
 

 
 

 

 
Appl. Sci. 2022, 12, 3164. https://doi.org/10.3390/app12063164 www.mdpi.com/journal/applsci 

Article 

Engineering Method and Tool for the Complete Virtual  

Commissioning of Robotic Cells 

Roberto Raffaeli 1, Pietro Bilancia 1,*, Federico Neri 2, Margherita Peruzzini 3 and Marcello Pellicciari 1 

1 Department of Sciences and Methods for Engineering, University of Modena and Reggio Emilia,  

42122 Reggio Emilia, Italy; roberto.raffaeli@unimore.it (R.R.); marcello.pellicciari@unimore.it (M.P.) 
2 K-LOOPS S.R.L., 41125 Modena, Italy; federico.neri@k-loops.com 
3 Department of Engineering “Enzo Ferrari”, University of Modena and Reggio Emilia, 41125 Modena, Italy;  

margherita.peruzzini@unimore.it 

* Correspondence: pietro.bilancia@unimore.it 

Abstract: Intelligent robotic manufacturing cells must adapt to ever-varying operating conditions, 

developing autonomously optimal manufacturing strategies to achieve the best quality and overall 

productivity. Intelligent and cognitive behaviors are realized by using distributed controllers, in 

which complex control logics must interact and process a wide variety of input/output signals. In 

particular, programmable logic controllers (PLCs) and robot controllers must be coordinated and 

integrated. Then, there is the need to simulate the robotic cells’ behavior for performance verifica-

tion and optimization by evaluating the effects of both PLC and robot control codes. In this context, 

this work proposes a method, and its implementation into an integrated tool, to exploit the potential 

of ABB RobotStudio software as a virtual prototyping platform for robotic cells, in which real robots 

control codes are executed on a virtual controller and integrated with Beckhoff PLC environment. 

For this purpose, a PLC Smart Component was conceived as an extension of RobotStudio function-

alities to exchange signals with a TwinCAT instance. The new module allows the virtual commis-

sioning of a complete robotic cell to be performed, assessing the control logics effects on the overall 

productivity. The solution is demonstrated on a robotic assembly cell, showing its feasibility and 

effectiveness in optimizing the final performance. 

Keywords: virtual commissioning; robotic cell; RobotStudio; virtual prototyping; TwinCAT 

 

1. Introduction 

The current industry is characterized by increasing products complexity and person-

alization [1,2]. Products evolve by integrating advanced capabilities of sensing, communi-

cating and by reacting to changing situations with increasing levels of reasonings. Smart 

manufacturing, usually gathered under the Industry 4.0 umbrella, supports such a sce-

nario providing a means to answer to always different product specifications maintaining 

a high process efficiency and economic competitiveness [3–5]. Manufacturing systems be-

came more intelligent and autonomous due to the implementation of emerging commu-

nication, information and control technologies. Modern assets comprise advanced sen-

sory apparatus, service-oriented computing platforms and modular controllers, integrat-

ing cyber–physical systems with high-fidelity simulation predictive models [6]. In partic-

ular, the ongoing factory digitalization has inevitably changed not only the manufactur-

ing but also the way that products are designed and consumed [7]. 

Since modern markets continually demand flexible and customized products, devel-

opment and commissioning processes are often very compressed [8]. Simulation and vir-

tual prototyping technologies are consolidating their role in transferring testing and opti-

mization activities in virtual environments, pursuing realism, easiness of use and 

Citation: Raffaeli, R.; Bilancia, P.; 

Neri, F.; Peruzzini, M.; Pellicciari, M. 

Engineering Method and Tool for 

the Complete Virtual  

Commissioning of Robotic Cells. 

Appl. Sci. 2022, 12, 3164. https:// 

doi.org/10.3390/app12063164 

Academic Editor: Alessandro  

Umbrico and Marco Faroni 

Received: 25 February 2022 

Accepted: 15 March 2022 

Published: 20 March 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: ©  2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2022, 12, 3164 2 of 19 
 

 

reliability [9–12]. Their application extends to the whole product life cycle [7,13] as well 

as the related production systems. 

Nowadays, manufacturing plants require a higher adaptability, which is reached due 

to reconfigurable automation systems governed by advanced controllers, able to interpret 

operating scenarios and calculate and perform the optimal sequence of operations to 

achieve the best productivity and manufacturing quality in any condition. Thus, the con-

trol logics must embed the manufacturing knowledge and intelligence needed to interpret 

the surrounding environment and generate the optimal robust strategies. The program-

ming of such intelligent robotic manufacturing has become increasingly complex and 

challenging, requiring a long time for verification and validation. Furthermore, it must be 

noted that modern robotic cells are governed by multiple controllers, namely at least a 

programmable logic controller (PLC) and a robot controller, whose control logics must be 

coordinated [14]. 

Therefore, from the initial design stages, the cells’ offline development and debug-

ging is usually performed via the use of virtual prototyping software (i.e., general-pur-

pose computer-aided engineering or specific computer-aided robotics packages—see 

[15,16])—where the layout of the cell, along with its behavior, can be modeled and simu-

lated [17]. In these tools, the cell geometry, kinematic of robots and other devices, and the 

governing logic can be represented, including exchanged signals and sequences of com-

mands to be executed. To obtain high-fidelity models, it is beneficial to include real hard-

ware and/or software elements (e.g., commercial control units) in the virtual environment, 

which will be then become part of the implemented solution. These approaches, known 

as hardware-in-the-loop and software-in-the-loop [16,18], respectively, are the bases for 

an effective virtual commissioning (VC) strategy for concurrent engineering problems 

[19]. They provide the capability of developing and testing complex plants before their 

implementation. 

In a mechatronic system, due to the large variety of involved devices, an efficient VC 

must connect different hardware and software elements, allowing for the use of the same 

interface and interaction modality for both the real and virtual counterparts. Current vir-

tual prototyping solutions often suffer from limited interaction capabilities with other 

software/hardware devices available on the market [20]. Therefore, the need of interfacing 

tools enabling the communication between different components (following standards 

and architectures of industrial communication protocols) becomes crucial. 

In this context, the present work proposes a method, and its implementation into an 

integrated tool, for the complete VC of robotic cells. The reported tool enables the concur-

rent simulation of PLC and robot programs within a realistic virtual model of the robotic 

system [21], significantly reducing the plant development time and providing a means for 

generating, representing and validating information before its installation. In this way, 

the sequence of operations of each device can be effectively verified and optimized on a 

standard PC, without any required use of the physical assets. In fact, the multiple control-

lers’ contributions to the final robotic manufacturing performance are tested with a CAD-

based digital prototype performing the activities (debugging, performance optimization, 

safety and fault-tolerant verification and validation) that are traditionally addressed dur-

ing the physical commissioning of the cell. The considered software are RobotStudio (RS) 

and TwinCAT (TC), namely the robot simulation and the IEC-61131 PC-based automation 

packages provided by ABB and Beckhoff, respectively. Although these commercial plat-

forms have been frequently employed for the design of robotic cells, each environment 

has been separately researched and implemented. Therefore, the main contribution of this 

research is to provide an improved VC approach, which integrates the simulation capa-

bilities of RS and TC and allows users to analyze and optimize cell behavior in an accurate 

and efficient manner. This same approach can be extended to other commercial platforms. 

