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Abstract: Biomedical entity linking is an important research problem for many downstream tasks,
such as biomedical intelligent question answering, information retrieval, and information extraction.
Biomedical entity linking is the task of mapping mentions in medical texts to standard entities in a
given knowledge base. Recently, BERT-based models have achieved state-of-the-art results on the
biomedical entity linking task. Although this type of method is effective, it brings challenges for
fine-tuning and online services in practical industries due to a large number of model parameters
and long inference time. In addition, due to the numerous surface variants of biomedical mentions,
it is difficult for a single matching module to achieve good results. To address the challenge, we
propose an efficient biomedical entity linking method that integrates inter- and intra-entity attention
to better capture the information between medical entity mentions and candidate entities themselves
and each other, and the model in this paper is more lightweight. Experimental results show that our
method achieves competitive performance on two biomedical benchmark datasets, NCBI and ADR,
with an accuracy rate of 91.28% and 93.13%, respectively. Moreover, it also achieves comparable or
even better results compared to the BERT-based entity linking method while having far fewer model
parameters and very high inference speed.

Keywords: biomedical entity linking; candidate generation; candidate ranking; self-attention;
cross-attention

1. Introduction

Entity linking is the task of mapping mentions in a text to standard entities in a given
knowledge base [1]. Entity linking is one of the most important parts of information
extraction [2,3], especially in biomedical research and clinical applications, and it is also
the bridge between mentions and knowledge graphs in the knowledge base intelligent
question answering process [4]. The entity linking task remains challenging in that the
same word or phrase can be used to refer to different entities, as well as the same entity
can be referred to by different words or phrases. In the field of biomedical text processing,
this task is more commonly referred to as biomedical entity normalization. Biomedical
entity linking [5] maps biomedical mentions such as disease, drug, and procedure terms
that appear in a document to standard terminology words in the knowledge base.

Mentions extracted from biomedical texts suffer from a number of problems, such
as colloquial, diverse, and erroneous representations, and if these conceptual entities
are utilized or stored without processing, they may have adverse effects on subsequent
tasks. The particular challenge of biomedical entity linking is not ambiguity, i.e., a word
usually refers to only one entity, but the challenge actually lies in the fact that the surface
forms differ significantly due to abbreviations, morphological variations, synonyms, and
different word orders [6]. For example, “alkaline phosphatase increased” is also written
as “ALP increased”, “cerebral ischaemia” is also referred to as “ischemic cerebrovascular
conditions”. The set of standard terms in the knowledge base is large, and the terms are still
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similar in form or semantics, making them difficult to distinguish. Moreover, unlike the
traditional knowledge bases DBpedia [7] and YAGO [8], which contain information such
as entity descriptions and entity attributes, entity information has only one entity name.
Furthermore, not all biomedical mentions can be mapped to a specific term. Therefore,
determining whether a mention can be mapped to a concept in a given ontology is part of
the biomedical entity linking task, and these make medical entity linking very difficult.

In view of the current problems, researchers have deliberately proposed entity link-
ing methods [9,10] for biomedical entity linking. Most of the biomedical entity linking
research [11–13] has focused on solving the problem of medical entity diversity. Currently,
in the field of entity linking, deep learning shows its powerful advantages and is becoming
the mainstream approach to studying biomedical entity linking. Recently, the BERT-based
biomedical entity linking method [14] has achieved the best results on different biomedical
benchmark datasets. While this type of approach is effective, it poses challenges for fine-
tuning in real industry and online services due to a large number of model parameters and
long inference times. For deep learning models, the training efficiency of the model is very
important, and the efficiency mainly includes training time and model parameters. Despite
the fact that there are scientific facilities with a lot of computer capabilities, many people
still have limited access to large-scale computational capacity. As a result, it is critical to
create a more scalable approach for biological entity linking.

Essentially, biomedical entity linking is a type of semantic matching task. In general,
they are mainly divided into representational matching models [15–17] and interactive
matching models [18–20]. It is difficult for a representational model to measure the contex-
tual importance between two sentences because the representational model needs to encode
the representation of the two sentences separately, which will lose the semantic focus. The
disadvantage of the interactive model is that it ignores global information such as syntax,
inter-sentence contrast, etc., and thus cannot carve out global matching information from lo-
cal information. In addition, biomedical entities are mentioned in too many different ways,
and it is difficult to obtain good results with a single matching model. Inspired by recent
progress, combining the advantages of each of them, we propose an efficient biomedical
entity linking method by jointly modeling the intra-entity and inter-entity relationships of
mention and candidate in a unified deep model to better capture the information between
medical mentions and candidate entities themselves and each other. In summary, our main
contributions can be summarized as follows:

1. We propose an efficient network for biomedical entity linking by jointly modeling
inter- and intra-entity relationships of biomedical mentions and candidates in a
unified model.

2. A novel fusion framework with cross-attention and self-attention is proposed to better
exploit not only the relationship within each entity but also the relationship between
mentions and candidates.

