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Abstract: In this paper, we propose context-based GK clustering and design a CGK-based granular
model and a hierarchical CGK-based granular model. Existing fuzzy clustering generates clusters
using Euclidean distances. However, there is a problem in that performance decreases when a cluster
is created from data with strong nonlinearity. To improve this problem, GK clustering is used. GK
clustering creates clusters using Mahalanobis distance. In this paper, we propose context-based
GK (CGK) clustering, which adds a method that considers the output space in the existing GK
clustering, to create a cluster that considers not only the input space but also the output space. there is.
Based on the proposed CGK clustering, a CGK-based granular model and a hierarchical CGK-based
granular model were designed. Since the output of the CGK-based granular model is in the form
of a context, it has the advantage of verbally expressing the prediction result, and the CGK-based
granular model with a hierarchical structure can generate high-dimensional information granules,
so meaningful information with high abstraction value granules can be created. In order to verify
the validity of the method proposed in this paper, as a result of conducting an experiment using
the concrete compressive strength database, it was confirmed that the proposed methods showed
superior performance than the existing granular models.

Keywords: granular model; incremental granular model; interval-based fuzzy c-means clustering;
coverage; specificity; performance index

1. Introduction

In In the field of artificial intelligence, an inference engine is a system component
that applies logical rules to a knowledge base to infer new information, where the first
inference engines are expert systems. Conventional expert systems comprise knowledge
bases and inference engines. A knowledge base stores information about the actual world,
and an inference engine applies logical rules to the knowledge base and new inferred
knowledge. In this process, each piece of new information in the knowledge base can
generate additional rules from the inference engine. These expert systems include fuzzy
inference systems. Fuzzy inference systems are the core units of fuzzy logic system, which
perform decision making as a basic task and employ logical gates such as “OR”, “AND”,
and “IF-THEN” rules to generate the required decision rules.

Fuzzy inference systems are broadly divided into Mamdani and Sugeno types. Mamdani-
type inference systems are created by combining a series of language control rules obtained
from experts, and the output of each rule has a fuzzy set form. Because they have an
intuitive and easily understood rule base, they are suitable in fields that employ expert
systems that are created from the expert knowledge of humans, such as medical diagnoses.
Sugeno-type inference systems are also called Takagi-Sugeno-Kang inference systems, and
they use single output membership functions, which are a form of linear function, of a
constant or an input value. Sugeno-type inference systems include a defuzzification process,
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and rather than calculating the center of a 2D region, they adopt a weighted average or
weighted sum of several data points; hence, they have the advantage of exhibiting a higher
computational efficiency than Mamdani-type inference systems. These fuzzy inference
systems are used in various forecasting fields and are actively being studied [1–9]. A
previous study [10] proposed a Fuzzy convolutional neural network (F-CNN) that combines
fuzzy inference with a CNN to predict traffic flow, which is a core part of predicting traffic
volume. Yeom [11] proposed adaptive neuro-fuzzy inference system (ANFIS), which has an
incremental structure and adopts context-based fuzzy clustering. Parsapoor [12] proposed
brain emotional learning-based fuzzy inference system (BELFIS) to predict solar activity.
Kannadasan [13] proposed an intelligent prediction model for predicting performance
indices such as surface roughness and geometric tolerance in computer numerical control
(CNC) operations, which plays an important role in machine product manufacturing.
Guo [14] proposed a model called backpropagation-based (BP) kernel function Granger
causality, which adopts symmetry geometry to embed dimensions and fuzzy inference
systems for time-series predictions; in addition, this model was utilized to examine the
causal relationships between brain regions. Hwang [15] proposed a motion cue-based fuzzy
inference system to predict the normal walking speeds of sudden pedestrian movements at
the initial walking stage when the heel is lifted.

Neural network expert systems are expert systems that mimic human intelligence by
combining artificial neural networks (ANNs) and expert systems. In conventional expert
systems, human inference methods are designed using decision trees and logical inferences,
while ANNs focus on the structure and learning capacity of the human brain and reflect
this in their knowledge expression. If these two systems are combined, the process of
deriving results can be confirmed by the expert system, while learning can be performed
by the ANN without user intervention. Accordingly, it is possible to create a system that
is capable of more effective inferences than existing individual systems. The following
studies on such neural network expert systems have been conducted [16–20]. Liu [21]
proposed recurrent self-evolving fuzzy neural network (RSEFNN), which adopts online
gradient descent learning rules to solve brainwave regression problems in brain dynamics,
to predict driving fatigue. Dumas [22] proposed prediction neural network (PNN), which
is based on fully connected neural networks and CNNs, and is used for internal image
prediction. Lin [23] proposed an embedded backpropagation neural network comprising
two hidden layers for earthquake magnitude prediction.

The aforementioned fuzzy inference systems and ANNs have different processes and
solve various prediction problems. In addition, studies are being conducted on solving
problems by combining two or more different methods, rather than using one method.
Inference systems that combine different methods are called hybrid systems, and the
granular computing (GrC) [24,25] method is adopted as a method for constructing hybrid
systems. GrC is a computing theory related to the processing of information objects, called
“information granules” (IG), that occur during the process of extracting knowledge from
data and information, as well as abstractifying the data.