The remainder of the paper discusses the integration between RS and TC and reports 

a demonstrative case study. It is organized as follows: Section 2 briefly recalls the previous 

work inherent to VC. Section 3 describes the proposed VC tool, involving aspects about 



Appl. Sci. 2022, 12, 3164 3 of 19 
 

 

the communication and the features employed in the definition of the application; Section 

4 presents the case study used to test the application; Section 5 reports obtainable results 

from the application of the proposed system; and finally, Section 6 reports conclusions 

and considerations regarding the future directions. 

2. Related Work 

Since traditional commissioning is proven to be time- and cost-consuming, many au-

thors have thoroughly investigated VC technology during the last few years. The VC is a 

technique that aims to validate the control software of a manufacturing system with a 

simulation model, in a virtual environment and in an early stage of its commissioning 

process [22,23]. A great advantage apported by the VC is that many design activities can 

be parallelized. This makes it possible for different engineers to work together simultane-

ously, reducing the designing time [24]. Additionally, it allows for possible errors to be 

detected and corrected, improving the performance of the entire robotic cell prior to its 

installation [25–27]. 

A determining factor for an efficient VC is its capability to combine technologies from 

different engineering fields so as to create a holistic environment where all the aspects of 

the manufacturing systems are considered at the same time [28,29]. Despite some recent 

advances, a severe absence of integrated simulation-based platforms can be noted in the 

standard industrial practice [24]. Digital plant models still divide the geometry and phys-

ics of the system from the PLC control program and signals, which are tested within the 

control software development tool (i.e., without a direct vision of the process behavior). 

Alternatively, by exploiting the open platform communications (OPC) protocol, the real 

PLC system can be connected with a 3D virtual model of the cell, defined in DELMIA or 

Dymola environments, as in [30,31]. An example of OPC coupling, realized through the 

WINMOD and SIMIT packages, can be seen in [18,32], but it is limited to the Siemens 

platform, while open IEC-61131 PLC programs should also be emulated. 

Some software producers are heading towards the development of a single applica-

tion that includes both devices’ kinematic and PLC program simulations. In [33], a man-

ufacturing cell was simulated using Process Simulate, namely a specialized software that 

is part of Siemens Tecnomatix suite and offers a 3D modeling environment where the user 

can test the connection between mechatronic devices and a PLC. Similarly, Simumatik3D 

was employed in [25] to model a didactic robotic cell for a pick and place purpose and to 

test the related PLC control program. A relevant improvement provided by this software 

(compared to Process Simulate) is that PLCs of any vendor can be simulated. A common 

disadvantage, instead, regards their relatively poor robot simulation capabilities. In fact, 

robot movements can only be approximated since there is no real virtual controller run-

ning on the application, only a generic emulator. From the literature review, it emerges 

that one of the main limitations of VC solutions for robotic cells is related to the scarce 

realism of the simulated automated plant. Therefore, the only viable strategy for achieving 

highly reliable models seems to be the integration of dedicated commercial platforms 

[32,34]. Multi-software frameworks have been widely investigated by academic research-

ers in recent years, and not only regarding VC. They have been employed, e.g., for the 

design of servo-actuated mechanisms [12,35,36], the dynamic characterization of robotic 

systems [37], and for the tuning of robot controllers [38]. 

In this context, the main objective of this work is to develop and test a novel VC tool 

that leverages the integration between RS and TC. Since the software TC turns a PC into 

a real-time controller, the proposed approach can be utilized to either: 

• Test a real PLC system, i.e., realizing the so-called hybrid commissioning as a part of 

the hardware-in-the-loop approach; 

• Simulate its behavior on a standard PC, i.e., realizing a full VC with a software-in-

the-loop approach. 



Appl. Sci. 2022, 12, 3164 4 of 19 
 

 

The PLC programs are tested in RS, where exact copies of the ABB controller and 

settings are available, obtaining extremely accurate robot replicas. During the simulations, 

RS provides several performance indices, such as kineto-dynamic outputs (end-effector 

or joint position, velocity, acceleration, jerk, motor torque, etc.), as well as information 

regarding the current robots’ energy consumption, cycle time and tasks execution. An-

other clear advantage in employing RS is the possibility for the user to support the design 

of customized cell layouts. The behavior of robots and other devices can be faithfully mod-

eled, and design changes can be applied with minimum effort. 

In conclusion, compared to the referenced solutions, the proposed tool provides the 

following practical contributions: 

• The virtual application is easy and rapid to set up; 

• The RS environment is straightforward and has a short learning curve; 

• No third-party software are needed as connection means; 

• The PLC interacts with the virtual cell as it would with the real cell; 

• The PLC programming on the virtual environment is completely reusable in the final 

commissioned (i.e., physical) system. 

3. Proposed Virtual Commissioning Approach 

In this section, the proposed software architecture is described starting from a brief 

introduction of the two main software systems (RS and TC). Then, details about the novel 

software component and its logic, which were developed to enable the integration be-

tween RS and TC, are provided. A demonstrative video of the proposed VC tool can be 

viewed at supplementary. 

3.1. Integrated Software Tools 

RS was chosen as the software tool to represent the virtual cell since it offers func-

tionalities to model the geometrical layout, kinematic of devices, physical behavior, and 

control logic. RS originates as an offline programming software for ABB robots. Due to its 

virtual controller technology, RS can carry out extremely realistic simulations of the move-

ments of the ABB robots and execute complex RAPID robot programs. Indeed, the soft-

ware running on the real robot controllers (RobotWare) is the same as that utilized by the 

virtual robot controllers. Additionally, provides gives the possibility to model or import 

3D geometries of other devices as well as to implement smart components (SCs). These 

are reusable blocks, including geometry, kinematics and functioning logics that can be 

utilized to realize the desired abstraction of real devices. Some basic SCs are provided by 

default in RS and can be combined to build more complex ones. 

In addition, ABB offers a developing tool to extend the basic functionalities of the 

software, namely the RS Software Development Kit (SDK). Due to the SDK, users can de-

velop new applications by exploiting the Microsoft Visual Studio environment, such as 

add-ins or customized SCs, expanding software potentialities. 

On the other hand, TC is the software used for configuring and programming Beck-

hoff devices, including servo drives and PLCs. A PLC program can be written using sev-

eral languages, such as ladder diagram, instruction list, function block diagram, struc-

tured text and sequential function chart (SFC). Such programs control the task execution 

flow of the entire cell, exchanging signals with the controls of the robots, motors, linear 

axes and other devices. The PLC runs on a hardware system that is capable of real-time 

performance, essentially a dedicated PC that ensures the cycles are executed in a timely 

manner. 

