 > 2𝐾𝑖. The following observers are designed to evaluate the external torque as 

follows: 

𝜏̂external = 𝐿 (−𝑝𝑒(𝑡) + 𝑝𝑒(0) + ∫ (𝑠𝑒(𝑡) − 𝜏𝑟𝑒𝑓.)𝑑𝑠
𝑡

0

) (10) 

where 𝑝𝑒 = 𝑀̂(q)𝑒̇𝑟 , s𝑒 = −𝜏𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 + 𝐶̂(𝑞, 𝑞̇)𝑒̇𝑟  and 𝑒̇𝑟 = 𝑞𝑟̇ − 𝑞̇ , so the dynamic 

equation of the observer is rewritten as 

𝜏̂external = 𝐿(−𝜏̂external + 𝜏external) − 𝐿(𝑀̃𝑞̈ + 𝐶̃𝑞̇ + 𝑔̃) (11) 

Among them, 𝑀̃ = 𝑀 − 𝑀̂、𝐶̃ = 𝐶 − 𝐶̂、𝑔̂ = 𝑔 − 𝑔̂ and 𝜏̂external refers to the sum of 

𝜏external and 𝜏d. This is the recognition program constructed by the XML model, as shown 

in Table 2. Then, the neural network as image recognition results can be applied to the 

motor control of the robotic manipulator. 

Table 2. Intelligent robot manipulator motor control method with object recognition for light-out 

factory control. 

Face and Color Detection by Artificial Intelligent Method  

1 Input: Linear Velocity and Steering Angle: 

2 𝑥1, 𝑥2, 𝑥3, … . , 𝑥𝑁 .  𝑅𝑛 × n 

3 Control: Prediction of angle, torque, and direction: Y 

4 Measure parameters: motor current 𝑖(A), voltage (V), angle, and torque  τ𝑚 

5 Given parameters: NN method W weight matrix and b bias vector 

6 Parameter Initialization of M, C, 𝑔,  τ𝑛  

7 while t > 0 do 

8 Calculating 𝜏 𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 using Equation 7 

9 Calculating position 𝜏𝑚 using Equation 8 

10 Calculating FOPID trajectory using Equation 9 

11 Calculating external torque 𝜏̂ external using Equation 10 

16 End 

17 Output: motor=[current, voltage, torque, angle] 

18 Y = Fully Connected to PLC controller for smart factory machine 

19 Result: Prediction of current, voltage, and torque 
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This follows the design of a basic proportional-integral-derivative (PID) controller 

that is used to perform the work piece clamping work of the motor on the production line. 

This part can replace a manual configuration. At the same time, the visual monitoring of 

a lights-out smart factory can greatly improve the efficiency and reduce the total cost of 

the factory in terms of the workforce, and meet faster production delivery requirements. 

Therefore, to load the image for face detection, it must be performed as before. 

First, the image must be converted into a grey image. Face detection was performed 

using the detectMultiscale() function of the cascade classifier: in this case, 

face_cascade.detectMultiScale(gray, 1.3, 5), where the scale factor (SF) is 1.3, and 

parameter 5 is the minNeighbours parameter. Using the SF function before and after the 

scan process, the search for the scale factor of the window can be done within two 

successive scans. The set parameter of 1.3 is expanded by a search window of 30%. In 

addition, for the minNeighbors function, the minimum number of adjacent rectangles can 

detect the target. If the number of small rectangles used to detect the target is less than 

that of min-Neighbors, it is excluded. After this calculation, face shape detection was 

completed. All face data were found in the image and stored in the system. A rectangular 

shape was drawn around the face. Thus, the face-recognition function was successfully 

performed. 