In the computing performed in general-used fuzzy inference systems, ANNs, and
deep learning methods, the model output appears in a crisp form or as numbers. If the
model output is in a crisp form or a number with a clear value, the numerical error relative
to the actual output value can be calculated; however, difficulties occur when the difference
between the model and actual output is expressed linguistically. However, in GrC, the
model output is expressed in a soft form or as a fuzzy set; hence, GrC is effective at
handling and processing data and information that are uncertain, incomplete, or with
vague boundaries. In the actual world, people mainly use linguistic expressions rather than
numerical expressions, and the brain, which makes inferences in uncertain and incomplete
environments, utilizes linguistic values instead of numerical values to perform inferences
and make decisions. Accordingly, GrC can represent the process by which humans think
and make decisions. The following studies on GrC have been conducted [26–29]. Zhu [30]
proposed a novel approach that develops and analyzes a granular input space and designed
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a granular model accordingly. Truong [31] proposed fuzzy possibilistic C-means (FPCM)
clustering and a GrC method to solve anomalous value-detection problems. Zuo [32]
proposed three types of granular fuzzy regression-domain adaptative methods, to apply
GrC to transfer learning. Hu [33] proposed a method that adopts GrC to granularize fuzzy
rule-based models and assess the proposed models. Zhao [34] made long-term predictions
about energy systems in the steel industry by designing a granular model based on IGs
created via fuzzy clustering. By analyzing the aforementioned research, it has become
possible to create IGs that are generated via GrC, and to use these to design a granular
model (GM), as well as calculate soft form output and express it linguistically. In addition,
performance evaluation methods are proposed to evaluate the prediction performance of
soft form output. However, studies are required to improve the prediction performance of
granular models by creating optimal IGs, including methods for generating IGs and setting
their form and size.

Conventional fuzzy clustering creates circle-shaped clusters starting at the cluster’s
center in the input space. However, when the input space’s data exhibits geometric features,
a problem emerges in which the clustering is not properly performed. To address this
problem, Gustafuson-Kessel (GK) clustering is employed, as it can generate clusters while
considering the geometric features of the data. This study proposes context-based GK
(CGK) clustering, which considers both the input space and also the output space during
existing GK clustering to generate geometrically-shaped clusters. This study also designed
a CGK-based granular model that utilizes the proposed context-based GK clustering to
generate context-shaped IGs in the output space and geometrically-shaped IGs in the input
space. In addition, to resolve the problem of geometric increases in the numbers of rules
when large amounts of data are adopted, this study proposes a CGK-based granular model
with a hierarchical structure that combines the CKG-based granular model and the normal
prediction model into an aggregate structure, such that meaningful rules can be generated.
The remainder of this paper is organized as follows. Section 2 describes fuzzy clustering
and GK clustering, while Section 3 describes IGs, existing granular models, the proposed
context-based GK clustering, and the CGK-based granular model. Section 4 describes the
hierarchical CGK-based granular model that is combined into an aggregate structure, and
Section 5 verifies the validity of the proposed method by analyzing its performance using
prediction-related benchmarking data. Finally, Section 6 presents this paper’s conclusions
and future research plans.

2. Data Clustering

Clustering is the task of placing data sets into clusters, such that the data in the same
cluster are more mutually similar than data in other clusters. It is mainly used in data
search and analysis, and as a data analysis method, it is adopted in various fields such
as image analysis, bioinformatics, pattern recognition, and machine learning. Because
the concept of clustering cannot be precisely defined, various clustering algorithms exist.
These include connectivity based clustering, centroid based clustering, distribution based
clustering, density based clustering, and grid based clustering, while a typical clustering
method is fuzzy clustering.

2.1. Fuzzy Clustering

Fuzzy clustering is a method that was developed by Dunn and improved by Bezdek [35],
which exhibits the feature of allowing the given data to belong to two or more clusters.
In non-fuzzy clustering, the given data can only belong to exactly one cluster; hence, it
is divided into separate clusters. In fuzzy clustering, data can belong to two or more
clusters according to the membership values. For example, a banana can be yellow or
green (non-fuzzy clustering criteria, or it can be yellow and green (fuzzy clustering criteria).
Here, certain parts of the entire banana can be yellow, and they can be green. The banana
can belong to green (green = 1), and it can belong to yellow (yellow = 0.5) and green
(green = 0.5), which is not yellow (yellow = 0). The membership values can be between
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zero and one, while the sum of the membership values is 1. Membership values are
assigned to the given data. These membership values numerically indicate the extent to
which the data belongs to each cluster. If the data has a low membership value, it can be
known that it is on the edge of the cluster; conversely, if it has a high membership value, it
can be deduced that it is in the center part of the cluster.

Fuzzy clustering can be generalized by the following formulas.

Jm = ∑N
i=1 ∑c

k=1 um
kid

2(xi, vk) (1)

∑c
k=1 uki = 1, ∀i ∈ {1, 2, . . . , N} (2)

where X = {x1, x2, . . . , xN} ∈ RN×D and xi ∈ R1×D represents the data and data items,
respectively. N denotes the number of data items, and c is the number of clusters, which is
2 ≤ c ≤ N. uki ∈ R represents the membership value of the kth xi, and m ∈ Z+ is the
fuzzification coefficient for the fuzzy membership values.

The cluster center and fuzzy membership function are obtained via an iterative process
by minimizing Equation (1) according to the constraint conditions defined in Equation (2).
Therefore, the objective function is modified using Lagrange multipliers and expressed as:

Jm = ∑N
i=1

(
∑c

k=1 uki
md2(xi, vk) + λi

(
1−∑c

k=1 uki

))
(3)

where λi denotes the Lagrange multiplier. Therefore, the clustering problem involves
identifying the cluster center set v∗ = {vk

∗, ∀k ∈ {1, 2, . . . , c}} and the fuzzy member-
ship function set U∗ = {uki

∗, ∀k ∈ {1, 2, . . . , c}, ∀i ∈ {1, 2, . . . , N}} by minimizing
Equation (3). The minimization of cluster centers vk

∗ can be obtained via Equation (4), and
the minimization of the fuzzy membership functions can be obtained using Equation (5),
which are expressed as:

vk
∗ =

∑N
i=1 uki

mxi

∑N
i=1 uki

m
(4)

uki
∗ =

1

∑c
j=1 (

d2(xi , vk)

d2(xi , vj)
)

1
(m−1)

(5)

Equations (4) and (5) are computed repeatedly to obtain the final cluster centers and
fuzzy membership functions.