These two software have no native way of communicating with each other. However, 

in order to create a complete VC of a robotic cell, it is essential to emulate contributions of 

each controller (namely, PLC and robot controller) with specific simulation tools that must 

be coupled and synchronized. This is the reason for the implementation of a tool that al-

lows data exchange between TC and RS. 



Appl. Sci. 2022, 12, 3164 5 of 19 
 

 

3.2. Architecture of the Virtual Commissioning System 

The main idea of the proposed approach is to replicate the physical automation so-

lution architecture in a virtual environment (in the specific case RS) referring to a one-to-

one mapping between real physical components and their digital representations. As 

shown in the left part of Figure 1, in the industrial practice, a robotic cell is usually gov-

erned by one PLC, which exchanges signals with other automation modules, i.e., control-

lers of robots, motors, etc. The signal can represent any type of data, e.g., Booleans, inte-

gers and real data. The communication is conveyed referring to a field bus, which is phys-

ically implemented as a cable connecting the controllers and cell devices in series. 

  
(a) (b) 

Figure 1. Conceptual representation of the proposed VC approach: (a) Typical hardware architec-

ture of a robotic cell; (b) Representation in a virtual environment of the control architecture to main-

tain a correspondence between physical and virtual assets. 

The right side of Figure 1 depicts the proposed VC solution. The PLC system is main-

tained as a cell governing tool (hybrid solution) or optionally substituted by a PC running 

an emulated PLC for a fully virtual strategy. Each physical device is represented in the 

prototyping software platform as a virtual module, which is designed to have the same 

interface of the real counterpart, in terms of exchanged signals and expected behavior. 

Such virtual models are realized as SCs, leveraging the functionalities and abstraction ca-

pabilities of RS by providing to the user the possibility of defining reusable blocks, which 

encapsulate geometrical definitions, kinematics, sensors and control logics. The level of 

detail in the representation of the single device is a compromise between the necessary 

realism and the overall performance of the simulation environment. In particular, aspects 

that influence the performance of the PLC must be accurately modelled, such as dynamic 

or synchronized activities. Contrastingly, physically based computations that accurately 

represent systems performance may be demanding in terms of resources, so they must be 

limited to the parts where they provide the necessary realism and coherence with the rep-

resented behavior, as discussed in [39]. 

Analogously, the flow of signals on the field bus is seamlessly linked to a flow of 

virtual signals in the virtual environment. The communication between the PLC and the 

virtual environment is obtained by a connection interface developed as a SC. This compo-

nent, named PLC_Beckhoff, mimics the presence of the real PLC in RS. The connection to 

the real PLC is established through the automation device specification (ADS) protocol, 

which is provided by Beckhoff for linking the devices of a control chain. Since ADS Ad-

vanced Programming Interfaces (API) are available for MS NET Framework platform, the 

C# programming language was used to develop the PLC_Beckhoff SC to read and write 

the values of the variables defined in the TC PLC program. 

I/O Signals
PLC

Electric Press

ABB IRB 1600

ABB IRB 2600

Bosch 
servomotors Controller_R1

RobotStudio

PLC_Beckhoff I/O Signals

SC_AxisX 
SC_AxisY

SC_Press
Controller_R2

ADS
PLC 

Program

TwinCAT

PC

PLC

Fully 
Virtual

Hybrid

Developed SC



Appl. Sci. 2022, 12, 3164 6 of 19 
 

 

From the PLC point of view, the PLC_Beckhoff SC acts as a real element of the control 

chain and exchanges real signals on the field bus. Contrastingly, the component is inte-

grated in the virtual environment of RS so that it can read and write the virtual signals 

used to control the synthetic environment. The usage of the SC in RS is quite straightfor-

ward since it provides the possibility to freely add signals that the user wants to exchange 

with the PLC simply by naming them as they appear in the PLC code. For instance, Figure 

2 shows how the two signals RS_Input1 and RS_Output1, defined in the robot controller 

Controller_R1, are linked to the PLC variables PLC_Output1 and PLC_Input1, respec-

tively. The two latter variables are searched in the TC running code and the values are 

automatically synchronized by the SC. 

 

Figure 2. Usage of the developed PLC_Beckhoff SC in RS. Input/output signals from the PLC, i.e., 

PLC_Input1 and PLC_Output1, are exchanged with robot controller signals, i.e., RS_Input1 and 

RS_Output1, by establishing logic connections in the Logic Station panel of RS. The names of the 

signals defined in the PLC_Beckhoff SC coincide with the variable names in the PLC code. 

3.3. Description of the PLC_Beckhoff Smart Component Interface 

In this section, a description of the PLC_Beckhoff SC user interface is provided. In 

the RS environment, a SC interface is subdivided into Properties and I/O Signals, as shown 

in Figure 3. Concerning the I/O section, four default signals were provided as pulsed type, 

in order to appear to the user as buttons to activate signal management functions, namely 

CreateSignal, DeleteSignal, Start and Stop. These signals’ names are reserved and there-

fore excluded from the exchange mechanism via ADS communication. They are used to 

operate and configure the SC to create a new signal with a given name, delete a signal, 

start an ADS connection, and stop the connection, respectively. 

In the Properties section, AdsAddress and Port are the two fields required by the 

ADS protocol to reach the TC PLC and establish the communication. Once they are filled 

in, clicking on the button Start, a connection attempt will be made: if the connection fails, 

an error message will be displayed in the RS output messages window. The property Dis-

connectWhenSimulationStops is a Boolean value that determines if the ADS connection 

must be interrupted or not when the RS simulation is stopped. 

The last two properties, SignalName and SignalType, are involved in the creation or 

deletion of a signal. Once the related fields are filled in, the button CreateSignal will in-

stantiate a signal of the specified type, and it will be added to the SC custom signals list. 

Similarly, a signal can be removed from the mentioned list by writing its name in the 

SignalName property and then clicking on the DeleteSignal button. The setup phase ends 

ensuring that each TC variable that must be exchanged with RS is added to the SC. 



Appl. Sci. 2022, 12, 3164 7 of 19 
 

 

 

 
(a) (b) 

Figure 3. Default appearance of the PLC_Beckhoff SC in RS. (a) Graphic user interface of the SC in 

the Station Logic section of RS: in the figure, no signal to be exchanged with the PLC has yet been 

defined; (b) SC in edit mode: the user can use this form to configure ADS connection options and 

create signals that are required for specific applications. 