3.4.2. Robotic Arm Control for Edge Computing Industrial Sensing Intercept Point 

The working field node of the production line is a key factor in IoT structure. To 

observe the dynamic results, if the system detects the failure condition of the production 

line, it will provide information to the user or third-party system of the service endpoint 

to address production-line problems. Figure 6 illustrates the physical system used to 

implement the industrial network. This is the main component of technology. The system 

embeds the CNN model in a pre-set program. First, the physical sensing layer contains an 

actual measurement intercept point that is continuously collected. Industrial equipment 

and systems are required. The software and hardware of the embedded system (MediaTek 

7697 and Raspberry PI 4S) were developed externally. Therefore, the communication 

status between the physical environment and the on-site network environment is 

determined. Second, the fog layer contains the technical components required to accept 

the input information of the physical layer, which executes and returns the analysis 

results. Finally, the cloud layer of back-end users includes maintenance-related factories 

that need to deploy and receive network information for each atomization layer. 

In this study, a gripping robot with a control process is used. It remotely collects 

physical visual image data continuously day and night. This includes multi-sensor signal 

collections uploaded through the cloud-embedded system that connects to a single-chip 

component combined with IoT architecture platforms for signal interception and control 

functions, as shown in Figure 6. At present, the LinkIt series of development boards are 

aimed at IoT applications and mainly provide two series of development boards: LinkIt 

Smart 7688 and 7697 Duo, which are used for higher-level IoT nodes or gateways. 
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(a) (b) (c) 

Figure 6. The sensor extension to the IoT: (a) IoT, (b) cloud, (c) Smart-chip connect to cloud. 

This can be performed using Linux kits with high-level languages (Python/Java 

script). The Linkit-7697 was positioned as a lighter node. For the application of the robot, 

rotation motors and linear actuators with multi-sensing signal processing were 

constructed. It can be shown that smart linear actuators and a wisdom factory robotic was 

built. The networking architecture of IoT in the device and cloud is shown in Figure 7a,b. 

The components of the cloud-embedded system are shown in Figure 7c. The experimental 

structure is shown as a diagram of a robotic arm combined with visual images to control 

an AI motor. Based on the above-mentioned CNN theory, facial images, objective 

displacement motion tracking, and color discrimination are used to control the AI motor 

actions, as shown in Table 3. It is an AI motor trend and control program based on the 

CNN theory. 

  

(a) (b) (c) 

Figure 7. The platform of a physical construction for IoT of the smart factory: (a) edge, fog, and 

cloud controller entities; (b) gripper-type pneumatic power arm and four-dimensional robotic arm; 

(c) power and controller architecture. 

Table 3. CNN recognition control robot AI motor. 

Robot Motor Control by CNN Method 

1 Import cascade calculator 

2 Input identification image  

3 Conversion image to grayscale 

4 Detecting the faces 

5    Detect image multi scale 

6    Minimize image neighbor 

7    Minimize image size 

8 Plot the face position shape 
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9   for (x, y, w, h) in face 

10 Plot rectangle shape for face 

11   end 

12 Results: 

13   Showing normal windows size 

14   Show up image 

15   Export image to NN parameters 

16   Control FOPID motor parameters 

17 Waiting next instruction 

18 Close windows 

3.4.3. Four-Axis Robotic Arm 

The application of a PLC-gripping lightweight robot with soft material to regulate a 

suitable gripping force was designed, which can effectively avoid surface damage to the 

production parts and protect the quality of the products. In this study, the entity diagram 

of the system architecture is a human-machine interface, as shown in Figure 8. A module 

experiment was developed for the controller. After upgrading the different module 

signals to the control system, the experiment was continuously conducted to capture the 

object and adjust the air pressure and gripping force. The visual entity-monitoring lens 

intercepted the day and night images and uploaded them to the cloud server platform. 

The programmable controller was expected to be able to formulate a variety of shapes and 

sizes of objects to clamp for rapid production line manufacturing. Some important 

component interfaces are as follows: 

 

Figure 8. The Raspberry Pi circuit connected to AD signal structure; 4.5 Cloud high-end system. 

• Soft-touch gripper design: To establish different parameter modules of the 

human–machine interface, the controller parameters can be quickly adjusted. 

• Gripping system design: The combination model includes a soft-touch gripper, 

PLC, compressed gas, and industrial gripper robot. 

• Drive control interface: Standard input-output communication terminals and fast 

transmission program interface signal ports are applied. 

• Remote visual image-monitoring lens: The visual image is sent to the cloud 

server through the network platform to provide users with remote observations 

of the factory. 

