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Abstract: In this paper, a new fractional-order (FO) PIλDµ controller is designed with the desired gain
and phase margin for the automatic rudder of underactuated surface vessels (USVs). The integral
order λ and the differential order µ are introduced in the controller, and the two additional adjustable
factors make the FO PIλDµ controller have better accuracy and robustness. Simulations are carried
out for comparison with a ship’s digital PID autopilot. The results show that the FO PIλDµ controller
has the advantages of a small overshoot, short adjustment time, and precise control. Due to the
uncertainty of the model parameters of USVs and two extra parameters, it is difficult to compute
the parameters of an FO PIλDµ controller. Secondly, this paper proposes a novel particle swarm
optimization (PSO) algorithm for dynamic adjustment of the FO PIλDµ controller parameters. By
dynamically changing the learning factor, the particles carefully search in their own neighborhoods at
the early stage of the algorithm to prevent them from missing the global optimum and converging on
the local optimum, while at the later stage of evolution, the particles converge on the global optimal
solution quickly and accurately to speed up PSO convergence. Finally, comparative experiments of
four different controllers under different sailing conditions are carried out, and the results show that
the FO PIλDµ controller based on the IPSO algorithm has the advantages of a small overshoot, short
adjustment time, precise control, and strong anti-disturbance control.

Keywords: underactuated surface vessels; fractional order PIλDµ controller; course-keeping;
improved particle swarm optimization algorithm; autopilot

1. Introduction

In recent years, the maneuverability of underactuated surface vessels (USVs) has
become a hot topic of ship control [1–5]. An underactuated system is one in which the
number of degrees of freedom of the system is greater than the number of control inputs.
An underactuated system refers to a situation where the dimension of the system control
input vector space is smaller than the dimension of the system’s generalized coordinate
vector space [6]. In the study of ship maneuverability, the effectiveness of ship course
control has a direct impact on ship maneuverability and the safety of navigation at sea. For
vessels at sea, to keep the ship on the expected course, the rudder must be controlled by
a control system to correct for the yaw caused by disturbances. Digital PID rudders are
widely used as course controllers for ships at sea, but they are too sensitive to disturbances
such as wind and waves, which can lead to frequent steering of the rudder. A great deal of
research has been carried out on automatic rudder steering for ships in order to achieve
satisfactory maneuvering performance, and many results have been obtained [7–12]. In [7],
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Le proposed to combine fuzzy logic control with linear control theory for the design of a
ship autopilot controller and used the controller for ship course control, achieving good
control results. In [8], optimal control based on the linear quadratic optimal was proposed
and applied to a ship’s autopilot. In [9], the PSO method for an optimal autopilot PID
controller was designed. In [10], the H∞ controller was solved by the “2-Riccati” equation,
and it was used for the rudder and flap of a ship‘s course under system uncertainty. In [11],
a new robust adaptive nonlinear feedback algorithm based on error-driven function was
proposed, and it was used for ship course-keeping. In [12], an indirect adaptive robust
controller was proposed. First, the parameter estimation law under system uncertainty
was studied for a ship model. Secondly, an indirect adaptive robust controller was applied
for a ship’s heading.

With the continuous improvement of precision control theory, fractional order calculus
theory [13–15] and fractional order PIλDµ controllers [16–18] have been proposed one after
another. In 1999, Podlubny proposed fractional order PIλDµ controllers on the basis of
fractional order calculus theory [16]. Compared with the traditional PID controller, the
introduction of integral order λ and differential order µ makes the PID controller have two
more control parameters, expanding the original “point” control to “surface” control, fur-
ther improving the control accuracy and making the controller more flexible [19–27]. In [19],
a two-degrees-of-freedom planar robot was controlled by an FO PID controller tuned with
particle swarm optimization (PSO) and a genetic algorithm (GA). In [20], an FO PIλDµ