3.4. Description of the Signal Exchange Mechanism 

As mentioned before, according to the devices utilized in the cell and the required 

signals, the user adds the necessary I/O signals, providing a name which corresponds to 

the desired variable in TC to be connected. As an example, a variable could be named as 

“MAIN.Robot1.busy”. This means that, in the PLC code, a variable named “busy” is 

searched in the instance “Robot1” of a function block that likely includes the characteris-

tics of a specific robot type; the instance “Robot1” has been declared in the program or-

ganization unit (POU) named “MAIN”. Essentially, such expedient represents a direct 

means to map RobotStudio signal names to TC variables. 

In the following, pseudocode of the PLC_Beckhoff SC (Algorithm 1) outlines the ini-

tialization of the communication by mapping the RS signals to TC variables. IOS refers to 

the collection of signals managed from the PLC_Beckhoff SC, which is cycled to instantiate 

a SignalMapInfo object mi for each element to be mapped with the PLC. Such objects are 

then stored in two sets, named SI (i.e., input signals of the PLC_Beckhoff SC, going from 

RS to TC) and SO (i.e., output signals of the PLC_Beckhoff SC, going from TC to RS). To 

synchronize the value of an RS signal with TC and vice versa, the mapping data include: 

• A reference to the RS signal object; 

• A pointer to the handle properly created to reach the desired variable in TC from the 

user specified name; 

• The last exchanged value of the signal. 

Algorithm 1 Communication initialization 

INITIALIZECOMMUNICATION() 

in:   TC client host name tcHostName, 

  TC client port name tcPortName, 

  set of IO Signals IOS from RS 

out:   TC connected client ads 

  set of input signals SI (from RS to TC) 

  set of output signals SO (from TC to RS) 



Appl. Sci. 2022, 12, 3164 8 of 19 
 

 

local:  current RS signal s being considered, 

  signal mapping info mi 

1: ▷ Instantiation of the ADS connection 

2: ads ← connect (tcHostName, tcPortName) 

3: ▷ Instantiation of the signal maps 

4: |MI| ← 0 

5: |MO| ← 0 

6: ▷ Instantiation of a signal info map mi to TC for each RS signal 

7: for all s ∈ IOS do 

8: case name(s) of 

9:  “Start”:  ▷ Nothing to do 

10:  “Stop”:  ▷ Nothing to do 

11:  “CreateSignal”: ▷ Nothing to do 

12:  “DeleteSignal”: ▷ Nothing to do 

13:  others: 

14:   ▷ Instantiate and populate mapping info mi 

15:  mi ← CREATEMAPPINGINFO(s) 

16:  rsSignal(mi) ← s 

17:  tcHandle(mi) ← CREATETCVARIABLEHANDLE(ads, name(s)) 

18:   lastValue(mi) ← value(s) 

19:  ▷ Add mi to the proper set   

20:   if isInput(mi) then 

21:   ADDELEMENT(MI, mi) 

22:   else 

23:   ADDELEMENT(MO, mi) 

24:  end if 

25: end case 

When the button Start is clicked, the ADS connection is established and the handle 

variables are automatically created due to the initialization procedure described above. 

After that, RS simulation can also be run. As long as the simulation is active, an event 

handler called OnSimulationStep is called for every RS elementary simulation step. The 

code executed at each step iteration includes two methods: 

• ROBOTSTUDIOREADTWINCATWRITE, which updates the values of variables in TC from 

signal changes in RS; 

• TWINCATREADROBOTSTUDIOWRITE, which changes the status of signals in RS as a var-

iable value is changed in TC. 

The pseudocode of the first of the two functions is reported below (Algorithm 2). The 

other function has a specular structure. For each mapped signal, the value in RS is read 

and the corresponding variable in TC is updated. An optimization strategy is used to 

avoid useless operations. The last registered value is stored in the mapping info object, 

and it is compared with the new value in the next cycle in order to skip the writing oper-

ation if the value has not changed. This strategy allows the communication overhead to 

be reduced and makes the signals synchronization faster. 

Algorithm 2 Update variables in TC 

ROBOTSTUDIOREADTWINCATWRITE(ads, MI) 

in:   client ads connected to TC, 

  set MI of the mapping infos of the input signals (from RS to TC) 

local:  current mapping info mi being considered, 

  current value cv of a signal 



Appl. Sci. 2022, 12, 3164 9 of 19 
 

 

1: for all mi ∈ MI do 

2: cv ← currentValue(mi) 

3: if cv ≠ lastValue(mi) then 

4:   ▷ Write cv in TC variable using ads client 

5:  WRITE (ads, tcHandle(mi), cv) 

6:  lastValue(mi) ← cv 

7: end if 

4. Case Study: Robotic Assembly Cell 

The approach described in Section 3 has been applied to a robotic assembly cell for 

gearboxes. The virtual model of the cell was realized in RS starting from a CAD represen-

tation of the real implemented prototype. The developed case allowed the VC capabilities 

of the proposed approach to be tested in a complex scenario made of two robots and var-

ious additional systems. In particular, the interaction mechanism between the PLC and 

the virtual representation of the cell devices is reported here in detail. Finally, an extract 

of the PLC code is shown and discussed, as well as the capability of the VC approach to 

improve the overall performance of the system. 

4.1. Description of the Robotic Assembly Cell 

The robotic assembly cell includes two ABB industrial robots working in the same 

workspace. The aim of the cell is to mount fasteners and bearings on a basement resem-

bling the case of a gearbox. The basement is placed on a Cartesian positioning table that 

is translated by two linear axes. The table can arrange the basement in different positions 

under an electric press, that is activated when pins or bearings must be pressed in their 

seats. Custom-designed punches are used depending on the object that must be pressed: 

they are brought in the right position by a robot and locked on the press due to its fast 

tool changer interface. 

The two robots in the cell are equipped with different tools. IRB 1600-10/1.2 (Robot1) 

mounts a tool changer, which is used to lock the appropriate gripper depending on the 

object that has to be picked and then placed in the basement. Five Schunk grippers are 

provided belonging to two different families: the PNG-plus 80-1, which includes parallel 

grippers, and the PNZ-plus 80-1 family, which is a three-finger centric gripper. In partic-

ular, two parallel grippers are used to pick and place pins and handle punches, while 

three centric grippers are used to pick up bearings. 

IRB 2600-20/1.65 (Robot2) mounts an electric, torque-controlled screwer from Bosch 

Rexroth. It picks the fasteners from their holder and screws them on the basement. 

The system is coordinated by a Beckhoff Embedded PC CX5140 PLC equipped with 

Intel Atom quad-core processor. An EtherCAT fieldbus connects the devices in the cell 

and is responsible for the I/O signals connections. 

A list of the main hardware components present in the cell is given in Table 1. 

Table 1. Details on the main devices employed in the cell. 