3. We also designed a biomedical entity linking method based on BERT and pairwise
ranking to compare with the lightweight method in this paper.

4. The experimental results demonstrate that the proposed method in this paper achieves
fairly competitive performance on two biomedical benchmark datasets. Further-
more, it also achieves comparable or even better results compared to the BERT-
based entity linking method while having far fewer model parameters and very high
inference speed.

The rest of the article is structured as follows: Biomedical entity linking research will
be briefly discussed in Section 2 of this paper. Our methodology for linking biomedical
entities will be explained in Section 3, and the general structure and processing flow of
each portion will be shown. In order to show the efficacy of our approach, we provide
an in-depth analysis of the experimental results in Section 4. Section 5 summarizes the
research and discusses possible future directions.
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2. Related Work

In the field of biomedical entity linking, earlier studies used rule-based systems to
capture string similarity between mentions and entity names. Kang et al. [9] proposed
a natural language processing module with five rules to improve the normalization per-
formance of disease terms in biomedical texts. D’Souza and Ng [21] proposed a manual
rule-based multichannel filtering system by defining 10 rules with different priorities to
measure the morphological similarity between mentions and candidate entities in a given
knowledge base for entity linking, and this is the best rule-based system that has worked
so far on the NCBI [22] dataset.

To avoid the inefficiency associated with manual rules, machine learning methods
automatically learn the appropriate similarity metric between entity mentions and entity
names from the training set. DNorm [11] proposed by Leaman et al. uses a vector space
model to represent medical entity mentions and a similarity matrix to measure the similarity
between a given medical entity mention and a standard entity, with good results on the
NCBI disease dataset. Ghiasvand and Kate [23] automatically learned the edit distance
pattern of 554 term variations between synonyms of all disease concepts in the Unified
Medical Language System (UMLS) [24] and the edit distance between mentions in the
training data and the corresponding concepts in the UMLS to perform entity linkage
processing. TaggerOne [13] uses a semi-Markov model for biomedical entity identification
and linkage and is by far the best machine learning-based system on the NCBI dataset.
Xu et al. [10] also defined three features and used linear RankSVM [25] to group each
positive ADR mentioned as an entry in MedDRA in the TAC2017 ADR Challenge [26] that
achieved the best performance. However, these machine learning methods cannot use
semantically relevant information to link entity mentions more accurately.

Deep learning methods are currently showing their strong advantages in the field
of entity linking. Since recently, deep learning approaches based on pre-trained embed-
dings have been effectively applied to many Natural Language Processing tasks, such
as word2vec [27] and Glove [28]. In the field of biomedical entity linking, Li et al. [6]
proposed a Convolutional Neural Network (CNN)-based entity linking architecture that
treats biomedical entity linking as a ranking problem, which exploits the semantic similarity
modeling of CNNs between entity mentions and candidate entities, and this approach
outperforms the traditional rule-based approach. However, this method only takes the
final semantic vectors of mentions and candidate entities, which makes it hard to figure
out how much information has been lost and how the information between mentions and
candidate entities is not interacting.

In 2019, Wright et al. [29] came up with a deep learning model called NormCo that
takes into account the semantics of entity mentions and the consistency of entity mention
topics in a single text. The biomedical entity normalization task is accomplished by com-
bining the morphological similarity between entity mentions and candidate entities and
the semantic similarity between mentions and entities computed using the GRU model.
Phane et al. [30] proposed a new framework for BNE that considers and encodes the
similarity between contextual meaning, conceptual meaning, and synonyms during repre-
sentation learning to learn biomedical names and robust representations of terms. In 2019,
Ishan et al. [31] proposed a framework for medical entity linking based on Triplet Net-
works, which uses three samples to form a training group, and useful features are learned
by comparing distances. [32] proposes a new paradigm for learning robust representations
of biological names and phrases that takes contextual meaning, conceptual meaning, and
synonym similarity into consideration throughout the representation learning process.

Traditional word embedding methods have a context-independent representation for
each word. BERT (Bidirectional Encoder Representations from Transformers) pre-trained
language model [33] addresses this problem by training deep bidirectional representations
from unlabeled texts. Based on the BERT pre-training model architecture, the domain-
specific language representation model BioBERT (BERT for Biomedical Text Mining) [34],
which is pre-trained on large-scale biomedical texts and clinical notes, was introduced to
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improve the performance of many biomedical and clinical natural language processing
tasks. Recently, Ji, Wei, and Xu [14] considered biomedical entity linking as a sentence
pair classification task and proposed an entity linking architecture by fine-tuning the BERT
pre-training model and achieved the best results so far on different types of datasets in
the field of biomedical entity linking. A problem with pre-trained models is that they
are usually computationally expensive and inefficient in practice. To deal with the above
issues, we propose an efficient method for biomedical entity linking based on Inter- and
Intra-entity attention. Different from existing methods, the proposed biomedical entity
linking model is able to exploit not only the intra-entity relationship within each entity, but
also the inter-entity relationship between mention and candidate to enhance each other for
mentions and candidates matching.