controller was applied to the speed control of subway trains, and optimization studies
were carried out to make the train achieve better speed control and stability. In [21], a new
FO PIλDµ controller was proposed, and a structural transformation method was designed
to obtain the controller parameters, which were used to improve the anti-interference of
the controller. In [22], a special case of fractional-order systems was first investigated,
and on this basis, the FOPD controller and the FOPID controller were designed, which
were used in the control of fractional-order systems to achieve a closed-loop system with
a monotonic amplitude-frequency response. In [23], for a three-link rigid manipulator
system with coupled multiple-input multiple-output characteristics and high nonlinearity,
a fractional-order self-tuned fuzzy PID controller was proposed, which was applied to a
robotic manipulator system and achieved good control results. In [24], an adaptive frac-
tional order PID controller was proposed, which was applied to a photovoltaic grid system.
In [25], an FOPID controller was proposed in a magnetic ball suspension system, and a
modified opposition-based learning technique and the hunger games search algorithm
were used to tune the parameters of the FOPID controller. In [26], an FO PIλDµ controller
was applied to an automatic voltage regulator (AVR), and a self-regulated off-line optimal
tuning method based on the gradient-based optimization algorithm was proposed to tune
the five parameters of the FO PIλDµ controller. Davut Izci proposed an FOPID controller
for a buck converter system and hybrid Lévy flight distribution and simulated annealing
algorithms (LFDSAs), which involved a balanced structure in terms of explorative and
exploitative phases being used to tune the parameters of the FOPID controller [27]. In
addition, some new algorithms were also proposed to optimize the PID [28–34].

In this paper, an FO PIλDµ controller is applied to a ship’s course control. A modified
Oustaloup approximation method is adopted. Given the values of the gain margin Am
and phase margin φm, the parameters of the FO PIλDµ controller are calculated. The
effectiveness of the algorithm is demonstrated by simulations comparing the FO PIλDµ

controller with a PID controller. However, as the FO PIλDµ controller is designed for
ship course control at a rated speed, if the ship speed changes dynamically, the non-linear
model of the ship will also change accordingly, which will result in the original controller
parameters no longer meeting the needs of the ship’s course control and needing to be
recalculated. Therefore, this paper proposes an improved particle swarm algorithm (IPSO)
for dynamic adjustment of the FO PIλDµ controller parameters. By dynamically changing
the learning factor, the particles carefully search in their own neighborhoods at the early
stage of the algorithm to prevent them from skipping the global optimum and converging
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on a local optimum, while at the later stage of evolution, the particles converge on the global
optimal solution quickly and accurately to improve the convergence speed. Comparative
experiments are carried out without wind and wave disturbances and under wind and
wave disturbances. The results show that the FO PIλDµ controller based on the IPSO
algorithm has the advantages of a small overshoot, short adjustment time, precise control,
and strong anti-disturbance control.

2. USV Model
2.1. Ship Motion Model

The movement of a ship has six degrees of freedom (DOF), which represent the
position and direction of the ship’s movement, and therefore six separate coordinates are
required to describe these six degrees of freedom. (x, y, z) represents the position of a ship in
the inertial frame, and the first-order differentiation of (x, y, z) represents the translational
motion along x, y, and z. The first three DOF are surge, sway, and heave. (ϕ, θ, ψ) represents
the direction of a ship, and the first-order differentiation of (ϕ, θ, ψ) represents the rotation
of the ship. The last three DOF are roll, pitch, and yaw [35]. The ship motion description is
shown in Figure 1.

Figure 1. Ship motion model.

Ship maneuvering usually considers only the movement of the ship in the horizontal
plane. For most ship movements and their control problems, it is possible to ignore heave,
pitch, and roll motions, and thus only the sway, surge, and yaw are discussed. Therefore, the
ship motion can be regarded as a plane motion, and the plane motion has only three degrees
of freedom, which further simplifies the research object. The maneuvering mathematical
model of a USV [36] can be written as

.
x = u cosψ− v sinψ
.
y = u sinψ + v cosψ
.
ψ = r

(1)


.
u = m22

m11
vr− d11

m11
u + 1

m11
τu

.
v = −m11

m22
ur− d22

m22
v

.
r = m11−m22

m33
uv− d33

m33
r + 1

m33
τr

(2)

where x and y denote the surge and sway, ψ denotes the yaw angle, u denotes the surge
velocity, v denotes the sway velocity, r denotes the yaw velocity, m11, m22, and m33 are
uncertainty parameters representing the intrinsic and additional masses, d11, d22, and d33 are
also uncertainty parameters, d11 is the surge hydrodynamic damping factor, d22 is the sway
hydrodynamic damping factor, and d33 is the yaw angle hydrodynamic damping factor.
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For simplicity, the high-order nonlinear damping term is ignored. τu is the longitudinal
force of the propeller, and τr is the torque of the propeller.