Name Quantity Description 

ABB IRB 1600-10/1.2 1 Serial manipulator 

ABB IRB 2600-20/1.65 1 Serial manipulator 

Schunk Quick-Change-Systems SWS-011 1 Tool changer 

Schunk PNG-plus 80-1 2 Parallel gripper 

Schunk PNZ-plus 80-1 3 Three-finger centric gripper 

Bosch Rexroth CS351 1 Electric, torque-controlled screwer 

Coretec Servo Press CS20-350B 1 Electric press 

Bosch Rexroth IntraDrive Cs Systems 2 Motors and drivers for linear axis 

Beckhoff Embedded PC CX5140 1 PLC 



Appl. Sci. 2022, 12, 3164 10 of 19 
 

 

The virtual model of the cell was created starting from a 3D representation realized 

in SolidWorks, including both the models used to design the components and models 

provided by the manufacturers of the devices (Figure 4). Then, the geometry was im-

ported into RS. This is then followed by a standard workflow, which includes the defini-

tion of movable devices, known as mechanisms, used in the specific case for the press, 

positioning table and grippers. 

 

Figure 4. Full view of the assembly cell reproduced in RobotStudio 3D environment. 

4.2. Communication Pattern between PLC and Cell Devices 

The role of the PLC is to coordinate the activity of the robots and the devices included 

in the cell. According to the proposed approach, in the RS virtual model, a dedicated SC 

is created for each physical device. The SC represents the behavior of the physical asset 

being represented recurring to the functionalities provided by RS. However, the interface 

of the SC in terms of exchanged signal must be equal to the real device in order to permit 

a real VC of the cell. 

A communication pattern was defined between the PLC and the other devices by 

means of a standardized set of signals, which are summarized in Table 2. The reported 

signals represent a minimum core set to guarantee an efficient interaction between the 

PLC and the cell devices. 

Table 2. List of the core I/O signals exchanged between a robot/device and the PLC. 

Signal Name From (Output) To (Input) Description 

procedureNumber 

programNumber 

targetPosition 

PLC 
Robot or  

Device 

Contains a coded data to identify the action that the 

device has to carry out. 

execute PLC 
Robot or  

Device 

Triggers the execution of the procedure whose code 

has been transmitted to the device 

done 
Robot or 

Device 
PLC Raised when the device completes the procedure. 

error 
Robot or 

Device 
PLC 

Error code being raised in case of faults in the proce-

dure execution 

The actions performed by the robots and the devices in the cell were subdivided in 

elementary procedures, which are combined to perform more complex tasks. The PLC 

elaborates the required sequence of operations, the possible simultaneity of the actions 

according to the general assembly task of the cell, and the space-sharing constraints. 

ABB IRB 2600-20/1.65
ABB IRB 1600-10/1.2

Coretec Servo Press
CS20-350B

Schunk
Grippers

Bosch Rexroth
CS351 Schunk Quick-Change-System

SWS-011

Bosch Rexroth
IntraDrive
Cs Systems



Appl. Sci. 2022, 12, 3164 11 of 19 
 

 

Therefore, the PLC is in charge of sending identifiers of the procedures to be executed to 

cell devices, which were named as procedureNumber in case of manipulators and pro-

gramNumber for the press. For the X-Y axes of the positioning table, the numeric value of 

the coordinate to be reached, i.e., the targetPosition, is provided. Finally, the communica-

tion pattern was completed with additional error signals in order to guarantee the re-

quired safety and robustness in industrial implementations. 

Figure 5 shows the appearance of PLC_Beckhoff SC connected to the cell devices, as 

the configuration stage of the cell is completed according to the signal pattern explained 

above. The signal exchange is based on a simple remote procedure call (RPC), i.e., a client–

server interaction implemented via request–response messages. This pattern is able to 

safely manage complex scenarios in a standardized manner. 

 

Figure 5. Connection of the PLC_Beckhoff SC to the SCs representing the controllers of the devices 

in the assembly cell. 

In practice, as depicted in Figure 6, an operation is activated by the execute signal, 

and it gives feedback when activity ends by the done signal. Once the PLC has received 

the done signal, it resets the execute signal. Finally, the device resets the done signal as 

soon as it receives the information that the execute signal has been reset. 

 

Figure 6. Schematic of the RPC employed in the PLC–device communication. 



Appl. Sci. 2022, 12, 3164 12 of 19 
 

 

The same logic is applied to devices and robots, leveraging respective controllers’ 

codings means to handle the signals’ exchanges. For instance, in the specific case of an 

ABB robot, the RPC scheme is managed by a main loop operating in the RAPID code, i.e., 

the code running in the robot controller. As shown in Figure 7, the robot acts as any other 

device: it receives an execute command from the PLC and it returns a done signal when 

the requested procedure is finished. As reported in the following pseudocode (Algorithm 

3), the algorithm running on the robot controller includes a standard MAIN section with a 

loop implementing the RPC pattern. The code ensures the management of the exchanged 

signals and the invoking of the desired procedure according to the value of the proce-

dureNumber. 

Algorithm 3 Main section with loop for RPC pattern 

MAIN() 

in:   signal procedureNumber; signal execute 

out:  signal done; signal do_error 

constant: integer procedure identifier N_SZ_ObjectHolder 

  integer procedure identifier N_SZ_ToolHolder 

  … 

1: INITIALIZATION    ▷ Initialize variables 

2: while TRUE do    ▷ Loop continuously 

3: done ← 0    ▷ Reset done signal 

4: while execute ≠ 1 do   ▷ Wait until execute signal is true 

5:  end while 

6:  case procedureNumber of ▷ Call specific robot procedure 

7:  N_SZ_ObjectHolder: SZ_OBJECTHOLDER 

8:  N_SZ_ToolHolder: SZ_TOOLHOLDER 

9:  …    ▷ Put other robot procedures here 

10:  others: 

11:  do_error ← 1  ▷ Unknown procedure number 

12: end case 

13: done ← 1    ▷ Set done signal 

14:  while execute ≠ 0 do  ▷ Wait until execute signal is false 

15:  end while 

16: end while 

Other code sections are then implemented to detail the action required by the specific 

operation procedure, such as a joint movement, gripper attaching, object grabbing, etc. 

Such procedures were defined according to the subdivision of the robot tasks in elemen-

tary operations accomplished in the initial design phase of the assembly process. 

 

Figure 7. Schematic of the structure of the RAPID program added in the virtual controller of both 

robots included in the cell. 

4.3. PLC Programming 

RAPID Program

Initialization

WHILE loop

RPC
(Procedure Selection)



Appl. Sci. 2022, 12, 3164 13 of 19 
 

 

The SFC graphic language, defined in the international standard IEC 61131-3, has 

been chosen as PLC programming means for its suitability to visualize conditional proce-

dures as typically happens in industrial applications. Moreover, this language is easy to 

understand, as some basic interpretation rules are provided and can be combined with 

other PLC programming languages. 