3.5. Edge, Fog, and Cloud Computing Device 

3.5.1. Fog System and Edge-Computing Integration 

This study proposed a composition of the topology of a fog-computing 

embedded system. This topology is based on embedded machine learning. This was 

used for the physical structure of the network to interactively realize embedded 

machine learning. Cloud platform storage is suitable for different engineering 
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applications, including established prediction values of the equipment, system 

prediction results, and processing methods. 

To establish production machine learning models, these models are distributed 

and executed safely through fog nodes in the local network domain. In each fog node, 

its identity and engineering applications are linked to the cloud platform in an 

uploaded and synchronized manner to ensure new models and values. Once the 

machine-learning model is changed, it can continuously track the actual intercept 

point value without relying on external connections and signal services, particularly 

for user-operation messages and reminders. 

A. Raspberry PI application of fog system. 

For the fog controller, choosing a single chip, such as an Arduino computer, to 

perform as the fog (middle) layer of the network is not suitable because it might limit 

the performance of the power and storage of the computer. In this study, Raspberry 

PI 4 Model B was used in the fog system. This device processor was a 1.5-GHz 

BCM2711 (quad-core Cor-tex-A72), the storage memory capacity was increased to 4 

GB, and it had Bluetooth 5.0, with four USB 2.0/3.0 interfaces, HDMI vision interfaces, 

and a power supply with USB-C interface. These specifications enabled the portability 

of this device across the entire supply chain of the factory. However, the original 

technical decision-making strategy may have an impact on portability. Fortunately, 

cloudlets or microcomputer cluster methods can also be used. It can be faster to solve 

engineering problems and special requirements for a larger computer stream source 

are not then needed. This research uses a Raspberry PI embedded system for video 

streaming. First, the test was carried out using a camera lens and pictures/videos. 

Image streaming should then be performed to connect to internet services. Finally, 

OpenCV was used to process the images and build a hardware development 

platform. The basic image technology of this system is as follows: 

• Image transformation: color space and basic image processing; color space (RGB, 

YUV, HSV). 

• Affine transformation includes translation, rotation, scaling, and cropping. 

Image-processing methods include (a) blur, (b) erosion, and (c) dilation. 

• Optimal edge path: Canny edge detection, Hough transform, and moment 

invariance finish the contour. 

• For image applications, except for the above-mentioned color recognition 

function, a face-detection (Haar classifier) method was developed as a simulate-

type lights-out smart factory constructed with an application of the machine 

learning method. Based on its image-recognition system, Raspberry PI was used 

with the fog system to create a smart factory for this study. 

B. Fog computing and node control. 

A suitable wireless node controller needs to be developed that is used to intercept 

the face recognition of the neural algorithm and the color recognition of the processed 

product to detect product targets on the production line. 

An algorithm, for example, for detecting a signal can be used to detect 

abnormalities in a factory. The image detector is shown in Figure 8. The embedded 

system of the Raspberry PI is defined as a fog-computing controller, and the general 

input and output of the node are extended and connected as a relay to control the 

terminal node to transmit the status of the control light. The output was linked to the 

PLC. The main purpose was to immediately stop the operation of the production line 

until no dangerous elimination was expected, at which point the production line 

could be restarted. 

3.5.2. Cloud High-End System 

A high-level IoT platform can extract data from multiple types, such as 

application procedures, sensors, and equipment. It conducts complexation analysis 
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through connectors, including assuming analysis procedures, and can provide more 

valuable data. This is because the numerical value is used to improve the efficiency 

and reduce the cost of the optimization design, as shown in Figure 9. This is a simple 

diagram of IoT architecture. The foundation of the cloud system is mainly based on 

IoT chip development by MediaTek. Meanwhile, MediaTek has established a cloud-

data service platform, MCS, that can be connected to different IoT devices. This is 

used in the MCS system to quickly realize IoT prototype. Thus, each test of the 

prototype device provides multiple definitions of the data channels. 

 

(a) (b) 

Figure 9. Low-cost IoT architecture: (a) Cloud computing MediaTek Linkit-7697 structure, (b) 

diagram of complete communication link. 