2.2. Nonlinear Ship Model

The nonlinear ship model is a dynamic system. The rudder angle δ is the input, and
the yaw angle ψ is the output. By capturing the main threads of the ship’s dynamics from
δ→

.
ψ→ ψ, the resulting differential equation retains the nonlinear influences and even

allows the effects of wind and wave disturbances to be converted into a disturbed rudder
angle δD as an input signal that enters the ship’s model together with the actual rudder
angle δ. The responding nonlinear ship model is shown in Figure 2.

Figure 2. Responding nonlinear ship model.

The Norrbin nonlinear model for course control [37] can be derived from the ship
motion maneuvering model in cases where steering is not very frequent:

..
ψ = −a1

.
ψ− a2

.
ψ

3
+ bδ (3)

where ψ and δ are the yaw angle and rudder angle. a1 = αb, a2 = βb, and b = K/T, where K,
T, α, and β are all related to the navigation speed and their values have a large impact on
the accuracy of the simulation model.

3. FO PIλDµ Controller

Fractional order (FO) calculus is essentially an arbitrary-order calculus whose order
can be real or even complex, which is a further extension of integer order calculus. To
improve the accuracy of the PID controller, the differential order µ and the integral order
λ are extended to the real domain to obtain the FO PIλDµ controller, whose differential
equation [16] is expressed as

u(t) = Kpe(t) + KiD−λ
t e(t) + KdDµ

t e(t) (4)

where Dµ
t ≡ c

aDα
t is defined by Caputo and λ > 0 and µ > 0 are any real number and the

order of the FO controller. We can then find the Laplace transform of the FO calculus
defined by Caputo:

L{c
aDα

t f (t)} = sαF(s)−∑n−1
k=0 sa−k−1 f (k)(0) (5)

From Equations (4) and (5), the FO PIλDµ controller transfer function can be obtained:

Gc(s) = Kp +
Ki

sλ
+ Kdsµ (6)

Since the differential µ and the integral order λ are arbitrary positive real numbers, the
PI controller is λ = 1 and µ = 0, the PD controller is λ = 0 and µ = 1, and the PID controller
is λ = 1 and µ = 1.
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Since λ and µ are allowed to take non-integer values, the adjustment range of the
controller parameters is changed from the “point” adjustment of the PID controller in
Figure 3a to the “plane” adjustment in Figure 3b, thus enabling the FO PIλDµ controller to
control the controlled object more flexibly and to obtain better control results.

Figure 3. PID controller and FO PIλDµ controller: (a) PID controller and (b) FO PIλDµ controller.

In order to better study the FO PIλDµ controllers, researchers wish to extend the design
methods of integer-order controllers to FO controllers, which requires approximating the FO
calculus to integer-order calculus. This paper uses an improved Oustaloup approximation
for the FO calculus operator sα to convert it to integer-order calculus [38]. We set the
order to N, where (ωb,ωh) is the fitting frequency range and sα is transformed into an
integer-order transfer function as follows:

sα =

(
dωb

b

)α( ds2 + bsωh
d(1− α)s2 + bsωh + dα

)[1 + s
dωb/b

1 + s
dωh/b

]α

(7)

where 0 < α < 1, b > 0, d > 0, and d = jω. We express the FO part of Equation (7) (i.e.,
K(s)) as a rational transfer function in the form of zeros and poles:

K(s) = lim
N→∞

KN(s) = lim
N→∞

N

∏
k=−N

1 + s/ω′k
1 + s/ωk

(8)

The k zero pole is

ω′k =

(
b
d

) 2k−α
2N+1

ωh
N+k+ 1

2 (1−α)

2N+1 ωb
N−k+ 1

2 (1+α)

2N+1 (9)

ωk =

(
b
d

) 2k+α
2N+1

ωh
N+k+ 1

2 (1+α)

2N+1 ωb
N−k+ 1

2 (1−α)

2N+1 (10)

An FO calculus operator is obtained by constructing a continuous rational transfer
function model:

G(s) = K
(

ds2 + bωhs
d(1− α)s2 + bωhs + dα

)
∏N

k=−N
1 + s/ω′k
1 + s/ωk

(11)

where K = (ωbωh)
α.