2.2. Fuzzy Clustering That Considers the Output Space

The aforementioned fuzzy clustering is a clustering that considers the features of the
data in the input space. A fuzzy clustering that considers the output space generates clusters
by considering both the features of the data in the input space and also the similarity and
features of the data in the output space. This clustering type includes context-based fuzzy
C-means (CFCM) clustering and interval-based fuzzy C-means (IFCM) clustering [36],
which differ according to how the output space is divided. Figure 1. illustrates the fuzzy
clustering that considers the output space. In Figure 1a. triangle-shaped contexts (fuzzy
sets), which are IGs, are created in the output space, while clusters that correspond to each
context are created in the input space. In Figure 1b interval-shaped IGs are created in the
output space, and clusters that correspond to each interval are created in the input space.
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Figure 1. Context-based fuzzy clustering and interval-based fuzzy clustering concept: (a) context-
based fuzzy clustering; (b) interval-based fuzzy clustering.

In normal fuzzy clustering, clusters are created using only the Euclidean distance
between the cluster centers and the data in the input space, without considering the
features of the data in the output space. However, in context-based fuzzy clustering,
triangle-shaped contexts (fuzzy sets) are created in the output space using the method
proposed by Pedrycz [37,38], while clusters are created via fuzzy clustering in each context;
hence, clusters can be created in a more sophisticated manner than in conventional fuzzy
clustering. Figure 2a presents normal fuzzy clustering, and Figure 2b shows clusters
that were created in context-based fuzzy clustering by considering the features of the
output space.
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As illustrated in Figure 2, fuzzy clustering creates clusters using the distance between
the cluster centers and the data in the input space without considering the properties of
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the data in the output space. In contrast, context-based fuzzy clustering creates clusters by
considering the properties of the data in the output space; hence, it can create clusters more
efficiently than conventional fuzzy clustering.

The context of the data in the output space can be expressed as D : T → [0, 1] . D
represents all of the data in the output space. Here, it is assumed that the context for the
given data can be adopted. fk = T(dk) represents the extent to which the kth data belongs
in the context created in the output space. fk can be a value between zero and one, and
the requirements for the membership matrix are as expressed in Equation (6) owing to the
aforementioned properties.

U( f ) =
{

eqalignuik ∈ [0, 1] |∑c
i=1 uik = fk ∀ k and 0 < ∑N

k=1 uik < N
}

(6)

uik =
fk

∑c
j=1 (

‖xk − ci‖
‖xk − cj‖

)
2

m−1
(7)

The membership matrix U updated by Equation (6) can be expressed as Equation (7).
Here, m is the fuzzification coefficient, and m = 2 is generally used. For the contexts, the
output space is uniformly divided into fuzzy set forms, while the degree of membership
fk is obtained. Usually, the output space is divided uniformly; however, it can be divided
flexibly according to a Gaussian probability distribution according to the features of the data.
The sequence in which the context-based fuzzy clustering is performed is presented below.

[Step 1] Select the number of contexts that can be expressed linguistically and the
number of clusters that can be created in each context, and then initialize the membership
matrix U with arbitrary values between zero and one. The numbers of the contexts and
clusters can be set as the same number, or different values can be set by the user.

[Step 2] Divide the output space uniformly into fuzzy set forms and create fixed-sized
contexts that can be expressed linguistically. In addition, a Gaussian probability distribution
can be used to flexibly divide the output space and create contexts of different sizes.

[Step 3] Use Equation (8) to calculate the centers of the clusters in each context.

ci =
∑N

k=1 uik
mxk

∑N
k=1 uik

m
(8)

[Step 4] Use Equations (9) and (10) to calculate the objective function. Here, the
calculated value is compared to the previous objective function value, and the above
process is repeated, provided it is greater than the threshold value that was set, or the
process ends if it is less than the threshold value.

J = ∑c
i=1 ∑N

k=1 uik
mdik

2 (9)∣∣∣Jh − Jh−1
∣∣∣ ≤ ε (10)

where dik denotes the Euclidean distance between the kth data and ith cluster center, and h
repress nets the number of iterations.

[Step 5] Equation (7) is adopted to update the membership function U, and Step 3
is performed.

2.3. GK Clustering

Regardless of the data in the input space belonging to a cluster, the cluster is normally
determined by the distance between the data and the center of each cluster. As described in
Section 1, fuzzy clustering adopts Euclidean distance to create clusters. Euclidean distance
is primarily used when circle-shaped clusters are created, and it has the problem of being
unable to create clusters that are not circle-shaped. To resolve this problem, GK clustering
was proposed [39–41], as it can create geometrically-shaped clusters. GK clustering employs
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Mahalanobis distance, rather than Euclidean distance, to calculate the distance between
cluster centers and data. Figure 3 illustrates clusters that were created in fuzzy and GK
clustering, and Equation (11) presents the Mahalanobis distance.

dGK
2(xk, vi) = ‖ xk − vi ‖Ai

2 = (xk − vi)
T Ai(xk − vi) (11)

where dGK
2 denotes the square of the distance between the ith cluster’s center vi and the

kth data xk, while Ai is the variance matrix of the ith cluster. In GK clustering, Equation
(12) is used to calculate the variance matrix Ai in Equation (11).

Ai =
∑N

k=1 uik
m(xk − vi)(xk − vi)

T

∑N
k=1 uik

m
(12)
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The variance matrix that is calculated using Equation (12) is adopted when calculating
the distance between the cluster center and the data in Equation (13):

DGK
2 = (xk − vi)

T [ρi det(Ai)
1
N Ai

−1](xk − vi) (13)

where ρi denotes the volume of each cluster. When Ai is calculated in Equation (13), the
matrix may become zero if the number of data is insufficient; hence, the minimum value is
limited using Equation (14).