In Figure 8, a simple diagram is shown as an example to recall the basics of SFC. The 

Init block with the double outline is the entry point of the program. The little rectangle 

below, linked by a vertical line, represents a transition, i.e., a step forward in the graph 

execution flow; the related condition is pointed out by the label beside it. Until the transi-

tion condition is not verified, the program cyclically executes the code included in the 

specific block. When the condition expressed in the label is met, the execution of the pro-

gram will pass to the next block, and so on. In the SFC, it is also possible to make the 

program execute two or more blocks in the same cycle, using a parallel branch. In the 

example shown in Figure 8, after var1 has become true, Step2_1 and Step2_2 are both 

cyclically executed until the variable var2 becomes true. Finally, the arrow indicates a 

jump, meaning that the program execution is brought back to the block named as the label 

next to the arrow. 

 

Figure 8. Example of SFC graphical programming language for PLC. 

In the robotic assembly cell test case, the SFC programming language has been em-

ployed to program the PLC. Figure 9 reports a portion of the program to show the logic 

used to build it. Each block of the diagram corresponds to an operation of a certain device. 

The features of the SFC, i.e., parallel branches, allowed the activities, which must be per-

formed at the same time, to be managed. For instance, AxisX and AxisY are supposed to 

be moved simultaneously in order to reach the target position of the table in the minimum 

amount of time. On the contrary, the press must be actuated only when the table reaches 

the target position, as required by the sequential constrain that is expressed by the transi-

tion condition named Ready. 



Appl. Sci. 2022, 12, 3164 14 of 19 
 

 

 

Figure 9. Portion of the PLC program developed for the robotic assembly test case. 

5. Tool Validation and Results 

The implemented integration between RS and TC was tested against the possibility 

to perform an effective VC of the cell. In particular, a series of assembly tasks were defined 

and simulated to identify the optimal assembly sequence for the proposed gearbox assem-

bly task. For a better understanding of the executed work, a video showing the VC of the 

assembly cell is provided as additional material to this paper. In the video, the PLC and 

the virtual cell in RS are displayed side-by-side. In particular, an example of the assembly 

sequence was shown that has been recorded to illustrate the command activation from 

the PLC and the variation in the signals’ statuses, both in TC and RS. 

The whole gearbox assembly task was subdivided in a list of elementary operations 

to be arranged in proper sequences. The examples of considered operations include: 

• LockInsert: locate a pushing insert in the press and attach it to the end effector; 

• UnlockInsert: detach an insert from the press and locate in the magazine; 

• PickBearing: grab a bearing with a gripper; 

• PlaceBearing: locate a bearing on its assembly position; 

• ScrewStud: screw a threaded stud by the torque-controlled screwdriver. 

Following the architecture described in the previous section, the code in the control-

lers of the robots and other cell devices is in charge of activating the operations according 

to the signals received by the PLC. The actual sequence of operations is determined by the 

PLC program. Therefore, several PLC programs, including different sequences of opera-

tions were generated and tested. 

From the experimental activity, it emerges that, in the virtual environment, various 

aspects can be verified and optimized. At first, the appropriate sequence of actions and 

the correctness of signals exchange between PLC and controllers must be verified and 

optimized. Therefore, PLC program robustness is verified and tested in normal operating 

conditions as well as in fault events caused by errors, safety alarms or unexpected situa-

tions. 

The reachability of the desired locations, the quality and fluency of the movements, 

the absence of collisions, as well as the overall time required to accomplish the tasks are 

other significant tasks that can be verified before commissioning the real cell to ensure a 

successful result. 

Finally, the VC was analyzed as a means to optimize the sequence of the operations 

coordinated by the PLC. The absence of collisions between two robots sharing their work-

space (see Figure 10), the interchangeability of the single assembly operation, and the pos-

sibility to parallelize actions performed in different zones of the cell make the solution 



Appl. Sci. 2022, 12, 3164 15 of 19 
 

 

space of all of the possible operating sequences quite vast. This opens up to the possibility 

of optimizing the order of the operations requested of the two robots and other devices in 

order minimize the overall accomplishing time. 

 

Figure 10. The sharing of the workspace of the two robots makes it essential to study the appropriate 

sequences of actions in a virtual environment to avoid collisions. In the figure, Robot 2 locating a 

bearing, collides with Robot 1 while it is screwing a stud. 

Figure 11 reports an example of tests performed to identify the optimal sequence 

permutation of the same list of operations. In the figure, three different sequences are re-

ported, respectively, assigned to the positioning table axes, the press, and the two robots. 

The colored bars show the activation times of the devices, as highlighted by the legends 

in the figures. It is evident how some operations can be parallelized, while in other mo-

ments, the operability of a device must be suspended until specific actions are completed. 

However, looking at the three different operation sequences it emerges that different lev-

els of operations can simultaneously be reached. For instance, in the reported case, (a) the 

operations performed by Robot 1 (yellow band), which is the device with a major work-

load in the cell, are fragmented, and the overall cycle time is degraded due to frequent 

downtime periods. 

 
(a) 

Collision zone

Cycle time = 1 min 41 s



Appl. Sci. 2022, 12, 3164 16 of 19 
 

 

 
(b) 

 
(c)  

Figure 11. Results obtained by the VC approach. A better alternation of operations allows a reduc-

tion in the overall cell cycle time and energy consumption: (a) initial (sub-optimal) sequence; (b) 

improved sequence and (c) final (refined) sequence. 

The improved sequences of operations leads to an overall cycle time reduction of 

30%, i.e., from the initial 101 s to an intermediate sub-optimal solution (i.e., 74 s, case (b)) 

and finally, to a saving of more seconds (i.e., 71 s, case (c)). As a further demonstration of 

the VC tool potentialities, the same picture reports the RS estimation of the total energy 

required by the motors of the robots during the entire work cycle, comparing the sub-

optimal and the optimal sequences. It can be observed that the last case provides an over-

all reduction in energy consumption of 3% (i.e., from 17,067 J to 16,556 J). It is worth noting 

that, based on the declared design intents, any other output made available by RS simu-

lation can be utilized as a performance index in the optimization study. 

As a further development, an additional optimization algorithm may be foreseen to 

generate candidate sequences to be sent to the PLC, and then automatically elaborated in 

the proposed VC system to check for the resulting performance, such as collision avoid-

ance and cycle time. Such a system would be helpful in searching for optimal solutions in 

an automatic, faster and more reliable way. 