Each test device had an independent device ID and device password (device key) 

to provide external connections and ID functions. To connect the MCS server, the 

development device communicates with the MCS server through HTTP Restful APIs 

and other communication protocols. The MCS library was provided by Linkit-7697 

Arduino BSP, encapsulating these communication protocols into a simple and easy-

to-use interface, as shown in Figure 9. This allows Arduino developers to connect 

easily to MCS services. The Arduino BSP of Linkit-7697 provides an MCS library for 

developers to implement applications using MCS services. The MCS library 

encapsulates the operation and communication between Linkit-7697 and the MCS 

server, including: (a) connecting to the specified MCS server; (b) creating a data 

channel (except for the gamepad controller); (c) specifying the data channel, and the 

data point is transmitted to the MCS server; (d) the data point of the specified data 

channel is received from the MCS server; and (e) the current communication protocol 

is supported by the library. The TCP and HTTP communication links can be 

connected. 

Based on the uncertain nonlinear characteristics of the robot parameters, a robot 

controller is needed to adjust the motor and follow a predetermined trajectory. The 

algorithm tuned the gain using the FOPID controller parameters. The robot 

manipulator was developed to replace the traditional program of the designer ’s 

expertise. Figure 10 shows the control architecture of the manipulator. In addition, 
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the controller gains need to be properly optimized to achieve better performance. In 

this paper, the FOPID with a modified neural network algorithm is proposed as a 

novel adaptive adjustment algorithm to optimize the gain of the controller. 

 

Figure 10. Neural network regulated the fractional order PID controller to feedback the signal of the 

motor torque, and transmit the upload of each join datum to the IoT. 

4. Results and Discussion 

In this study, an IoT solution based on the establishment, installation, testing, and 

implementation of experiments in the Robot and Motor Control Laboratory at the 

Asia Eastern University of Science and Technology, Mechanical Engineering (AEUST-

ME, Taiwan), was built. Related experiments to create a solution using IoT are 

proposed to monitor the status of workpieces on the production line. As shown in 

Figure 11, AEUST proposed a physical map of the electromechanical integration 

production line platform. The quality of the product is improved through the 

relationship between the data of various types of sensors and the color recognition of 

the image. 

   

(a) (b) (c) 

Figure 11. Physical visual image results of the cloud servo platform to remote and monitor: (a) color-

recognition image of the production object, (b) night monitoring image: black and white image, (c) 

day monitoring image: color image. 

In the first step of the initial construction, the original machine is based on the 

traditional PLC architecture, and its speed of operation, product color recognition, self-

inspection, and repair or learning mechanisms are lacking. Therefore, the establishment 

of a new IoT in the signal of the existing network communication interception sensor is 

integrated, which is unified for analogue/digital signal conversion. To avoid excessive 

surge signals, the impact of the electronic circuit on the burning out of the electronic 

components is clear. Adding a rectifier and limit-function circuit for signal interception 
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can avoid this issue. Thus, the converted signal can be sent to the cloud network control 

system with assured integrity. Furthermore, the construction and functionality of the PLC 

equipment and machines are enhanced. A supervised machine learning mechanism was 

proposed. 

This is a general supervised learning process used to generate a global model that 

corresponds to the input objects and the expected output. Based on the case in this study, 

the optimized production line transfer mode of similar processes has been solved in the 

past, and new inference methods are sought to solve the best path of the current 

production line. This is the process of the machine learning method used to solve current 

production line problems. Figure 12 shows the face recognition results constructed by 

applying the neural theory. The Raspberry PI system is detected by fog computing that 

outputs the recognition signal, which includes the human wear mask and motion-tracking 

detection. By synchronously uploading data to the cloud computing controller for 

calculation and monitoring, the functions of factory population monitoring are achieved. 