(1− γ)Ai + γ det(Ai)
1
N I → Ai (14)

where Ai is the variance matrix that is calculated using all data, while I and γ denote the unit
matrix and weight value constant, respectively. The eigen value and eigen vector can be cal-
culated from the variance matrix. The calculated maximum eigen value is used to limit the
minimum eigen value, such that the shape of the cluster can be maintained geometrically.

3. IG Creation and Granular Model Design
3.1. Creating Rational IG

Computing and inferences in GrC are centered on IGs, which are considered funda-
mental concepts and algorithms, rather than being centered on numbers. IGs are a core
element in GrC because they play an important role in knowledge representation and
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processing [42–44]. Although IGs created using various types of clustering are relatively
limited, they can reflect the general structure of some original data. Original data com-
prising numbers cannot depict the features and connections in the data, but IGs make this
possible. Rational IG creation is focused on using the original data to create meaningful
IGs. To create rational IGs, two requirements must be satisfied: coverage and specificity.
Figure 4. Presents the coverage and specificity in IGs.
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Coverage refers to whether the target data is included in the formed IG. In other
words, it shows how much of the overall target data has accumulated within the IG’s range,
including the extent of the accumulation. The more data that accumulates in the IG, the
higher the coverage value. This can verify the validity of the IG, and the model may be
better in terms of modeling functions. incl, which is the degree of inclusion and is specified
according to the form in which the IG Yk is created. When Yk is in context form, incl has a
value close to one when yk is included in Yk = [yk

−, yk
+], and it has a value close to zero

when it is not included. In other words, coverage can be adopted to count the number that
includes the data yk in the granularized output of the granular model, while an average
value can be calculated for all data. Ideally, the coverage has a value that is close to one,
and all data is included in the granular model’s output.

Coverage =
1
N

N

∑
k=1

incl (yk, Yk) (15)

Specificity represents how specifically and semantically the IG Yk can be described. In
general, the specificity of a given IG Yk must satisfy Equation (16). In other words, the IG
must be created with as much detail as possible, and each IG must have a meaning that can
be described. When an IG is in context form, the specificity becomes higher as the interval,
i.e., the distance between the upper and lower bounds, becomes narrower. If the IG Yk is
reduced to point form, the specificity arrives at a value close to one.

if Yk ⊂ Yk
′ then speci f icity(Yk) � speci f icity

(
Yk
′), and speci f icity({y}) = 1 (16)

Speci f icity =
1
N ∑N

k=1 exp
(
−
∣∣yk

+ − yk
−∣∣) (17)

A continuous decreasing function of the interval length can be considered instead of
the exponential function used in Equation (17). Coverage and specificity can be adopted
to evaluate the IG’s validity and the granular model’s prediction performance. In other
words, the granular model can be evaluated by considering the coverage and specificity of
the IG, and a method that can simultaneously maximize coverage and specificity should
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be determined. These two properties have a trade-off relationship. This implies that the
higher the coverage value, the lower the specificity value. Rational IGs can be represented
by Equation (18), and this is called the PI.

The PI plays an important role in evaluating the model’s accuracy and clarity, and
various methods for evaluating model performance have been developed. General per-
formance evaluation methods include root-mean-square error (RMSE) and mean absolute
percentage error (MAPE). RMSE evaluates performance by subtracting the model’s pre-
dicted values from the actual predicted values, calculating the mean of the squares, and
squaring the obtained value. MAPE evaluates performance by subtracting the model’s
predicted value from the actual output value and dividing by the model’s predicted value.
These performance evaluation methods are mainly used when the model’s output value
is a numerical value. However, in the case of granular models comprise IGs, the model
output is not a numerical value but an IG; hence, it is difficult to evaluate the model using
general performance evaluation methods. To address this issue, studies are actively being
conducted on adopting coverage and specificity as performance evaluation methods for
granular models [45–49]. The higher the PI, the more meaningful the IG, and granular
models with excellent performance can be designed.

Performance index = coverage(ε) · speci f icity(ε) (18)

The PI value obtained from a granular model can be adopted to represent the re-
lationship between coverage and specificity as coordinates, and the changes in model
performance, which are related to changes in the PI value, can be observed. Figure 5
illustrates the trade-off relationship between coverage and specificity. If coverage ap-
proaches zero, specificity approaches one, and the shape of the IG approaches a point.
It can be observed that as the coverage increases, the size of the IG increases, but the
specificity decreases.
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3.2. Fuzzy-Based Granular Model

Because the inference values of fuzzy rule-based inference systems used in various
real-world fields of application are numeric values, there are limitations to describing these
results linguistically. Fuzzy granular models, which are designed based on IGs that are
created using fuzzy clustering, can express and process knowledge because their output
values are IGs. Fuzzy granular models are created by granularizing a predetermined level
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of information in the data included in A. Owing to the granular properties of the data,
granularized output is created from the variables of an existing fuzzy model with numerical
input and output. This is based on the rational IG creation method described in Section 3.2.
The IGs used in the fuzzy granular model exhibit the shapes of the fuzzy sets. The IG’s
level of granularization is assumed to be ε(ε ∈ [0, 1]). The granularization level creates
the IG ai0 with a fuzzy set shape by allowing IGs of the given level ε(ε ∈ [0, 1]), which
can be described as shown below, due to ai0, ai1, ai2, . . . , aiN , which represent the data in
each rule’s output space.

G(ai0) =
[
min(ai0(1 − e), ai0(1 + e)), max(ai0(1 − e), ai0(1 + e))] = [ai0

+, ai0
−] = Ai0 (19)

Using the same method, the IGs Ai1, Ai2, . . . , AiN are created by granularizing
ai1, ai2, . . . , aiN , which represent the data in the output space. A general fuzzy granular
model divides the output space uniformly to create triangle-shaped contexts and clusters
in each context. The fuzzy granular model’s output value Y is expressed in context form,
and each fuzzy rule regarding the input xk creates the following IG output:

if xk ∈ Ωi, then Yik = fi(xk, Ai) = Ai0 ⊕ Ai1 ⊗ xk1 ⊕ Ai2 ⊗ xk2 ⊕ . . .⊕ AiN ⊗ xkN (20)

The following method is used to calculate Yk, which is the IG output in context form
that was created based on all fuzzy rules.