3. Method

Given the biomedical mentions recognized in the document and the knowledge base
consisting of a set of concepts, the goal of the biomedical entity linking task is to link each
mention to the correct medical entity in the knowledge base. If a mapping concept is
not present in the knowledge base, then it is denoted by NIL as unlinkable. To solve this
problem, given a training set that is already linked to the correct entity in the knowledge
base, the biomedical entity linking approach in this paper consists of three steps:

1. Preprocessing: All entity mentions in the corpus and entity names in the knowledge
base are preprocessed to unify the format.

2. Candidate entity generation: For each biomedical mention, a set of candidate entities
is generated from the knowledge base.

3. Candidate entity ranking: For each mention, a candidate ranking model is used to
score each pair of mention and candidate entity, and the result with the highest score
is output.

3.1. Preprocessing

Abbreviation Resolution: As in previous work on biomedical entity linking, in this
paper, we use the Ab3p (Biomedical Text Abbreviation Recognition Tool) toolkit [35] to
extend biomedical abbreviations. The Ab3p tool identifies abbreviations in documents and
returns a list of replacement terms with probability, and we use the replacement term with
the highest probability. For example, Ab3p identifies that “pws” is an abbreviation for
“Prader Willi syndrome,” and we replace each entity abbreviation with its corresponding
expanded term.

Numeric Synonyms Replacement: Biomedical entity names may contain different
forms of numbers. Therefore, in this paper, a numeric dictionary was manually created and
different forms of numbers in biomedical mentions and concepts were replaced with their
corresponding Arabic numerals.

Other Preprocessing: In addition, all punctuation was removed, and all words were
converted to lowercase letters.

3.2. Candidate Generation

In the candidate generation phase, for each mention M, the goal of the biomedical
entity linking system is to filter out irrelevant entities from the standard knowledge base
and generate the candidate entity set Cm, which contains the mention M with all possible
standard entities e linked to it. The aim is to narrow down the scope of subsequent
reordering links and thus improve overall efficiency.

The candidate entity generation method used in this paper calculates similarity scores
for each pair of biomedical mentions in the corpus and entities in the knowledge base and
returns the top entity with the highest score as the candidate set. In order to take advantage
of the hidden features in biomedical mentions, two retrieval methods are designed. The
first approach is to search directly for the closest standard terms to the biomedical entity
mentions to be linked. The second way is to find the most similar entity mentions on
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the annotated data to be linked. The goal is to find the most similar data to the “original
surgical term” to be normalized on the annotated data and take the corresponding standard
term as the candidate entity. In this paper, the top 20 standard entities were selected as the
candidates by combining the above two search methods.

In this paper, we use an unsupervised alignment method [36], which calculates the
cosine similarity between each word in an entity mention and the word embedding of
each word in a given knowledge base entity to obtain a cosine similarity score matrix.
For the words in each mention, the algorithm selects the most similar words in the text
by maximum pooling. Each word is represented by a 200-dimensional word embedding
trained from PubMed and the MIMIC-III corpus [37]. A given word mi ∈ M is mapped
to the most similar word cj ∈ C by alignment cosine similarity and returns the cosine
similarity score for that word. We calculate the similarity from two directions.

alignSim(mi, C) = maxcj∈C cos(mi, cj) (1)

alignSim(cj, M) = maxmi∈M cos(cj, mi) (2)

Then, the similarity scores of mentions and candidate entities are calculated as the
sum of the alignment cosine similarity.

Sim(M, C) =
1

|M|+|C|

(|M|
∑
i=1

alignSim(mi, C) +
|C|

∑
j=1

alignSim
(
cj, M

))
(3)

Finally, a candidate entity set is constructed, which contains the previous candidate
entities mentioned by each entity and the similarity score of each candidate entity. We find
that there are entities with a score equal to 1 in the set of candidate entities, and if there
are candidate entities with a score equal to 1 in this set, we can filter the other candidate
entities with a score less than 1. Then we use the candidate entity ranking model for the set
of entities to output the final result.

3.3. Candidate Ranking

Given a mention M and its candidate entity set, the biomedical candidate ranking
model calculates scores for each pair of mention and candidate C. In this section, we
describe the details of this ranking model, which mainly consists of a representation
layer, a BiGRU encoding layer, an intra-entity attention module, an inter-entity attention
module, and a CNN aggregation layer. The overall architecture of the biomedical candidate
ranking model proposed in this paper is shown in Figure 1. As shown in Figure 1, given a
biomedical mention-candidate pair, the mention and candidate entity are first converted
into a corresponding word vector by querying the word vector table. Then it is concatenated
with the character-level features of each word obtained using CNN. The vectors are sent
into the BiGRU layer for encoding. Based on these extracted fine-grained representations
for mentions and candidates, we model the intra-entity relationship with the Self-Attention
Module, and adopt the Cross-Attention Module to model the inter-entity relationships for
mentions and candidates. Then the 1d-CNN and pool operation are employed to aggregate
the two sequences of matching vectors into fix-length vectors. Finally, we use a two-layer
fully connected neural network to compute the final score.
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3.3.1. Perfect Match

In the candidate generation stage, it is found that some candidate entities can com-
pletely match the standard entities; that is, the alignment cosine similarity is equal to 1.
These entities are then linked directly into the knowledge base without being fed into the
candidate ranking model. Then, the candidate ranking model is used to output the final
result for entities with scores of less than 1 in the candidate set.

