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Abstract: Inkjet-printed strain gauges on flexible substrates have recently been investigated for
biomedical motion detection as well as the monitoring of structural deformation. This study per-
formed a topographical analysis of an inkjet-printed strain gauge constructed using silver conductive
ink on a PET (polyethylene terephthalate) substrate. Serpentine strain-gauge sensors of various
thicknesses and widths were fabricated using inkjet printing and oven sintering. The fabricated
gauge sensors were attached to curved surfaces, and gauge factors ranging from 2.047 to 3.098 were
recorded. We found that the cross-sectional area of the printed strain gauge was proportional to the
gauge factor. The correlation was mathematically modelled as y = 0.4167ln(x) + 1.3837, for which the
coefficient of determination (R2) was 0.8383.

Keywords: additive manufacturing; inkjet; printed strain gauge; topography

1. Introduction

For decades, strain-gauge sensors have been employed to measure forces applied to
target objects. A strain gauge is constructed from a conductive substance with a wavy
pattern, which is attached to the object under investigation. Deformations induced by
applied forces result in variations in the resistance [1,2].

Additive manufacturing using techniques such as inkjet [3], screen [4], aerosol [5],
gravure [6,7] and shadow-mask [8] printing have been attracting increasing interest be-
cause it is environmentally friendly and material-saving compared with conventional
photolithography or chemical vapour deposition. This approach also allows direct printing
of the strain gauge onto the surface of the target object without a gluing process, thereby
avoiding force decoupling between the substrate and glued strain-gauge material [9].

Highly stretchable as well as highly sensitive strain gauges have recently been used
to measure on human motion in biomedical applications [10]. Carbon [11], silver (Ag)
nanowires [12], Ag flakes [13], PeDOT:PSS [poly (3,4-ethylenedioxythiophene): poly (styre-
nesulfonate)] [14] and graphite [15] have been tested as base materials for the conductive
strain-gauge pattern.

A full Wheatstone bridge with a single-symmetry structure was suggested for com-
pensating for surrounding temperature variations when performing structural health
monitoring outdoors [15]. A parametric design and fabrication process were investigated
for developing analytical models and optimized process parameters for a sandwich-layer-
structure strain gauge with an insulation layer [16].

How the set-in effect, nonlinear responses and hysteresis influence the signals pro-
duced by printed strain gauges has also been investigated [17]. Moreover, a comparison
study was carried out between screen-printed strain-gauge sensor with carbon and inkjet-
printed sensors with Ag nanoparticles (AgNPs) [18]. The microstructure, gauge factor and
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long-term repeatability were analyzed. However, none of these studies performed a topo-
graphical analysis of inkjet-printed strain gauges constructed using Ag on a polyethylene
terephthalate (PET) substrate.

This study used inkjet printing to fabricate serpentine strain-gauge patterns with
various thicknesses and widths of the conductive material. The initial resistances, thickness
profiles and cross-sectional areas were identified after sintering the printed patterns, and
strains were calculated under bending. The correlation between the gauge factor and
topography was investigated using both theoretical and experimental approaches.

2. Experimental
2.1. Materials

A commercial particle-free Ag conductive ink (TEC-IJ-060) was purchased (InkTec,
Ansan-si, Gyeonggi-do, Korea) whose viscosity, surface tension, density and metal contents
are 5~15 mPa.s, 27~32 dynes/cm, 1.03 g/cm3 and 12 wt% at 25 ◦C, respectively. An A4-
sized heat-stabilized PET substrate (AH71D, SKC, Seoul, Korea) was prepared for ink
deposition. The thickness of the substrate was 100 µm.

2.2. Fabrication

A drop-on-demand (DOD) inkjet printer (DMP-2831, Fujifilm Dimatix, Santa Clara,
CA, USA) was used to produce the strain-gauge pattern on the substrate. A 10 pL cartridge
with 16 nozzles (DMC-11610, Fujifilm Dimatix, Santa Clara, CA, USA) was filled with Ag
conductive inks. To ensure stable ink deposition, three nozzles were selected for Ag ink
ejection. The nozzle aperture was 21.5 µm. The diameter of a single droplet on the substrate
was approximately 51.4 µm, as shown in Figure 1a. Thus, the drop spacing for producing
a serpentine pattern was determined as 30 µm to ensure the formation of a continuous
line. The finalized pattern design is depicted in Figure 1b. The width, pitch and height
of the standard pattern were 140 µm, 700 µm and 7 mm, respectively. The plate with the
substrate was placed inside the inkjet printer and heated at 50 ◦C during the ink deposition,
in order to form a stable pattern by the rapid evaporation of the solution. After the printing
process, the deposited strain-gauge pattern was sintered in a conventional convection oven
(OF-22GW, JEIO Tech, Daejeon, Korea) at 150 ◦C for 15 min to ensure high conductivity.
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Figure 1. (a) Deposited single droplet on the substrate. The droplet diameter was approximately 51.4 µm.
(b) The designed strain-gauge pattern. W, P and h are the width, pitch and height of the pattern, respectively.