Yk = ∑c
i=1 Ωi(xk) ⊕ Yk (21)

where ⊕, ⊗ represent the completed addition and multiplication operations for each IG,
respectively. Figure 6. Presents the structure of the fuzzy granular model.
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3.3. CGK Clustering

CGK clustering is a clustering method that considers the output space. It creates
clusters based on the correlations between the data in the input and output spaces by
considering the output space in conventional GK clustering. It is assumed that there are
data with two features. The data above can be depicted in red and blue according to the
dependent variable. Figure 7. Presents the data with two features.
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Figure 7. Data set with two features in the output space.

Figure 8a presents clusters created via normal GK clustering. In Figure 8a, it can be
observed that the features of the data in the input space were considered when creating the
clusters; however, the features of the output space were not considered. Figure 8b presents
clusters created via CGK clustering that consider the output space. As illustrated in this
figure, clusters are created by considering both the input and output spaces; hence, the
features of the data in the output space can be preserved, and more efficient clusters can
be created than in normal GK clustering. Figure 9. Illustrates the concept of CGK that
considers the output space.
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(b) context-based GK clustering.
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The context regarding the data in the output space can be expressed as expressed
in Equation (22). Here, D denotes the data in the output space. If it is assumed that a
context-shaped IG is adopted for the given data in the output space, fk = T(dk) represents
the degree to which the context created in the output space belongs to the kth data.

D : T → [0, 1] (22)

Fuzzy clustering adopts Euclidean distance to create clusters, while GK clustering
improves upon this by creating clusters with Mahalanobis distance using Equation (11).

Where Ai is a matrix with det(Ai) = ρi, which is a fixed constant for each i. Because
fuzzy clustering uses Euclidean distance, it exhibits excellent performance for only prob-
lems that create circle-shaped clusters. To circumvent this disadvantage, GK clustering
adopts dGK

2(xk, vi) to extend the Euclidean distance of fuzzy clustering, such that clusters
with various geometric shapes can be created, and it allows the distance standard to adapt
to local areas. The objective functions are expressed in Equations (23)–(25).

Jm
GK(µ, v) = ∑n

k=1 ∑c
i=1 µik

mdGK
2(xk, vi) (23)

vi =
∑n

k=1 µik
mxk

∑n
k=1 µik

m (24)

µik =
‖ xk − vi ‖Ai

−2
(m−1)

∑c
j=1 ‖ xk − vj ‖Aj

−2
(m−1)

(25)

Equations (23)–(25) are repeated in each context generated in the output space to create
geometrically-shaped clusters. Below is the sequence in which context-based GK clustering
is performed.

[Step 1] The number of contexts that can be expressed linguistically and the number
of clusters that are created in each context are selected, as well as E. Here, E sets the degree
of the geometric shape, and a value greater than zero must be selected. The membership
function U is initialized with values between zero and one. The numbers of contexts and
clusters can be set to be the same, or they can be set differently.
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[Step 2] Context-shaped IGs with fixed sizes can be created by uniformly dividing
the output space, while context-shaped IGs with different sizes can be created by via a
Gaussian probability distribution.

[Step 3] Equation (24) is adopted to calculate the centers of the clusters in the contexts
in the output space and a membership matrix.

[Step 4] Equations (23) and (26) are adopted to calculate an objective function, and
the aforementioned process is repeated if the calculated value is greater than the previous
objective-function value. Conversely, if the calculated value is less than the previous
objective-function value, the above process ends.

‖ µt − µt−1 ‖ ≤ ε (26)

3.4. CGK-Based Granular Model Design

GK granular models are designed to adopt CGK clustering that considers the output
space, to create context-shaped IGs in the output space and create geometrically-shaped
clusters in each context. Figure 10. presents the structure of a GK granular model in which
three contexts are created in the output space and three clusters are created in each context.
As illustrated in the figure, there are conditional and conclusion variables. The conclusion
variables represent the context-shaped IGs that are created in the output space, while the
conditional variables represent the centers of the clusters that are created in each context,
i.e., IGs that are created in the input space. As mentioned above, a uniform creation method
and a flexible creation method can be adopted to create the contexts in the output space.
The GK granular model’s final output value Y is calculated using Equation (27).

Y = ∑⊕Wt ⊗ zt (27)
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Here, the addition and multiplication symbols ⊕, ⊗ represent the completed addition
and multiplication operations for the IGs, respectively. Fuzzy sets are created during the
process of handling the GK granular model conditions. At this point, the clusters created
via CGK clustering can be represented by the GK granular model’s hidden layer. The
area between the hidden and output layers is expressed as a context that can be described
linguistically. The sum, which is the GK granular model’s final output, can be expressed
using all contexts as expressed in Equation (28):

Y = (z11 ⊗ A1 ⊕ z12 ⊗ A1 ⊕ . . .⊕ z1n1 ⊗ A1) ⊕ (z21 ⊗ A2 ⊕ z22 ⊗ A2 ⊕ . . .⊕ z2n2 ⊗ A2)
⊕ . . . (zc1 ⊗ Ac ⊕ zc2 ⊗ Ac ⊕ . . .⊕ zcnc ⊗ Ac)

(28)

The GK granular model’s final output is expressed as a triangle-shaped context, and it
can be expressed as a fuzzy set:

Yi =
(
yi
−, yi, yi

+
)

(29)

where yi
−, yi, and yi

+ denote the GK granular model’s lower bound, model, and upper
bound values, respectively, and they refer to each of the triangle-shaped context’s points.
The lower bound, model, and upper bound values can be expressed by Equations (30)–(32):

yi
− =

(
z11a1 + z12a1

− + . . . + z1n1a1
−) + . . .