During the visualization process to repair a rejected product, pre-shipment inspection is 

necessary. The system uses real-time location data and shipment urgency to track 

progress. It can repair and reduce human costs after required additional delivery 

procedures. In the future, these challenges will include image analysis of production-line 

workers and equipment during the test and analysis of the relationship between these 

data and test log data. To use these results, it is necessary to further reduce the scrap rate 

of finished products. In addition, it is difficult to reduce indirect costs and extend the 

visualization plan to the entire supply chain and between other factories. To create a 

solution using an IoT structure, both design and experiments are proposed to monitor the 

status of workpieces on a smart factory platform. As shown in Figure 13, we propose a 

physical map of the electromechanical integration platform. The quality of the product is 

improved through the relationship between the data of various types of fluxgate sensors, 

color recognition of the image, and acoustic and vibration signals. 

  

(a) (b) 

Figure 12. IoT PLC smart-factory-monitoring field platform: (a) physical layer sensing numerical 

platform, (b) detected signal upload to cloud platform. 
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(a) (b) 

Figure 13. IoT PLC smart-factory-monitoring field in acoustic and vibration with Fog computing 

platform: (a) acoustic signal and (b) vibration signal. 

The converted signal can be sent to the cloud network control system with assured 

integrity. Furthermore, the construction and functionality of PLC equipment and ma-

chines are enhanced. A supervised machine-learning mechanism was proposed. This is a 

general supervised learning process used to generate a global model that corresponds to 

the input objects and expected output, including the flux signal, color vision, and motor-

moving trajectory path. 

Optimized PLC production line transfer processes have been previously solved, 

and new inference methods have been sought. These methods can provide a better 

path for the smart factory of a PLC production line. This is a process of the machine 

learning method used to solve current PLC production line problems. Figure 14 

shows the face recognition results constructed by applying the neural theory. The 

Raspberry PI system is detected by fog computing, which outputs a recognition 

signal. We achieved synchronous uploading of the data to the cloud computing 

controller for the calculation and monitoring functions of factory population 

monitoring. In this study, the intelligent robot arm integrates the neural network 

theory and FOPID controller to evaluate the operating efficiency of the smart factory 

in terms of magnetic sensor signals, product image recognition, and motor signal 

control, thereby reducing the total cost by at least 50% and measuring the operation 

duration of each motor, as shown in Figure 15. 

In this study, the data were collected in the laboratory for more than half a year 

for numerical analysis and function adjustment. New research results in IoT and 

image transmission have been realized, which can smoothly achieve higher 

production efficiency and high quality in a shorter time. At the same time, the 

installation of the device has a multifunctional and responsive man–machine-

coordinated production system. Figure 15 shows the results of these studies. The lead-

time for manufacturing was reduced by 50%. In addition, the product can be 

visualized, and the elimination of defects helps to reduce defective products by 73% 

in the production of workpieces, which reduces the total cost of factory work, and 

enables a faster CNN method to improve the production delivery, respectively. These 

improvements have helped reduce the production area and inventory by at least 50%. 

This research has some relative benefits: for example, it can reduce the material 

storage space of upstream manufacturers. It can also use the excess space in the 

factory for service, business, and production line research and development.  



Appl. Sci. 2022, 12, 3231 21 of 23 
 

 
 

(a) (b) 

Figure 14. Robot motor control performance by using FOPID+NN algorithm: (a) motor operation 

duration, (b) operation efficiency. 

  

(a) (b) 

Figure 15. Statistics of benefits and results brought by the IoT in smart factories: (a) Product lead 

time, including design, production, logistics and sales process, reduced time, (b) product 

manufacturing process and assembly, its failed product components, and reduction result. 

5. Conclusions 

This research successfully implemented a low-cost small smart factory with CNN, 

IoT, and a cloud servo-control experimental system. The core architecture is image 

recognition technology and a neural network system, namely, machine learning for face 

recognition in lights-out smart factories. The research results included the implementation 

of machine learning rules in the production line fog-computing image-monitoring system 

to establish the edge-computing sensing signal architecture and synchronously receive 

the edge- and fog-computing device modules in the cloud system. We verified the image 

recognition of the CNN and the robot motor signal control of the FOPID. This study 

proposes that a CNN + FOPID method can improve the efficiency of the factory by more 

than 50% compared with traditional manual operators. The low-cost, high-efficiency 

equipment of the new method has substantial contribution and application potential. 
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