3.3.2. Representation Layer

The purpose of the representation layer is to vectorize the mentions and candidates
expressed in natural language form. In this paper, the mentions and candidate entities
are represented by the set of embeddings in the vocabulary V. Each word is represented
by a 200-dimensional word vector trained by PubMed and the MIMIC-III corpus [37].
However, not all words in the dataset are present in the vocabulary V. To deal with the
problem of being out of vocabulary, a convolutional neural network (CNN) [38] is used in
this paper to capture the character-level features of each word to obtain a character vector.
To make full use of both word-level and character-level information, the word vector is
finally concatenated with the character vector to represent biomedical entity mentions with
candidate entities.

3.3.3. Encoding Layer

We use Bi-directional Gated Recurrent Unit (BiGRU) [39] to encode mentions and
candidates separately because GRU is computationally more efficient than LSTM [40], and
its performance is comparable to LSTM. BiGRU learns to represent a word (or character)
and its context. The output state of the BiGRU at time i over the mention m is denoted by
the symbol mi. ci is the same way:

mi = BiGRU(m, i), ∀i ∈ [1, . . . , lM] (4)

ci = BiGRU(c, i), ∀i ∈ [1, . . . , lC] (5)

The gated recurrent unit (GRU) is a special type of recurrent neural network that
captures the contextual order information of sequences. GRU can only encode historical
information, while ignoring future contextual information. In this paper, a bidirectional
GRU network consisting of both forward GRU and reverse GRU is used. BiGRU obtains
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the final hidden layer representation by splicing two different hidden layer representations
obtained by sequential and inverse order calculations.

3.3.4. Self-Attention Module

The text sequence features extracted by the BiGRU encoder ignore the different contri-
butions of different words to the semantic representation of the whole entity. Therefore, this
paper further improves the ability to extract global features by using a self-attention mech-
anism [41] in the intra-entity attention layer, which learns different semantic importance in
the entity by the attention operations performed between each word. Each word is able to
pay attention to the features of other segments in the same entity. The feature weights are
dynamically adjusted by the self-attention mechanism to emphasize interdependent word
features automatically. It can be used to find relationships within sequences, selectively
focus on some important information, and give higher weights to the important ones. Thus,
the problem of the equal contribution of each character is effectively solved.

Basically, it can be described as a mapping relationship between a query and a series of
key-value pairs. The output is a weighted sum of these values, where the weight assigned to
each value is calculated from the compatibility function of the query with the corresponding
key-value. The self-attentive mechanism is defined as shown in the following Formula:

Attention = softmax

(
HWQWKT

HT
√

d

)
HWV = softmax

(
QKT
√

d

)
V (6)

where H ∈ Rn×2l denotes the output of the BiGRU layer, l is the hidden layer dimension of
the GRU unit. WQ, WK, WV ∈ R2l×d is the trainable weight and d is the output dimension.
In this paper, we take hi as an example to further explore the execution process of the
self-attentive mechanism, as shown in Figure 2.
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To be specific, given query vector qi ∈ Q = [q1, q2, . . . , qn] and key vector
ki ∈ K = [k1, k2, . . . , kn]. Firstly, the similarity αi,j = qik j/

√
d of qi for each key k j is

computed by the scaled dot product function. The similarity score is divided by
√

d to have
stable gradients, and the weight coefficient αi.j is computed by the softmax function. After
that, a weighted summation operation is performed on each value vi ∈ V = [v1, v2, . . . , vn]
to obtain the final attention ai = ∑j αi,jvj according to weighted coefficients αi.j.
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3.3.5. Cross-Attention Module

Although the self-attention module described above may efficiently utilize the intra-
entity relationship, the relationship between mention and candidate is not explored. In this
section, we model the inter-entity relationship through the cross-attention module, where
the attention weights of mentions and candidates can be mutually learned to learn the close
association between text features. This allows us to achieve more accurate matching results
by learning the close association between text features.

The inter-entity attention module first learns to capture the importance between
the features of each pair of mention and candidate. Then an information flow is passed
between the two models to update each mention feature and candidate feature based on
the learned importance weights and aggregated features. Such an information flow is able
to identify the relationship between mention and candidate entity. The implementation of
Cross-Attention Module is illustrated at Figure 3.
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Given mention and candidate features, we first compute the association weights
between each pair of word in mention and candidate. Each word feature is transformed into
query, key, and value features by utilizing linear projection, where the transformed mention
features are denoted as MQ, MK, MV ∈ R20×dim, and the candidate features denoted as
CQ, CK, CV ∈ R20×dim.