(
zc1ac

− + zc2ac
− + . . . + zcncac

−) (30)

yi = (z11a1 + z12a1 + . . . + z1n1a1) + . . . (zc1ac + zc2ac + . . . + zcncac) (31)

yi
+ =

(
z11a1 + z12a1

+ + . . . + z1n1a1
+
)
+ . . .

(
zc1ac

+ + zc2ac
+ + . . . + zcncac

+
)

(32)

When CGK clustering is performed, the membership matrix U can be expressed as val-
ues between zero and 1, while the membership matrix’s requirements can be expressed as:

U( f ) =
{

eqalignuik ∈ [0, 1] |∑c
i=1 uik = fk ∀ k and 0 < ∑N

k=1 uik < N
}

(33)

Here, the contexts are created by uniformly or flexibly dividing the output space into
fuzzy set shapes. The GK granular model’s structure is as follows. In the input layer, data
is received and enters the GK granular model. The activation layer is the cluster activation
step in which clusters that correspond to the contexts that were created in the output space
are created in the input space. The conditional layer performs conditional clustering in
each context. The activation and conditional layers are connected, and the data information
is adopted in GK clustering when a context is provided. The GK granular model is focused
on the activation and conditional layers. The contexts are connected to the GK clustering
in the conditional layer, and fuzzy sets are created by considering the features of the data
in the input space. A specified number of clusters is created in each context, and the total
number of nodes in the output layer is the same as the number of contexts. The final output
values that are added up in the output layer are represented as a triangle-shaped context.

4. Granular Model Design with a Hierarchical Structure
4.1. CGK-Based Granular Model Design with a Hierarchical Structure

As the number of input variables for a fuzzy system and granular model increase, the
number of rules increase geometrically. Large rule bases have the problem of reducing
the computation efficiency of fuzzy systems and granular models. In addition, they make
it difficult to understand the action of granular models, and complicate the adjustment
of rules and membership functions. The possibility of generalizing fuzzy systems and
granular models with large rule bases is minimized because various prediction-related
fields of application provide limited amounts of data. To resolve these problems, rather
than using a single fuzzy system and a single granular model, it is possible to design
a granular model with a hierarchical structure in which these are mutually connected.
Because the granular model is arranged in a hierarchical tree structure, the tree is called
the hierarchical structure. The output of the low-level granular models in the hierarchical
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structure is adopted as the input for the high-level granular models. Granular models with
hierarchical structures are computationally more efficient than single granular models with
the same number of inputs, and are also designed with a simple structure [50–52].

Hierarchical structures that can be used in various prediction-related fields of applica-
tion include incremental, aggregated, and cascaded structures. Figure 11. Presents each
type of hierarchical structure. In incremental structures, input variables are combined
in several stages, while output values are calculated at several levels. As illustrated in
Figure 11, the granular model GMi

n is built with a 3-stage structure. Here, i is the nth
level’s granular model. In an incremental granular model, when i is one, it means that there
is one fuzzy inference system on each level. The nth level’s ith granular model’s jth input is
called xij

n, while the nth level’s ith granular model’s kth output is called yik
n. When the

input variables on each of the levels of an incremental granular model are selected, their
ranks are determined according to their degrees of contribution to the final output value.
The input variable with the highest degree of contribution is usually used on the lowest
level; conversely, the input variable with the lowest degree of contribution is adopted on
the highest level. In other words, low-rank input values depend on high-rank input values.
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In an aggregate structure, the original data’s input variables are used on the lowest
level, and the output of the low-level granular model that receives each input variable
as the input is inputted in the high-level granular models, and the obtained results are
combined. For example, the granular model GMin

n is built with two stages as, illustrated
in Figure 11. in is the index of the granular model on the nth level. The input variables
in aggregated granular models are grouped for performing specific decision making. For
example, an autonomous robot’s search task combines two tasks: searching while avoiding
collisions with obstacles, and arriving at the goal. To perform the search task, the granular
model adopts input variables related to obstacles. To perform the task of arriving at the
goal, input variables related to the robot’s current position and movement direction are
employed. Aggregated granular models can be modified to design parallel aggregated
granular models that directly add up the outputs of low-level granular models to calculate
their final output.

A cascaded structure is a structure that combines the aforementioned incremental
structure with the hierarchical structure, and it is suitable for systems that include both
correlated input variables and non-correlated input variables. It has a form in which the
correlated input variables are grouped into an aggregated structure and the non-correlated
input variables are added as an incremental structure.
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4.2. CGK-Based Granular Model Design with an Aggregated Structure

This paper presents a design for a granular model that adopts an aggregated structure.
When an aggregated structure is built, rather than using low-level and high-level granular
models, the low level comprises LR (LR) models, neural network models, and radial basis
function networks, and each prediction model’s output is adopts as the input for the
high-level fuzzy granular model to calculate the final output.

An LR model [53] models the linear correlations between input and output variables.
Figure 12 shows the concept of linear regression. Simple linear regression models are based
on explanatory variables, while multiple linear regression models are based on two or more
explanatory variables. Linear regression models estimate unknown parameters in the data.
A linear regression model can be expressed as:

yi = β1xi1 + . . . + βpxip + ei = xi
T β + ei, i = 1, 2, . . . , n (34)

where βi and p denote each independent variable’s coefficient and the number of param-
eters estimated by the linear regression model, respectively. T indicates transposition,
while xi

T β represents the inner product of xi and β. Furthermore, ei is the error term,
and it represents the error variables. This refers to the error between the dependent and
independent variables.
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Neural networks [54] are algorithms that are created with inspiration from biologi-
cal neural networks in cognitive science and machine learning. These models can solve
problems by altering the strength of the connections between synapses via the learning per-
formed by the nodes that constitute the neural network by combining synapses. Figure 13.
Presents the structure of a simple neural network. A simple neural network consists of an
input layer, hidden layer, and output layer. The input layer inputs the data’s input variables
into the neural network, and the number of input variables must equal the number of
input layer nodes. Usually, no calculation is performed in the input layer, and the layer
simply performs the role of passing the values on. The hidden layer is between the input
and output layers. If there are two or more hidden layers, it is called a multi-layer neural
network. The output layer calculates the neural network’s output. To achieve this, it adopts
an activation function that is suitable for the problem to be solved.
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Figure 13. Neural network structure.