6. Conclusions 

Cycle time = 1 min 14 s

4871.2 J

12196.1 J

Cycle time = 1 min 11 s

4887.5 J

11668.6 J



Appl. Sci. 2022, 12, 3164 17 of 19 
 

 

VC technology is an efficient tool for companies to be competitive since it allows the 

commissioning activities of a production system to be anticipated during the design 

phase, offering the chance to find errors and improve the project when engaged invest-

ments are still relatively low. On the other hand, mechatronic systems are often complex 

and composed by devices from different producers, each one recurring for a different soft-

ware platform. Consequently, tools that validate and verify the interactions of different 

controllers codes become strategic in the VC perspective. In this context, the tools that 

enable the communication between two common software in the industrial automation 

panorama, RS and TC, were proposed. They allow a signal exchange to be easily estab-

lished between PLC and other devices, as is the case in real systems. The tool demon-

strated an effective performance, and the connection was solid and reliable. The main out-

come is that both PLC and robot programs can be checked concurrently and optimized 

before being implementation in the physical system. The effect of any change at code level 

can be tested on the whole system in a single environment without the need to simplify 

or idealize the parts behavior. 

Beyond these encouraging results, future work could be focused on the improvement 

of the working performance of the application, aiming for a more efficient communication 

code to reduce latency. Moreover, since both RS and TC are proprietary solutions that 

only comprise vendor-specific devices, the presented approach can either be replicated 

with other commercial platforms or even extended to general-purpose platforms, where 

products from many vendors can be simulated. 

Supplementary Materials: The following supporting information can be downloaded at: 

www.mdpi.com/article/10.3390/app12063164/s1. A demonstrative video of the proposed VC tool 

can be viewed at link https://youtu.be/QG22pVg31XI. 

Author Contributions: Conceptualization, R.R. and F.N.; methodology, R.R. and P.B.; software, 

F.N.; validation, F.N.; writing—original draft preparation, R.R, P.B.; writing—review and editing, 

P.B. and M.P (Margherita Peruzzini).; coordination, M.P. (Marcello Pellicciari). All authors have 

read and agreed to the published version of the manuscript. 

Funding: This research was funded by the European Community’s HORIZON 2020 programme 

under grant agreement No. 958303 (PENELOPE). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Oztemel, E.; Gursev, S. Literature Review of Industry 4.0 and Related Technologies. J. Intell. Manuf. 2020, 31, 127–182. 

2. Waris, M.M.; Sanin, C.; Szczerbicki, E. Smart Innovation Engineering (SIE): Experience-Based Product Innovation System for 

Industry 4.0. In Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2018; Volume 657, pp. 379–388. 

3. Kamble, S.S.; Gunasekaran, A.; Gawankar, S.A. Sustainable Industry 4.0 Framework: A Systematic Literature Review 

Identifying the Current Trends and Future Perspectives. Process Saf. Environ. Prot. 2018, 117, 408–425. 

https://doi.org/10.1016/j.psep.2018.05.009. 

4. Sony, M.; Naik, S. Key Ingredients for Evaluating Industry 4.0 Readiness for Organizations: A Literature Review. Benchmarking 

2020, 27, 2213–2232. 

5. Kusiak, A. Smart Manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. https://doi.org/10.1080/00207543.2017.1351644. 

6. Lattanzi, L.; Raffaeli, R.; Peruzzini, M.; Pellicciari, M. Digital Twin for Smart Manufacturing: A Review of Concepts towards a 

Practical Industrial Implementation. Int. J. Comput. Integr. Manuf. 2021, 34, 567–597. 

https://doi.org/10.1080/0951192X.2021.1911003. 

7. Chau, K.Y.; Tang, Y.M.; Liu, X.; Ip, Y.K.; Tao, Y. Investigation of Critical Success Factors for Improving Supply Chain Quality 

Management in Manufacturing. Enterp. Inf. Syst. 2021, 15, 1418–1437. https://doi.org/10.1080/17517575.2021.1880642. 

8. Noga, M.; Juhás, M.; Gulan, M. Hybrid Virtual Commissioning of a Robotic Manipulator with Machine Vision Using a Single 

Controller. Sensors 2022, 22, 1621. https://doi.org/10.3390/s22041621. 

9. Aromaa, S. Virtual Prototyping in Design Reviews of Industrial Systems. In Proceedings of the 21st International Academic 

Mindtrek Conference, AcademicMindtrek, New York, NY, USA, 20–21 September 2017; Association for Computing Machinery, 

Inc.: Times Square, NY, USA, 2017; Volume 2017-January. 



Appl. Sci. 2022, 12, 3164 18 of 19 
 

 

10. Mejía-Gutiérrez, R.; Carvajal-Arango, R. Design Verification through Virtual Prototyping Techniques Based on Systems 

Engineering. Res. Eng. Des. 2017, 28, 477–494. https://doi.org/10.1007/s00163-016-0247-y. 

11. Charif, A.; Busnot, G.; Mameesh, R.; Sassolas, T.; Ventroux, N. Fast Virtual Prototyping for Embedded Computing Systems 

Design and Exploration. In Proceedings of the ACM International Conference Proceeding Series, New York, NY, USA, 19–21 

September 2019; Association for Computing Machinery: Times Square, NY, USA, 2019; Volume Part F148382. 

12. Pellicciari, M.; Vergnano, A.; Berselli, G. Hardware-in-the-Loop Mechatronic Virtual Prototyping of a High-Speed Capsule 

Filling Machine. In Proceedings of the MESA 2014—10th IEEE/ASME International Conference on Mechatronic and Embedded 

Systems and Applications, Senigallia, Italy, 10–12 September 2014; Institute of Electrical and Electronics Engineers Inc.: 

Piscataway, NJ, USA, 24 October 2014. 

13. Tang, Y.M.; Chau, K.Y.; Fatima, A.; Waqas, M. Industry 4.0 Technology and Circular Economy Practices: Business Management 

Strategies for Environmental Sustainability. Environ. Sci. Pollut. Res. 2022, 1–18. https://doi.org/10.1007/s11356-022-19081-6. 

14. Pérez, L.; Rodríguez-Jiménez, S.; Rodríguez, N.; Usamentiaga, R.; García, D.F. Digital Twin and Virtual Reality Based 

Methodology for Multi-Robot Manufacturing Cell Commissioning. Appl. Sci. 2020, 10, 3633. 

https://doi.org/10.3390/app10103633. 

15. Vatankhah Barenji, A.; Liu, X.; Guo, H.; Li, Z. A Digital Twin-Driven Approach towards Smart Manufacturing: Reduced Energy 

Consumption for a Robotic Cell. Int. J. Comput. Integr. Manuf. 2021, 34, 844–859. https://doi.org/10.1080/0951192X.2020.1775297. 

16. Ribeiro, F.M.; Pires, J.N.; Azar, A.S. Implementation of a Robot Control Architecture for Additive Manufacturing Applications. 

Ind. Robot Int. J. Robot. Res. Appl. 2019, 46, 73–82. https://doi.org/10.1108/IR-11-2018-0226. 

17. Gadaleta, M.; Pellicciari, M.; Berselli, G. Optimization of the Energy Consumption of Industrial Robots for Automatic Code 

Generation. Robot. Comput.-Integr. Manuf. 2019, 57, 452–464. https://doi.org/10.1016/j.rcim.2018.12.020. 