By calculating the inner product between the mention features MQ and the candidate
features CK, we can obtain the initial attention weights, and then apply the softmax function
to normalize them row-wisely.

InterAM←C = softmax
(

MQCT
K

)
(7)

InterAM→C = softmax
(

CQMT
K

)
(8)

These two bidirectional InterA matrices capture the importance between each mention
and candidate word pair. Taking InterAM←C as an example, each row represents the
attention weight between a word in a mention and all word embeddings of the candidate.
The final attention vector Mattn is then aggregated as the weighted summation of the
candidate word value features CV .

Mattn = InterAM←C ×CV (9)
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Cattn = InterAM→C ×MV (10)

Finally, we do a similarity calculation between the features and the attention vector
for each moment. We denote the information flow of the updated mention features and
candidate features as Mup ∈ R20×dim and Cup ∈ R20×dim respectively.

Mup = Mattn �MQ (11)

Cup = Cattn �CQ (12)

where the operator � refers to matrix multiplication.

3.3.6. Aggregation Layer

Rich mention and candidate representation are available by stitching together all
interaction results, and this layer is used to aggregate two matched vector sequences into a
fixed-length vector. CNN has been shown to excel in learning sentence vector expressions
from both syntactic and semantic levels simultaneously in a variety of natural language
processing tasks, and the unique convolutional operation allows them to learn the features
of long sequences of text with stability. The unique convolution operation allows it to learn
features of short sequences with stable expressions in long sequences of text, independent
of their position of occurrence. The CNN is more suitable for this model since its sequential
nature is not strong when the interaction model is used. Therefore, we use the CNN model
to apply it to the sequence of entity mentions and candidate matching vectors, respectively,
and then stitch the CNN output features together to construct fixed-length matching vectors.
The core of CNN is the convolutional layer, which can encode important information in
the input data with fewer parameters. The convolutional layer is equivalent to a sliding
window, which allows contextual features to be obtained within a local window of the
current word. In the biomedical entity linking task, we found that good performance can
be achieved with only one convolutional layer. In general, multiple convolutional kernel
sizes perform better than a single size. The convolution operation is as follows:

hi = δ
(

WT
h·xi:i+m−1 + bh

)
(13)

where, Wh ∈ Rm×d, d is the word embedding dimension and m is the convolution kernel
size. Xi:i+m−1 represents a window starting from the i th contextual embedding to the
i + m−1th contextual embedding, bh is a bias vector. δ(·) denotes a nonlinear activation
function. The output of the feature map is H = [h1, h2, · · ·, hn], where n is the number of
convolution windows and hi is the result of each convolution.

After that, by selecting the maximum value of each feature map, its most important
features can be captured. Using maximum pooling for all convolution kernels and then
cascading them together gives the final feature vector fh.

Finally, we use a two-layer fully connected neural network to compute the final result.

Oh = ReLU(W1fh + b1) (14)

Score(M, C) = sigmoid(W2Oh + b2) (15)

where Oh is the first layer of output features, W1 and W2 are trainable weight matrices, and
b1 and b2 are biases.

3.3.7. Objective Function

In this paper, a triplet loss function [42] is used to train the model. The neural network
model based on the triplet loss function can distinguish the details well, especially in
the entity linking task. When the mentions are very similar to the candidate entities, the
triplet loss function can learn more subtle features for these two input vectors with fewer
differences. The purpose of the triplet loss function is to separate positive and negative
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sample pairs at a certain distance (margin) by optimizing the embedding space to ensure
that the positive sample pair is close enough to each other and the negative sample pair
is far enough away from each other. The idea of Triplet loss can be formally expressed as
follows.

Loss = max
{

Score
(
M, C+

)
-Score

(
M, C−

)
+ η, 0

}
(16)

To prevent uneven data selection from leading to unstable performance of the model
training process, in this paper, positive examples are randomly obtained from the training
set and synonym entities in the knowledge base, and negative examples are drawn from
the candidate entities generated in the candidate entity generation phase (excluding the
correct entities). This selection makes the negative examples very similar to the positive
ones and forces the model to learn more subtle differences between the positive candidate
entities and other candidate entities.

4. Experimental Results
4.1. Dataset

To demonstrate the effectiveness of our proposed method, we carried out extensive
experiments on two publicly available biomedical entity linking benchmark datasets: the
NCBI-NCBI disease corpus and the ADR-TAC 2017 Adverse Reaction Extraction (ADR)
dataset. The statistics for both datasets are shown in Table 1.

Table 1. Statistics of the two types of datasets.

NCBI ADR

Train Test Train Test

document 692 100 101 99
mentions 5921 960 7038 6343

NIL 0 0 47 18
concepts 9664 23,668

NCBI: This is one of the most popular datasets for biomedical entity linking tasks. It
contains 792 PubMed abstracts, of which 692 abstracts were used for training and develop-
ment, and 100 abstracts were used for testing. The 6 July 2012 version of MEDIC, which
contains 7827 MeSH identifiers and 4004 OMIM identifiers, was used in this paper, and it
contains 9664 disease concepts. All annotated disease mentions have their corresponding
concept identifiers.