A radial basis function network [55,56] is a neural network that adopts a radial basis
function, instead of a sigmoid function, as the activation function in a conventional neural
network structure. Figure 14. Presents the structure of a radial basis function network.
A radial basis function network has a simple structure because there is only one hidden
layer and the form of the output is linear; therefore, weight value calculations can be
performed efficiently.
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The outputs from a linear regression model, neural network, and radial basis function
network are combined and adopted as the input of a high-level fuzzy granular model.
The high-level fuzzy granular model determines the number of contexts created in the
output space and the number of clusters created in the input spaces, and then creates the
IGs. Accordingly, the final output of the hierarchical structure is calculated. Existing fuzzy
granular models are limited in creating meaningful IGs in the input and output spaces
when processing large-scale data, and they have the problem of long computation times.
In contrast, the fuzzy granular model with a hierarchical structure proposed in this study
has the advantages of being able to create meaningful IGs from large-scale data and reduce
processing times by taking the data created by combining the output from the low-level
linear regression model, neural network, and radial basis function network, as well as
adopting it as the input of the high-level fuzzy granular model. Here, if the clustering used
by the granular model is context-based fuzzy clustering, the model is a fuzzy granular
model with a hierarchical structure, and if the clustering is context-based GK clustering,
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the model is a GK granular model with a hierarchical structure. Figure 15. Presents the
structure of a granular model with a hierarchical structure.
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5. Experiment and Results Analysis

To examine the validity of the CGK-based Granular Model (CGK-GM), which is the
method proposed in this study, as well as the CGK granular model with an aggregated
structure (AGM), the experiments were performed through a concrete compressive strength
database [57] which are benchmarking databases used in the field of forecasting. For
convenience in the experiments and the results analysis, the two proposed granular models
are labeled CGK-GM, AGM. The databases used in the experiments are presented as
follows. The concrete compressive strength database was collected by Tsinghua University
in Taiwan, and it comprises 1030 instances and 9 variables. The input variables include the
cement, fly ash, blast furnace slag, water, superplasticizer, coarse aggregate, fine aggregate,
and time. The output variable is the concrete’s compressive strength.

Experimental Method and Results

In this study, the prediction performance of the granular model was evaluated by the
Performance Index (PI) method, which is a performance evaluation method that is suitable
for IGs and granular models, rather than the generally used evaluation methods. As
expressed in Equation (18). The experiment method is presented as follows. Each database
was divided into 50% learning data and 50% validation data, normalized to values between
zero and one and then used in the experiments. The numbers of contexts (P) and clusters
(C) in conventional GM, the proposed CGK-GM, and AGM were increased from 2 to 6 in
increments of 1 during the experiments, while the fuzzification coefficient was fixed at 2.
In addition, the experiments were performed using the uniform and flexible method of
creating contexts.

The following shows the results of the concrete compressive strength prediction
experiment. Table 1 shows the prediction performance of the existing GM that created the
context uniformly, and Table 2 shows the prediction performance of the GM that created
the context flexibly. Figure 16 shows the output value and actual output value of the
existing GM, and Figure 17 shows the performance index value of the existing GM for the
verification data. In Figure 16, the x-axis represents the number of verification data for the
concrete compressive strength, and the y-axis represents the concrete compressive strength
value. The black solid line is the actual concrete compressive strength value, and the red
dotted line shows the output value of the existing GM. As shown in the figure, it can be
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confirmed that the GM output value predicts a large change in the actual output value, but
does not predict a small change. In Figure 17, the x-axis represents the number of clusters
created in the input space, and the y-axis represents the number of contexts created in the
output space. The z-axis shows the performance index values for the verification data. As
shown in the figure, it can be seen that when the number of contexts is 6 and the number of
clusters is 6 when the contexts are created equally, the performance index value is 0.4276,
which is the best.

Table 1. Performance index of GM that created context evenly.

P C 2 3 4 5 6
2 0 0 0 0 0
3 0 0 0 0 0
4 0.3165 0.3175 0.3191 0.3184 0.3191
5 0.4039 0.4184 0.4223 0.4175 0.4204
6 0.4031 0.4136 0.4183 0.4159 0.4276

Table 2. Performance index of GM that created context flexibly.

P C 2 3 4 5 6
2 0 0 0 0 0
3 0.0097 0.0093 0.0097 0.0093 0.0090
4 0.2931 0.2947 0.2953 0.2945 0.2948
5 0.3897 0.3962 0.3962 0.3946 0.3960
6 0.4022 0.4120 0.4183 0.4212 0.4230
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Figure 16. Comparison of the output value of the existing GM with the actual output value (context
is created equally, the number of contexts = 6, the number of clusters = 6).
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Figure 17. GM’s performance index for validation data (context equally generated, number of
contexts = 6, number of clusters = 6).

Table 3 lists the prediction performance of the CGK-GM in which the contexts are
uniformly generated, and Table 4 lists the prediction performance of the CGK-GM in which
the contexts are flexibly generated. Figure 18 shows the output and actual output values of
CGK-GM, and Figure 19 shows the predictive performance of CGK-GM using performance
indicators. As shown in Figure 18, it can be seen that the CGK-GM output value predicts
only a large change in the actual output value, but predicts the actual output value more
similarly than the conventional GM output value. Figure 19. Shows the performance index
values of CGK-GM for the verification data. As shown in the figure, when the number
of contexts is 6 and the number of clusters is 4 when the contexts are equally created, the
performance index value is 0.4700, which is the best.