4. The FO PIλDµ Controller of a Ship’s Course

4.1. FO PIλDµ Controller Design

The working principle of the FO PIλDµ controller system of a ship’s course is shown
in Figure 4.
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Figure 4. FO PIλDµ control system of a ship’s course.

In Figure 4, the actual course is determined with the compass and compared with the
given course to generate the course deviation, which enters the FO PIλDµ controller. It then
calculates the rudder angle signal to be generated, and the rudder is turned to the required
angle when the rudder receives the command signal to make the ship start to change its
course. The rudder then returns to its zero position, completing the course revision.

In this paper, given the values of the gain margin Am and phase margin φm, the
parameters of the FO PIλDµ controller parameters can be calculated [39]. Starting from the
basic definitions of Am and φm, the dynamically controlled object Gp(s) and the controller
Gc(s) should satisfy the following relationships:

φm = arg
[
Gc
(

jωg
)
Gp
(

jωg
)]

+ π (12)

Am =
1∣∣Gc

(
jωp
)
Gp
(

jωp
)∣∣ (13)

where ωg meets ∣∣Gc
(

jωg
)
Gp
(

jωg
)∣∣ = 1 (14)

and where ωp meets
arg
[
Gc
(

jωp
)
Gp
(

jωp
)]

= −π (15)

By substituting Gc(s) with Equation (6), the following relationship is obtained:

Kp + Ki
cos πλ

2

ωλ
p

+ Kdcos
πµ

2
ω

µ
p = Rmp (16)

Kp + Ki
cos πλ

2

ωλ
g

+ Kdcos
πµ

2
ω

µ
g = Rmg (17)

− Ki
sin πλ

2

ωλ
p

+ Kdsin
πµ

2
ω

µ
p = Imp (18)

Ki
sin πλ

2

ωλ
g

+ Kdsin
πµ

2
ω

µ
g = Img (19)

where
− 1

AmGp
(

jωp
) = Rmp + jImp (20)

−cosϕm − jsinϕm

Gp
(

jωg
) = Rmg + jImg (21)

When the controller is designed, as the controlled object Gp(s) and Am and φm are
known from Equations (16)–(19), the error squared minimization equation is introduced
into the parameter calculation:

J =
∫ ∞

0
e2(t)dt (22)
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Here, ωp, ωg, λ, and µ need to meet the following constraints:(
ω

λ+µ
g −ω

λ+µ
p

)(
Rmp − Rmg

)
+
(

ω
λ+µ
p Imp + ω

λ+µ
g Img

)
cot
(πµ

2
)
+(

ω
λ+µ
p Img + ω

λ+µ
g Imp

)
cot
(

πλ
2

)
−
(

ωλ
p ω

µ
g Imp + ωλ

g ω
µ
p Img

)(
cot πλ

2 + cot πµ
2

)
= 0

(23)

If ωp, ωg, λ, and µ are known, then the parameters Kp, Ki, and Kd are expressed as
follows:

Kp =
[
ωλ

p Rmp −ωλ
g Rmg −

(
ωλ

p Imp −ωλ
g Img

)
cot
(πµ

2

)]
/
(

ωλ
p −ωλ

g

)
(24)

Ki =
ωλ

p ωλ
g

(
ω

µ
g Imp −ω

µ
p Img

)
(

ω
λ+µ
p −ω

λ+µ
g

)
sin
(

πλ
2

) (25)

Kd =
ωλ

p Imp −ωλ
g Img(

ω
λ+µ
p −ω

λ+µ
g

)
sin
(πµ

2
) (26)

4.2. Autotuning of the FO PIλDµ Controller Based on the IPSO Algorithm

However, as the FO PIλDµ controller is designed for ship course control at a rated
speed, if the ship speed changes dynamically, the non-linear model of the ship will also
change accordingly, which will result in the original controller parameters no longer meet-
ing the needs of the ship’s course control and needing to be recalculated. Therefore,
many novel optimization algorithms [40–54] are used to tune the parameters of the con-
troller. This paper proposes an IPSO algorithm for dynamic adjustment of the FO PIλDµ

controller parameters.
The PSO algorithm was originally designed to optimize the unpredictable movement

of simulated flocks of birds. It is an iterative random search algorithm that is easy to
implement, is robust, has good parallel processing capabilities, and is likely to obtain a
global optimal solution [55,56]. However, in the later stages of optimization, the conver-
gence time is long, the accuracy of the optimization is not high, and it easily falls into local
extremes [57–59]. The mathematical description of the PSO algorithm [55,56] is as follows.
We set the population size to N. At the iteration time, the position vector of each particle
in the D-dimensional space is expressed as xi(t) =