ADR: This dataset consists of 200 drug labels, divided into 101 labels for training
and development and 99 labels for testing. The ADRs in each drug label were manually
mapped to the MedDRA 18.1 knowledge base, which contains 23,668 concepts. In this
dataset, only 0.7% of the training mentions and 0.3% of the test mentions were unlinkable.

4.2. Evaluation Metrics

The biomedical candidate entity generation task uses recall (Recall) as an evaluation
metric, which is calculated as shown in Equation (17).

Recall =
|P∩Q|
|P| (17)

where P and Q denote the mentions to be linked and the set of candidate entities, respectively.
In the candidate ranking stage, following previous work, accuracy is used in this paper

to evaluate the performance of the entity linking algorithm, i.e., the percentage of mentions
that are correctly linked.

Accuracy =
T
N

(18)

where, T is the predicted correct biomedical entities and N is the total number of entities to
be linked.
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4.3. Experiment Settings

The experiments in this chapter are based on Python 3.7, and the proposed net-
work is implemented using the Tensorflow deep learning framework with an Intel(R)
Xeon(R) E5-2678 v3 @ 2.50 GHz CPU, a GeForce RTX 3090 GPU graphics card, and 24 G of
running memory.

The parameters of the deep learning model in this experiment are shown in Table 2. In
this paper, Adam was chosen as the optimizer for the experiments. We use dropouts the in
BiGRU encoding layer, CNN aggregation layer, and the fully connected layer.

Table 2. Hyperparameters Setting.

Hyperparameters Value

Dimension of word embeddings 200
Dimension of char embeddings 64

Learning rate 0.001
dropout 0.1

GRU hidden size 32
Kernel sizes 1,2,3

Filters 64
Batch size 64

Epochs 30

4.4. Benchmarks

In order to verify the validity of the method proposed in this paper, several recent
state-of-the-art methods on the NCBI and ADR will be selected for comparison.

1. Sieve-based Model [21]: A manual rule-based multi-channel sieving system, which is
by far the best rule-based system on the NCBI dataset.

2. Dnorm [11]: A pairwise ranking learning approach using similarity matrix to measure
the degree of similarity between biomedical mentions and standard entities, and it is
a machine learning based approach.

3. TaggerOne [13]: It is the best machine learning based approach on the NCBI dataset
using a semi-Markov model jointly for named entity recognition and entity linking.

4. Learning to Rank [10]: A method for learning to rank, best performance in the
TAC2017 ADR Challenge, a machine learning based system.

5. CNN-based Ranking [6]: This approach treats biomedical entity linking as a rank-
ing problem and uses CNN to model semantic similarity between mentions and
candidate entities.

6. BNE [30]: A novel encoding framework that considers all these aspects in
representation learning.

7. NormCo [29]: A deep learning model, in which the biomedical entity linking task is ac-
complished by combining morphological similarity and semantic similarity computed
using the GRU model.

8. TripletNet [31]: We make use of the Triplet Network for candidate ranking.
9. BERT-based Ranking [14]: This approach treats biomedical entity linking as a sentence

pair classification task and accomplishes entity linking by fine-tuning the BERT pre-
training model.

4.5. Results and Analysis

In this section, we demonstrate the effectiveness of our proposed model on two
benchmark datasets. Firstly, the model of this paper is compared with the current model of
linking biomedical entities. Next, the properties of the proposed model are demonstrated
by some ablation experiments. Finally, the lightweight model is compared with the state-
of-the-art BERT-based model.
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4.5.1. Candidate Generation Experiment

In this paper, in the process of candidate entity generation using the alignment method,
the recall rate increases as the recall range increases, and the Top20 candidate entity recall
effect reaches a high level. The recall rate of correct entities on the NCBI and ADR test sets
is 94.52% and 96.73%, respectively, and the experimental results are shown in Table 3. The
candidate generation method based on aligned cosine similarity used in this paper does
not miss too many correct candidate entities, indicating that the method is effective for the
biomedical candidate generation task. Finally, we generated 20 candidate entities for each
mention to ranking.

Table 3. Comparison of candidate entity generation results in different recall ranges.

Recall Range NCBI ADR

Top1 85.46 88.62
Top2 88.07 91.57
Top5 91.39 94.04
Top10 92.95 95.56
Top15 93.96 96.45
Top20 94.52 96.73

4.5.2. Comparison Experiment

We compare our model with several recent state-of-the-art non-BERT methods on
NCBI and ADR datasets. The results in Table 4 are taken from the original state-of-the-art
papers. Since the two experimental datasets used in this paper are public and the training
and testing parts have been divided, we think that the results of the original paper are
comparable. The performance results show that the model in this paper outperforms the
baseline approach with an accuracy of 91.28% and 93.13%, respectively. Compared with
the rule-only or traditional machine learning baseline approaches, the deep learning model
in this paper achieves a significant improvement in accuracy by 6.63% over the Sieve-based
model, 9.08% over Dnorm, and 2.48% over TaggerOne on the NCBI dataset. On the ADR
dataset, it improved by 1.08% compared to Learning to Rank. The CNN-based entity
linking model with the NormCo model ignores the rich interaction information between
candidate entities and mentions, which limits its performance. The framework of this paper
outperforms the CNN-based approach by 5.18% and 2.89% on the NCBI and ADR datasets,
respectively, which indicates that the attention mechanism is more effective than the single
Siamese representations. From the performance results, we can also see that our model
works better than TripletNet. The superiority of this model can be attributed to the fact that
it utilizes the self-attention module and cross-attention module to form a unified network
to better capture the interaction information between biomedical mentions and candidate
entities themselves and each other and to better perform the matching task.