18. Makris, S.; Michalos, G.; Chryssolouris, G. Virtual Commissioning of an Assembly Cell with Cooperating Robots. Adv. Decis. 

Sci. 2012, 2012, 428060. https://doi.org/10.1155/2012/428060. 

19. Oppelt, M.; Wolf, G.; Urbas, L. Towards an Integrated Use of Simulation within the Life-Cycle of a Process Plant: A Prototypical 

Implementation. In Proceedings of the IEEE International Conference on Emerging Technologies and Factory Automation, 

ETFA, Luxembourg, 8–11 September 2015; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NY, USA; Volume 

2015-October. 

20. Liu, Z.; Suchold, N.; Diedrich, C. 7 Virtual Commissioning of Automated Systems; IntechOpen: London, UK, 2012. 

21. Hoffmann, P.; Schumann, R.; Maksoud, T.M.A.; Premier, G.C. Virtual Commissioning Of Manufacturing Systems A Review 

And New Approaches For Simplification. In Proceedings of the ECMS, Kuala Lumpur, Malaysia, 1–4 June 2010. 

22. Lechler, T.; Fischer, E.; Metzner, M.; Mayr, A.; Franke, J. Virtual Commissioning—Scientific Review and Exploratory Use Cases 

in Advanced Production Systems. Procedia CIRP 2019, 81, 1125–1130. 

23. Langmann, R.; Stiller, M. The PLC as a Smart Service in Industry 4.0 Production Systems. Appl. Sci. 2019, 9, 3815. 

https://doi.org/10.3390/app9183815. 

24. Barbieri, G.; Bertuzzi, A.; Capriotti, A.; Ragazzini, L.; Gutierrez, D.; Negri, E.; Fumagalli, L. A Virtual Commissioning Based 

Methodology to Integrate Digital Twins into Manufacturing Systems. Prod. Eng. 2021, 15, 397–412. 

https://doi.org/10.1007/s11740-021-01037-3. 

25. Fernández, I.A.; Eguía, M.A.; Echeverría, L.E. Virtual Commissioning of a Robotic Cell: An Educational Case Study. In 

Proceedings of the 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 

Zaragoza, Spain, 10–13 September 2019; pp. 820–825. 

26. Lee, C.G.; Park, S.C. Survey on the Virtual Commissioning of Manufacturing Systems. J. Comput. Des. Eng. 2014, 1, 213–222. 

https://doi.org/10.7315/JCDE.2014.021. 

27. Eguti, C.C.A.; Trabasso, L.G. The Virtual Commissioning Technology Applied in the Design Process of a Flexible Automation 

System. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 1–12. https://doi.org/10.1007/s40430-018-1322-2. 

28. Gomes, C.; Thule, C.; Broman, D.; Larsen, P.G.; Vangheluwe, H. Co-Simulation: State of the Art. arXiv 2017, arXiv:1702.00686. 

29. Schamp, M.; van de Ginste, L.; Hoedt, S.; Claeys, A.; Aghezzaf, E.H.; Cottyn, J. Virtual Commissioning of Industrial Control 

Systems—A 3D Digital Model Approach. Procedia Manuf. 2019, 39, 66–73. 

30. Vermaak, H.; Niemann, J. Virtual Commissioning: A Tool to Ensure Effective System Integration. In Proceedings of the 2017 

IEEE International Workshop of Electronics, Control, Measurement, Signals and their Application to Mechatronics, ECMSM, 

San Sebastian, Spain, 24–26 May 2017; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NY, USA, 9 June 2017. 

31. Tebani, K.; Plateaux, R.; Puyenchet, C.; Penas, O.; Baroux, C.; Limou, S. Real-Time Communication between PLC and Dymola 

for Virtual Commissioning Application. In Proceedings of the International Conference on Advanced Systems and Emergent 

Technologies, IC_ASET 2020, Hammamet, Tunisia, 15–18 December 2020; Institute of Electrical and Electronics Engineers Inc.: 

Piscataway, NY, USA, 15 December 2020; pp. 83–88. 

32. Brazina, J.; Vetiska, J.; Stanek, V.; Bradac, F.; Holub, M. Virtual Commissioning as Part of the Educational Process. In 

Proceedings of the 2020 19th International Conference on Mechatronics—Mechatronika, ME 2020, Prague, Czech Republic, 2–4 

December 2020; Institute of Electrical and Electronics Engineers Inc.: Piscataway, NY, USA, 2 December 2020. 

33. Guerrero, L.V.; López, V.V.; Mejía, J.E. Virtual Commissioning with Process Simulation (Tecnomatix). Comput.-Aided Des. Appl. 

2014, 11, S11–S19. https://doi.org/10.1080/16864360.2014.914400. 

34. Min, B.-K.; Huang, Z.; Pasek, Z.J.; Yip-Hoi, D.; Husted, F.; Marker, S. Integration of real-time control simulation to a virtual 

manufacturing environment. J. Adv. Manuf. Syst. 2002, 01, 67–87. https://doi.org/10.1142/s0219686702000076. 



Appl. Sci. 2022, 12, 3164 19 of 19 
 

 

35. Bilancia, P.; Berselli, G.; Bruzzone, L.; Fanghella, P. A CAD/CAE Integration Framework for Analyzing and Designing Spatial 

Compliant Mechanisms via Pseudo-Rigid-Body Methods. Robot. Comput.-Integr. Manuf. 2019, 56, 287–302. 

https://doi.org/10.1016/j.rcim.2018.07.015. 

36. Park, H.S.; Dang, X.P. Structural Optimization Based on CAD–CAE Integration and Metamodeling Techniques. Comput.-Aided 

Des. 2010, 42, 889–902. https://doi.org/10.1016/J.CAD.2010.06.003. 

37. Cheraghpour, F.; Vaezi, M.; Shoori Jazeh, H.E.; Moosavian, S.A.A. Dynamic Modeling and Kinematic Simulation of Stubli©  

TX40 Robot Using MATLAB/ADAMS Co-Simulation. In Proceedings of the 2011 IEEE International Conference on 

Mechatronics, ICM 2011—Proceedings, 13–15 April 2011; pp. 386–391. 

38. Bilancia, P.; Berselli, G.; Palli, G. Virtual and Physical Prototyping of a Beam-Based Variable Stiffness Actuator for Safe Human-

Machine Interaction. Robot. Comput.-Integr. Manuf. 2020, 65, 101886. https://doi.org/10.1016/j.rcim.2019.101886. 

39. Raffaeli, R.; Neri, F.; Peruzzini, M.; Berselli, G.; Pellicciari, M. Virtual Prototyping as a Supporting Tool for the Design of 

Complex Robotic Cells. In Proceedings of the International Conference on Design, Simulation, Manufacturing, The Innovation 

Exchange 2021, Lviv, Ukraine, 8–11, June, 2021; Springer: Cham, Switzerland, 2021. 

  