2.3. Characteristics

The electrical characteristics of each printed strain gauge were evaluated by resistance
measurements using a source meter (2400, Keithley, Solon, OH, USA). The sensitivity of the
strain gauge was quantified as the gauge factor (G f ), which was defined as the ratio of the
electrical resistance change induced by the applied strain, as in Equation (1). A specified
strain was applied to the printed strain-gauge pattern by bending it. Five fan-shaped pillars
with various curved surfaces were manufactured using a commercial three-dimensional
(3D) printer, as shown in Figure 2. Then, the printed strain-gauge pattern was attached to
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each curved surface to measure the electrical resistance under bending. The strain on the
printed pattern induced by bending was calculated using Equation (2) [19]

G f = (∆R/R0)/ε (1)

ε = c/ρ (2)

where G f , ε, c, ρ, ∆R, R0 are the gauge factor, the strain, half the substrate thickness, the
bending curvature, the change in resistance and the initial resistance, respectively.
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shaped cross sections.

For the topographical analysis of the printed strain-gauge sensor, specimens were
prepared using two approaches: stacked and expanded. For the stacked approach, the
serpentine pattern was overprinted on the same position of the substrate, and three kinds
of specimens were fabricated: single layer, three layers and five layers. For the expanded
approach, thin, normal-width and double-width patterns were produced using two, four
and seven droplets, respectively. In all cases, the drop spacing was fixed at 30 µm. An
interferometer (Nanoscan NS-E1000, Nanosystems, Daejeon, Korea) was used to measure
and evaluate the mean width and mean thickness of the printed strain-gauge patterns.

2.4. Statistical Analysis

Minitab (version 20.1.3, Minitab, State College, PA, USA) was employed for statistical
analysis. The Anderson–Darling test was used to determine the normality of data. Statistical
significance was indicated by p < 0.05. Seven specimens were prepared for each topographical
condition, and it was confirmed statistically that they conformed to a normal distribution.

3. Results and Discussion

Figure 3a illustrates the printed strain-gauge pattern on the PET substrate. The pattern
was 7.76 mm in width and 13 mm in length. Seven samples were prepared for each
topographical condition. The initial resistances of the printed strain-gauge patterns after
sintering are depicted in Figure 3b. The resistance steadily decreased as the number of
stacked layers or the width increased. The mean and standard deviation (SD) values of
the resistance for each topographical condition are summarized in Table 1. The maximum
percentage coefficient of variability, calculated as SD/mean × 100 (%CV), was 3.8% for
the seven-droplet pattern. The minimum %CV was 1.6% for the two-droplet pattern. All
%CV values were less than 5%, demonstrating the excellent reliability of the experimental
dataset. In addition, normality was verified in the Anderson–Darling test for all datasets,
as presented in Table 1 (p > 0.05).
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Table 1. Statistical evaluation of measured resistances of the printed strain-gauge patterns.

Topography Mean (Ω) SD (Ω) %CV p

Stacked
layers

Five layers 111.04 3.08 2.8 0.136
Three layers 273.23 8.21 3.0 0.639
Single layer 774.00 18.36 2.4 0.069

Width

Seven
droplets 410.87 15.52 3.8 0.304

Four droplets 580.41 11.39 2.0 0.477
Two droplets 927.78 15.02 1.6 0.687

SD, standard deviation; %CV, percentage coefficient of variability.

Figure 4 shows the cross-sectional profiles of the printed strain-gauge patterns. Figure 4a
indicates that the thickness of the printed pattern was proportional to the number of stacked
layers, and that the evenness of the pattern deteriorated for the five-layer pattern. It is
assumed that the amount of evaporation was greater in the edge area of the deposited ink
than in the central area, and that the resulting unbalanced evaporation forced the solute to
move to the side area, producing a so-called coffee-ring effect [20,21]. The thickness of the
coffee-ring stain superposed in the following printed layers. The peaks for single-, three- and
five-layer patterns were 0.11934 µm, 0.32591 µm and 1.0 µm, respectively.
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Figure 4b illustrates the cross-sectional profiles of the printed strain-gauge patterns
as a function of the numbers of droplets. The widths of the two-, four- and seven-droplet
patterns with a fixed drop spacing of 30 µm were 144.87 µm, 176.19 µm and 264.29 µm,
respectively. The width was not much smaller for two droplets than for four droplets,
because the droplet could spread on the hydrophilic substrate to result in a compressed
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peak value of the width for the two-droplet pattern. In addition, the coffee-ring stain was
clearly observed over the width of the seven-droplet pattern.

Figures 5 and 6 show interferometer images of printed strain-gauge patterns as func-
tions of the number of stacked layers and the width, respectively. The size of the measured
window was 1.1789 mm on the x-axis and 0.8846 mm on the y-axis for all images. In
Figure 5, it is observed that the thickness of the printed pattern varied, and that the three-
layer pattern was wider than the single-layer one. Figure 6 shows the distinct coffee-ring
effect as the pattern widened. The mean widths and mean thicknesses of the strain-gauge
patterns are summarized in Table 2.
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Table 2. Measured widths, thicknesses and corresponding gauge factors of printed strain-gauge patterns.