(
x1

i , x2
i , . . . , xd

i , . . . , xD
i

)
. The velocity

of each particle in the D-dimensional space is vi(t) =
(

v1
i , v2

i , . . . , vd
i , . . . , vD

i

)
. The optimal

position for the particle i to search thus far is pi(t) =
(

p1
i , p2

i , . . . , pd
i , . . . , pD

i

)
. The optimal

position for all of the particles searched thus far is pg(t) =
(

p1
g, p2

g, . . . , pd
g, . . . , pD

g

)
. The

velocity vi(t) and the position xi(t) of particle i are adjusted at time t + 1 as follows:

vi(t + 1) = ωvi(t) + c1r1(pi(t) − xi(t)) + c2r2

(
pg(t) − xi(t)

)
(27)

xi(t + 1) = xi(t) + vi(t + 1) (28){
vd

i = vmax, i f vd
i > vmax

vd
i = −vmax, i f vd

i < −vmax
(29)

where i = [1, N], ω is the inertia weight and non-negative, learning factors c1 and c2 are
non-negative, and r1 and r2 are pseudo-random numbers that obey a uniform distribution
on [0, 1]. vd

i ∈ [−vmax, vmax], where vmax is a constant. If the search space is in [−xmax, xmax],
one can set vmax = kvmax, where 0.1 ≤ k ≤ 1.0.

From Equation (27), it can be seen that in the PSO algorithm, the particle seeking
performance is related to the learning factors c1 and c2, which are used to regulate the
maximum step size in the direction of motion of the particles pi(t) and pg(t) respectively.
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A small learning factor can make the particles oscillate in the region away from the target,
while a large learning factor can make the particles move rapidly toward the target region
or even move away from the target. The learning factors c1 and c2 reflect the exchange of
information between particle swarms and determine the influence of a single particle and
swarm experience on the particle trajectories. The effect of the values of c1 and c2 on the
search for an optimum is as follows:

• If c1 and c2 are both set to 0, the particle flight velocity will remain constant, making it
impossible to search the entire space;

• If c1 = 0, the particle loses its cognitive ability and easily falls into a local optimum solution;
• If c2 = 0, which leads to a lack of communication and cooperation between particles,

the algorithm will fall into a local minimum, and the probability of obtaining an
optimal solution will become smaller;

• Smaller values for both c1 and c2 result in particles flying away from the target area
and oscillating in that area;

• With larger values for both c1 and c2, particles fly faster toward the target area, and
this may also cause particles to fly away from the target area.

In general, when using PSO algorithms to solve engineering optimization problems,
the goal is to allow the particle in the swarm to perform optimization in the entire search
space at the early stage to avoid the problem of lost local optima. In the later stages of the
search, the goal is to increase the convergence accuracy and algorithm speed, which can
lead to finding the global optimal solution quickly and efficiently. Therefore, the disad-
vantages of traditional methods can be overcome by introducing the dynamic accelerated
learning factors c1 and c2 in the PSO algorithms. The maximum initial value of the learning
factor is set to 2, while c1 and c2 are constructed as functions (i.e., monotonically decreas-
ing and monotonically increasing functions, respectively) with the expressions shown in
Equations (30) and (31):

c1(t) = 2
(

1− e(−t/tmax)
)

(30)

c2(t) = 2e(t−tmax)/tmax (31)

Therefore, the particle swarm velocity update equation is

vi(t + 1) = ωvi(t) + c1(t)r1(pi(t) − xi(t)) + c2(t)r2

(
pg(t) − xi(t)

)
(32)

In the early stages of evolution, if c1 takes a larger value and c2 takes a smaller value,
this will allow the particles to move throughout the search space. In the later stages, if c1
takes a smaller value and c2 takes a larger value, this will increase the convergence rate
toward the optimal solution.