Table 4. Comparison with non-BERT methods. The best performance on each dataset is marked in
bold and “-” denotes the result not provided.

Model NCBI ADR

Sieve-based Model [21] 84.65 -
Dnorm [11] 82.20 -

TaggerOne [13] 88.80 -
Learning to Rank [10] - 92.05

CNN-based Ranking [6] 86.10 90.24
BNE [30] 87.70 -

NormCo [29] 87.80 -
TripletNet [31] 90.01 -

Our model 91.28 93.13
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4.5.3. Ablation Study

To demonstrate the effectiveness of the various components of the model, some
ablation studies are also conducted in this paper. We construct four ablation models (w/o
BiGRU, w/o Cross-Attention, w/o Self-Attention, w/o CNN) by eliminating a component
at each time. Table 5 shows the accuracy rates on the test set. First, we study the impact
of the BiGRU encoder and compare the ablation model with the “Full model”. We find
that the impairment of performance by removing the BiGRU is about 1.13% and 1.12% on
two datasets. After that, we evaluate the effectiveness of the attention mechanism. For this
purpose, we construct the ablation model by removing the attention mechanism. From
the experimental results, we can see that the attention mechanism has a significant impact
on performance. Removing cross-attention has a larger impact on the model performance,
with a decrease of 2.90% and 4.65% on the NCBI and ADR datasets, respectively, proving
its effectiveness in considering the full alignment between entity mention-candidate entity
pairs. In the case of removing self-attention, the accuracy decreases by 1.04% and 0.54%,
respectively. Thus, better matching results can be achieved by weighted features computed
by self-attention, which we can use to investigate potential alignments more carefully
and precisely. Finally, removing the CNN decreases the accuracy by 2.43% and 1.73%. It
is clear that adding CNN to the aggregation layer is complementary to extracting more
fine-grained features.

Table 5. Ablation studies of our proposed model on NCBI and ADR test dataset.

Model NCBI ADR

Full model 91.28 93.13
w/o BiGRU 90.15 92.01

w/o Cross-Attention 88.38 88.48
w/o Self-Attention 90.24 92.59

w/o CNN 88.85 91.40

4.5.4. Analysis of Margin Value λ

In addition, in order to study the effect of margin value on the model effect in the
triplet loss function, different margin values were set for comparison experiments, and the
experimental results are shown in Figure 4. For the NCBI dataset and ADR dataset, the
model achieved the best results when the margin value was 0.1. When the margin value
was set too low, the loss tended to be close to zero, and it was difficult to distinguish similar
entities. When the margin value was set to 0, the accuracy was only 88.38% and 89.65% on
both datasets. When the margin value is set too large, the loss value keeps a large value,
making it difficult to converge. Therefore, it is critical to set a reasonable margin value,
which is an important indicator of similarity.
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4.5.5. Comparisons with BERT-Based Methods

The original BERT-based biomedical entity linking method uses the pointwise ranking
model to treat the ranking problem as a classification problem. However, this Pointwise
ranking model does not abstract the relevant features mentioned by the candidates and
mentions well, and it is difficult to distinguish the subtle features.

In response to the above problem, in this paper, we also try to introduce BERT and
improve the original model utilizing Pairwise ranking. We propose a biomedical entity
linking method (BPR) based on BioBERT and Pairwise ranking to learn better semantic
representations. We introduce positive and negative entities and generate the form of
triplets with mentions, then obtain semantic relevance representations by BioBERT pre-
training model, respectively, and use the triplet loss function for training. Some effect
improvement is achieved in the biomedical ranking task.

We also compare the proposed lightweight model with the BERT-Base model, which
has 12 layers, 768 hidden dimensions, and 12 attention heads with a total of 107 million.
Despite having less than 5 million parameters, our model based on inter-entity and intra-
entity attention achieves very competitive or even better results than the BERT-based SOTA
model on both datasets, and the experimental results are shown in Table 6.

Table 6. Performance comparison with BERT-based methods.