Table 3. Performance index of CGK-GM that created context evenly.

P C 2 3 4 5 6
2 0 0 0 0 0
3 0.0204 0.0204 0.0204 0.0205 0.0206
4 0.3328 0.3315 0.3308 0.3295 0.3315
5 0.4409 0.4379 0.4350 0.4350 0.4300
6 0.4618 0.4629 0.4700 0.4618 0.4606

Table 4. Performance index of CGK-GM that created context flexibly.

P C 2 3 4 5 6
2 0 0 0 0 0
3 0.0295 0.0241 0.0282 0.0259 0.0233
4 0.3060 0.3070 0.3084 0.3070 0.3052
5 0.4182 0.4254 0.4183 0.4178 0.4162
6 0.4662 0.4640 0.4569 0.4466 0.4449
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Table 5 lists the prediction performance of the AGM in which the context is equally
generated, and Table 6 lists the prediction performance of the AGM in which the context
is flexibly generated. Figure 20 shows the output value and actual output value of AGM,
and Figure 21 shows the predictive performance of AGM using performance indicators. As
shown in Figure 20 it can be confirmed that the output value of AGM similarly predicts the
actual output value with strong nonlinear characteristics. Figure 21 shows the performance
index values of CGK-GM for the verification data. As shown in the figure, when the number
of contexts is 6 and the number of clusters is 4 when the contexts are created equally, the
performance index value is 0.5208, which is the best.

Table 5. Performance index of AGM that created context evenly.

P C 2 3 4 5 6
2 0 0 0 0 0
3 0.0201 0.0204 0.0203 0.0202 0.0203
4 0.3194 0.3221 0.3302 0.3315 0.3295
5 0.4548 0.4587 0.4548 0.4488 0.4637
6 0.5125 0.5149 0.5208 0.5184 0.5196

Table 6. Performance index of AGM that created context flexibly.

P C 2 3 4 5 6
2 0 0 0 0 0
3 0.0481 0.0437 0.0446 0.0391 0.0451
4 0.3071 0.3023 0.3136 0.3187 0.3129
5 0.4344 0.4348 0.4380 0.4471 0.4418
6 0.4884 0.4981 0.4921 0.5074 0.5028
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Figure 21. AGM’s performance index for validation data (context equally generated, number of
contexts = 6, number of clusters = 6).

Table 7 shows the experimental results of concrete compressive strength prediction.
As shown in the table, it can be seen that the existing GM creates the contexts equally and
the performance index value for the verification data is 0.4276 when the context is 6 and
the cluster is 6. In this paper, it was confirmed that the proposed methods, CGK-GM and
AGM, show better prediction performance than the conventional GM when the contexts are
created equally. As an additional experiment, a house price prediction experiment using the
Boston house price database [58] was performed. Table 8 shows the experimental results
of Boston house price prediction. As a result of the experiment, the existing GM created
the context equally in the output space, and when there were 6 contexts and 4 clusters,
a value of 0.5431 was obtained. It was confirmed that the proposed method, CGK-GM,
generates contexts evenly and shows better performance at 0.5502 when there are 6 contexts
and 5 clusters. It can be seen that AGM flexibly creates a context in the output space and
shows better prediction performance than the previous model at 0.5870 when there are
3 contexts and 6 clusters. As a result of conducting an experiment using two databases,
it was confirmed that the shape of the context created in the output space affects the
performance according to the characteristics of the data.

Table 7. Experimental Results of Predicting Concrete Compressive Strength.

Model Types IG Type Num. of Contexts Num. of Clusters Training PI Testing PI

GM Uniform 6 6 0.4311 0.4276

CGK-GM Uniform 6 4 0.4743 0.4700

AGM Uniform 6 4 0.5287 0.5208
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Table 8. Experimental Results of Predicting Boston Home Price.

Model Types IG Type Num. of Contexts Num. of Clusters Training PI Testing PI

GM Uniform 6 4 0.5410 0.5431

CGK-GM Uniform 6 5 0.5476 0.5502

AGM Flexible 6 3 0.5842 0.5870

6. Conclusions

In this paper, we proposed a CGK-based particle model using context-based GK
clustering and a CGK-based particle model with a hierarchical structure. Conventional
fuzzy clustering generates clusters by calculating the distance between the center of the
cluster and each data using the Euclidean distance. However, there is a problem in that
the performance decreases when the data has geometric characteristics. To improve this
problem, GK clustering is used. GK clustering uses Mahalanobis distance to calculate the
distance between the center of the cluster and each data to generate a geometrical cluster.
This paper proposes context-based GK clustering that considers the output space in the
existing GK clustering and creates a cluster that considers not only the input space but also
the output space. Using the proposed CGK clustering, we designed a CGK-based particle
model (CGK-GM) and a CGK-based particle model with aggregated structure (AGM). The
advantages of the proposed CGK-based particle model can be summarized as follows.

First, unlike the existing new network, it is possible to automatically generate an
explanatory meaningful fuzzy IF-THEN rule that can be expressed verbally by generating
information particles in the input space and output space from numerical input and output
data. Second, unlike the existing fuzzy clustering, it is effective to process numerical
input/output databases with geometric features because it is possible to create a geometri-
cal cluster. Third, meaningful information particles with high abstraction values can be
generated by combining the general prediction models, such as linear regression model,
neural network, and radiative basis function neural network, with the CGK-based particle
model proposed in this paper.

To verify the feasibility of the proposed method, an experiment was conducted using
the concrete compressive strength data, a benchmarking database. To evaluate the per-
formance of each particle model, we used a performance index using the scalability and
specificity that we consider when generating rational information particles. As a result of
the experiment, it was confirmed that the proposed methods were superior to the existing
particle models.

In the future, based on the rational information particle generation principle, we plan
to conduct research on generating various types of information particles and optimally
allocating information particles created in the input space and output space.
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