In this paper, two classical benchmark functions (Griewank and Schaffer) are selected
to conduct comparative simulations on the PSO algorithm [31] and the IPSO algorithm
with the dynamic acceleration learning factor, which are used to verify the correctness and
superiority of the IPSO algorithm.

The Griewank function is as follows:

min f (xi) = ∑N
i=1

x2
i

4000
−∏N

i=1 cos
(

xi√
i

)
+ 1 (33)

where xi ∈ [−600, 600]. The function has a local minimal value, the number of which is
related to the dimensions of the problem, with a global minimum of 0, and (x1, x2, . . . , xn) =
(0, 0, . . . , 0) can be obtained. The function is typically a nonlinear multi-modal function
with a wide search space and is often considered a complex multi-modal problem that is
difficult for optimization algorithms to handle.
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The Schaffer function is as follows:

min f (x1, x2) = 0.5 +

(
sin
√

x2
1+x2

2

)2
− 0.5[

1 + 0.01
(
x2

1+x2
2
)]2 (34)

where x1, x2 ∈ [−10, 10]. The function is a two-dimensional complex function with an
infinite number of minimal value points, achieving a minimum value of 0 at (0,0). Since the
function has a strongly oscillatory nature, it is difficult to find a globally optimal solution.
The curves of the Griewank and Schaffer functions when their independent variables are
two-dimensional are shown in Figure 5.

Figure 5. Distribution chart of test functions.

In this paper, the Griewank and Schaffer functions are used to test the performance of
the IPSO algorithm. The parameter settings are shown in Table 1, and the test results are
shown in Figure 6.

Table 1. Parameter settings for different PSO algorithms.

Algorithm Particles
m

Weight
ω

Learning Factors
c1, c2

Maximum
Speed Vmax

Maximum
Iterations Tmax

PSO 20 1 2, 2 1 100

IPSO 20 1 Equations (30)
and (31) 1 100

From the simulations, it can be seen that the test results using the Griewank function
show that the PSO and IPSO algorithms could converge to the optimal solution, but the
number of iterations used to find the optimal IPSO algorithm was significantly smaller
than that of the PSO algorithm. The results of the Schaffer function test show that the PSO
and IPSO algorithms could converge to the optimal solution, but the number of iterations
used to find the optimal solution was significantly smaller for the IPSO algorithm than
for the PSO algorithm. Therefore, it is reasonable to believe that the addition of dynamic
learning factors to the PSO algorithm in the process of finding the best search faster and
with higher convergence accuracy and higher stability to solve the PSO algorithm easily
fell into the local optimum problem.

In this part, the IPSO algorithm is used to autotune the five parameters (Kp, Ki, Kd, λ,
and µ) of the FO PIλDµ controller in Equation (6), which is used for course-keeping of the
USV. The working principal diagram and model of the FO PIλDµ controller with the IPSO
algorithm are shown in Figures 7 and 8.
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Figure 6. Performance comparison of PSO and IPSO algorithms.

Figure 7. FO PIλDµ control system of ship’s course based on IPSO.

Figure 8. Process of IPSO optimizing the FO PIλDµ controller.

The IPSO algorithm is used to autotune the five parameters (Kp, Ki, Kd, λ, and µ) of
the FO PIλDµ control, which is a five-dimensional solution space. Considering the system
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overshoot and the square integral of the control loop error, the equation of the optimization
objective function is as follows:

J = v1

∫ +∞

0
e2(t)dt + v2σ (35)

where e(t) is the systematic error, σ is the system overshoot, and v1 and v2 are weights.

5. Simulations

5.1. FO PIλDµ Controller

The research object used the actual ship data of COSCO’s large container vessel of 5446
TEU, whose parameters are shown in Table 2. Let the ship’s rated speed be V = 19.8 knots =
10.186 m/s (1 knot = 1.852 km/s) and the ship’s nonlinear course model adopt the Norrbin
nonlinear model. Since the ship could be regarded as a large mass object in movement,
the ship’s course control could be regarded as a kind of slow turning movement when
the steering was not very frequent, so Equation (3) could be simplified. The simplified
equation [37] is shown here:

T
·
ψ + ψ = Kδ (36)

Table 2. Structure data of 5446 TEU container vessel.