Topography Mean Width
(µm)

Mean Thickness
(nm) Area (µm2)

Gauge
Factor

Stacked
layers

Five layers 209.39 404.36 84.67 3.098
Three layers 203.15 175.08 35.57 3.051
Single layer 163.34 63.52 10.37 2.471

Width

Seven
droplets 266.60 62.12 16.56 2.589

Four droplets 175.29 68.23 11.96 2.471
Two droplets 151.59 58.42 8.86 2.047

The influence of the topography of the printed serpentine pattern on the sensitivity
was investigated. The stacked-layer specimens were subjected to tensile stress in a bending
test. The strains calculated using Equation (2) varied from 0.625‰ to 2.5‰. It was observed
that the gauge factor increased from 2.471 to 3.098 as more layers were stacked, as shown
in Figure 7. It was particularly interesting that the gauge factor also increased with the
number of droplets, corresponding to an increased width. The gauge factor varied from
2.047 for two droplets to 2.589 for seven droplets, as shown in Figure 8.
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The cross-sectional areas of the printed strain gauges and corresponding sensitivity
factors are summarized in Table 2. Figure 9 shows that the gauge factor was proportional
to the cross-sectional area of the printed strain-gauge pattern. The correlation was mathe-
matically modelled as y = 0.4167ln(x) + 1.3837, where x is the area in microns squared and y
is the gauge factor. The coefficient of determination (R2) was 0.8383.
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The correlation between the geometrical variation in the conductive pattern and the
gauge factor was mathematically derived based on some assumptions: (1) the geometri-
cal deformation occurred in the linear elastic region and (2) the conductive pattern was
isotropic. The resistance of the pattern with the initial geometry was calculated as

R = ρe(L/A) = ρe(L/HW) (3)

The geometries were expressed using the following initial conditions and variations:

H = H0 + dH (4)

W = W0 + dW (5)

L = L0 + dL (6)

where ρe is the specific electrical resistance, L, A, H and W are the length, cross-sectional
area, height and width, respectively, and dL, dA, dH and dW are their corresponding
variations. Then, the variation of resistance can be calculated as

dR = R − R0 = ρe
(L0 + dL)

(H0 + dH)(W0 + dW)
− ρe

L0

H0W0
(7)

The strains within the cross section are

εw = dW/W0, εH = dH/H0 (8)

Poisson’s ratio yields
ν = −εw/εL = −εH/εL (9)

where εL, εw, εH and ν are the longitudinal strain, transverse strains for width and height,
and Poisson’s ratio, respectively.

Substituting Equation (8) into (7) gives

dR = ρe
L0

H0W0

(
1 + εL

1 + εw + εH + εwεH
− 1

)
(10)
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Since (εw + εH + εWεH) � 1, Equation (10) can be rearranged as

dR = ρe
L0

H0W0
(−εw − εH − εWεH + εL − εLεW − εLεH − εLεHεW) (11)

Combining Equations (1), (9) and (11) gives

G f = 1 + 2ν + 2νεL − ν2εL − ν2εL
2 (12)

Equation (12) indicates that the gauge factor can be determined from the longitudinal
strain and Poisson’s ratio of the conductive pattern. To compare the gauge factors measured
experimentally, we used a strain of 2.5‰ and Poisson’s ratio for bulk Ag of 0.37. This
yielded a gauge factor of 1.742, which was lower than the measured range from 2.047 to
3.089, as indicated in Table 2. We could speculate that this discrepancy in gauge factor
is attributed to the porosity of sintered printed Ag layer. In [22], the porosity of material
influences tensile mechanical properties, e.g., elastic modulus, ultimate strength, and
elongation. Then, the porosity could affect the gauge factor as well as Poisson’s ratio of
sintered Ag layer in Equations (9) and (12). Moreover, the anisotropy of the sintered Ag
layer, which was characterized by different lateral and longitudinal deformations, could
markedly reduce the electrical conductivity [23,24]. In further study, we will investigate
the correlation between porosity and gauge factor in microstructure investigation.

4. Conclusions

In this study, we performed a topographical analysis of inkjet-printed strain gauges
produced using Ag on a PET substrate. Serpentine strain-gauge sensor patterns were
fabricated using DOD inkjet printing, and the deposited patterns were sintered in a conven-
tional convection oven at 150 ◦C for 15 min to ensure high conductivity. For the parametric
investigation, the strain-gauge patterns were printed with variations in thickness, from
58.42 nm to 404.3 nm, and in width, for 151.59 µm to 209.39 µm. To calculate the gauge
factor, the fabricated strain-gauge sensor was attached to curved surfaces for bending
tests. The obtained gauge factors ranged from 2.047 to 3.098, and were proportional to the
cross-sectional area of the printed strain-gauge pattern. The correlation was mathematically
modelled as y = 0.4167ln(x) + 1.3837, with an R2 of 0.8383.

The analysis results indicated that the gauge factor of the inkjet-printed strain-gauge
sensor can be modified by controlling the cross-sectional area of the gauge pattern without
changing its serpentine shape. This represents a highly useful feature for an inkjet-printed
strain-gauge sensor with a controllable gauge factor.
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