Model NCBI ADR

BERT -based Ranking [14] 89.06 93.22
BPR 90.94 93.56

Our model 91.28 93.13

To show the efficiency of the model in this paper, we also compared the complexity
(parameter size) and inference time of the model with the BERT-base model, and Table 7
shows the comparison results. It is the time in the entire testing set. The comparison
results show that the method in this paper has a very high CPU inference speed. The
model in this paper is 9 times faster compared to the BERT-Base model and 11.8 times
faster compared to the BERT(Pairwise) model, and the complexity of the model is much
smaller, with about 23 times fewer model parameters. In summary, the experimental results
show that the lightweight biomedical entity linking model proposed in this paper achieves
performance comparable to state-of-the-art models on two benchmark datasets, with only
a small number of parameters and fast inference. When speed and model size are taken
into account, the method in this paper is easier and more practical to use for deployment
and application.

Table 7. Comparison of parameter size and inference time with BERT-base model.

Model Parameters NCBI ADR Average Speedup

BERT-Base 107 M 317 s 1381 s 849 s 9.0×
BERT (pairwise) 107 M 392 s 1822 s 1107 s 11.8×

Our model 4.7 M 26 s 162 s 94 s -

4.5.6. Analysis of Different Dataset Size

By subsampling the dataset, we also investigate the performance of the model on
training samples of different sizes, as shown in Figure 5. The performance of the model in
this paper grows when the number of training samples is gradually increased. When only
20% of the training samples were used, the accuracy on the NCBI and ADR datasets also
reached 89.04% and 91.13%, respectively. More data will bring better performance, and
the biomedical entity linking model in this paper can achieve better results despite using a
small amount of labeled data.
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4.5.7. Case Study of Removing Inter- and Intra-Entity Attention

In this part, we look more closely at the attention in a typical case. As a comparison,
we used the model without self-attention or cross-attention. For the prediction results
of the method in this paper, two samples are selected, as shown in Table 8. Through the
self-attention mechanism, each token in the mentions and candidates is given a weight to
show how important each token is. By adding the cross-attention, the model can capture
the keywords in entity mentions, and thus predict the standard words for irregular entity
mentions. By integrating the self-attention and cross-attention modules, the model in this
paper is highly capable of discovering and distinguishing the matching details and subtle
features between candidate entities and entity mentions.

Table 8. Effect of inter- and intra-entity attention on prediction results.

Model Mention Prediction Ground-Truth

with self-attention bacterial infections
opportunistic bacterial infection bacterial infection

without
self-attention

bacterial infections
opportunistic

opportunistic
infections bacterial infection

with
cross-attention

difficulty
concentration

disturbance in
attention

disturbance in
attention

without
cross-attention

difficulty
concentration

liver iron
concentration

increased

disturbance in
attention

4.5.8. Error Analysis

For the prediction results of the method in this paper, three samples of prediction
errors were selected, as shown in Table 9. From the prediction error samples in Table 9,
the following conclusions can be obtained: for the case that one biomedical mention
corresponds to multiple candidate entities, the model in this paper does not predict well.
In addition, the more common causes of error cases are those of the same symptom part
with different symptom modifiers, which is where this paper can continue to improve
and enhance.
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Table 9. Sample of error prediction.

Mention Ground-Truth Prediction

colorectal breast and other cancers breast neoplasms, colorectal cancer, cancers cancer of breast

nail abnormalities nail disorder nail pitting

colorectal adenomas and carcinoma adenomatous polyp, colorectal carcinoma colorectal adenomas

5. Conclusions and Future Work

Entity linking has received increasing attention as a fundamental task for various
types of medical natural language processing tasks. In order to address the challenge of
large numbers of parameters in large pre-trained models, the long inference time, and
the difficulty of obtaining good results with a single matching model due to the excessive
variety of biomedical mention representations, in this paper, we construct an efficient
biomedical entity linking method that incorporates inter- and intra-entity attention in a
unified model to better capture information between biomedical mentions and candidate
entities themselves as well as between each other. The model in this paper is also more
lightweight. We have systematically studied the influence of our idea and carried out
experiments. Furthermore, we also designed a biomedical entity linking method based
on BERT and pairwise ranking to compare with the lightweight method in this paper.
Experimental results demonstrate that the proposed method in this paper achieves fairly
competitive performance on two biomedical benchmark datasets. Furthermore, it also
achieves comparable or even better results compared to the BERT-based entity linking
method while having far fewer model parameters and very high inference speed. The
results demonstrate the effectiveness of our model by achieving significant performance.

The biomedical entity linking method proposed in this paper can solve the problems
in entity linking, but there are still some limitations, which will be addressed in future
work. The specific shortcomings and improvement measures are as follows:

Firstly, the recall rate of the candidate phase directly determines the accuracy of the
candidate ranking phase. It is worthwhile to further improve the upper bound of the
ranking system. In addition, the task in this paper can also include features such as prior
information, contextual information, and coherence information, and it is expected that
the additional inclusion of this part of information can further improve the effect, which
is to be further studied subsequently. Finally, the analysis of the incorrectly predicted
entity mentions reveals that the ranking model is inaccurate in predicting the presence
of a mention corresponding to more than one criterion word, for which a new model can
be designed in future work to handle the prediction task of a mention corresponding to
multiple criterion candidates.
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