Structure Value Structure Value

length of ship 280 m length of two columns 267 m
width of ship 39.8 m distance of gravity center 2.64 m

area of Rudder 61.0 m2 square coefficient 0.67
no-load weight 3.5453 M tons full load weight 6.5531 M tons

draft 12.532 m draft with fully load 14.023 m

According to the calculation, the model coefficients K = 0.1955 and T = 255.8837 were
obtained. Am = 1.3, ∅m = π/4, λ = 0.1, and µ = 0.85 for the FO PIλDµ controller were
determined by the system characteristics and practical experience. Then, Kp = 1.4516,
Ki = 1.1355, and Kd = 95.0636 were calculated from Equations (22)–(26), respectively. The
fitting frequency of the modified Oustaloup filtering method (ωb, ωh) chose [0.001, 1000]
and the order N = 5. According to the design method of the PID ship autopilot [37], the Kp,
Ki, and Kd are shown here:

Kp =
Tω2

n
K

, Ki =
Tω3

n
10K

, Kd =
2Tεωn − 1

K
(37)

where ωn is the system’s natural frequency and ε is the system’s relative attenuation
coefficient. Usually, one would have 0.8≤ ε≤ 1.0, ωn = 0.06, and ε = 0.9. From Equation (37),
we could obtain Kp = 4.712, Ki = 0.028, and Kd = 136.243. The FO PIλDµ controller was
applied to the ship’s course, where the maximum rudder angle was restricted from −35◦

to +35◦, and the desired course angle was 30◦ when time was 0–1000 s. The FO PIλDµ

controller and PID controller were compared. The comparison results can be seen in
Figures 9–11 and Table 3.

In the next step, we set the ship’s course angle to change in the following order:
(1) 0 ≤ t ≤ 1000 while setting the desired course angle to ψr(t) = 20◦ and (2) 1000 ≤ t ≤
2000, while setting the desired course angle to ψr(t) = 30◦. The course-tracking curve and
rudder angle curve with the FO PIλDµ controller and the PID controller are shown in
Figures 12 and 13.
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Figure 9. Course-keeping curve with FO PIλDµ controller and the PID controller.

Figure 10. Rudder angle curve with FO PIλDµ controller and the PID controller.

Figure 11. Steady state error curve with FO PIλDµ controller and the PID controller.
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Table 3. Performance of PID and FO PIλDµ controller.

Controller Type Adjust Time ts Rise Time tr Overshoot M Ess

FO PIλDµ 114 75 4.42% 0.002
PID controller 519 71 14.25% 0.007

Figure 12. Course-tracking curves with FO PIλDµ controller and PID controller.

Figure 13. Rudder angle curves with FO PIλDµ controller and PID controller.

By comparing the simulation experiments, it can be seen that the FO PIλDµ controller
had a significantly better control effect than the PID automatic rudder controller proposed
in [37]. The FO PIλDµ controller had the advantages of a small overshoot, short adjustment
time, and accurate control.

5.2. FO PIλDµ Controller Based on the IPSO Algorithm

Since the ship’s nonlinear model parameters changed with the speed, the calculated
FO PIλDµ controller parameters could not meet the dynamic changes of the model’s
parameters. The corresponding nonlinear model’s parameter values for ship course control
at different speeds are shown in Table 4.
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Table 4. Corresponding model parameters under different speeds.

V (knots) K T α β

27.1 0.2676 186.9556 10.4915 7.5343
26.5 0.2617 191.1885 10.7291 8.0578
24.5 0.2419 206.7958 11.6049 10.1966
22.5 0.2222 225.1776 12.6366 13.1644
19.8 0.1955 255.8837 14.3601 19.3172

In the next stage, the objective was to check the self-adjustment of the controller based
on IPSO. The simulation used the Norrbin nonlinear model in Equation (3). The five
parameters of the FO PIλDµ controller were adjusted using the IPSO algorithm for the
ship’s course, and the effectiveness of the algorithm was verified by simulation experiments.
Following the design step of the FO PIλDµ controller, the fitting frequency of the Oustaloup
filtering method (ωb, ωk) was [0.001,1000] and N = 5. The population size was set to
50. The maximum number of the birds’ steps was 50. The particle dimensions were 5,
meansing [Kp, Ki, Kd, λ, µ], and the initial values of c1 and c2 were set at 2. The inertia
weight was set to 0.9. Four different control strategies were used for the ship’s course,
which were the PID controller [37], the PID controller based on the PSO algorithm [9], the
FO PIλDµ controller based on the GA algorithm [19], and the FO PIλDµ controller based
on the IPSO algorithm. The ship’s speed increased from V = 19.8 knots to V = 24.5 knots at
a constant speed, the maximum rudder angle was restricted from −35◦ to +35◦, and the
desired course angle was 30◦ when the time was 0–1000 s. The comparison results can be
seen in Figures 14 and 15 and Table 5.

Figure 14. Course-keeping curves without disturbance.

Table 5. Performance of four different controllers.

Controller Type Adjust Time ts Rise Time tr Overshoot M Ess

IPSO-FOPID (proposed) 103 103 0.03% 0.005
PSO-PID 416 67 31.16% 0.024

PID 519 71 14.25% 0.007
GA-FOPID 163 65 9.53% 0.086

Meanwhile, wind and wave disturbances have been the main causes of yawing of
ships when they are sailing at sea. In this design, wind and wave disturbances were
introduced into the system, which verified the robustness. The disturbances used white
noise to drive a typical second-order oscillation. The wave model [60] obtained under the
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effect of a force-six wind is that of Equation (38), and the simulation curve is shown in
Figure 16.

h(s) =
0.4198s

s2 + 0.3638s + 0.3675
(38)

Figure 15. Rudder angle curves without disturbance.

Figure 16. The output curve of wind and wave disturbances.

Four different control strategies were used for a ship’s course under wind and waves,
and the results can be seen in Figures 17 and 18.

It can be seen from Figures 17 and 18 that the FO PIλDµ controller based on the
IPSO algorithm had a significantly better control effect than the automatic rudder PID
controller, the PID controller based on the PSO algorithm, and the FO PIλDµ controller
based on a GA algorithm. The FO PIλDµ controller based on the IPSO algorithm had the
advantages of a small overshoot, short adjustment time, accurate control, and strong wind
and wave resistance.
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Figure 17. Course-keeping curves under wind and wave disturbances.

Figure 18. Rudder angle curves under wind and wave disturbances.

6. Conclusions

This paper proposed two methods for an FO PIλDµ controller for USV course control.
First, this paper proposed an FO PIλDµ controller based on frequency domain specification,
which used a desired gain margin and phase margin to meet the performance requirements
of the ship’s course control. The simulation results showed that the FO PIλDµ controller
had the advantages of a small overshoot, short adjustment time, and precise control over
the automatic rudder PID controller. However, if the ship’s speed changed, the ship’s
nonlinear course model would change. The parameters of the FO PIλDµ controller no
longer met the needs of course control. Secondly, the FO PIλDµ controller based on the IPSO
algorithm was proposed for USV course control. To address the influence of the learning
factor on the search speed of the particles in the solution space, this paper constructed a
particle swarm optimization algorithm with a time-varying learning factor. In the initial
stage of optimization, the particles had a stronger self-learning ability and weaker social
learning ability to strengthen the global search ability. In the later stage, the particles had a
stronger social learning ability and weaker self-learning ability to facilitate convergence at
the global optimum. Comparative experiments were carried out without wind and wave
disturbances and with wind and wave disturbances. The results show that the FO PIλDµ

controller based on the IPSO algorithm had the advantages of a small overshoot, short
adjustment time, precise control, and strong anti-disturbance control. The controller output
was subjected to wind and wave interference, and the control object itself changed due
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to certain factors. It could also overcome these effects and had a strong robustness. The
control performance was better than that of the three other controllers, and it was easy to
modify the existing PID-type automatic rudder while having a high promotion value.

In light of the effectiveness of the FO PIλDµ controller based on the IPSO algorithm,
more improvements need to be studied in future. An interesting aspect for future study
is how to combine an FO PIλDµ controller with other intelligent algorithms (e.g., neural
networks, Lévy flight distribution, the Nelder–Mead algorithm, and fuzzy control) and
apply them to a ship’s course control to further verify the superiority of the FO PIλDµ

controller in ship course control. Another aspect which needs to be studied involves the
use of FO PIλDµ controllers for a ship’s trajectory control.
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