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Abstract: The discrete element method (DEM), a discontinuum-based method to simulate the inter-
action between neighbouring particles of granular materials, suffers from intensive computational
workload caused by massive particle numbers, irregular particle shapes, and complicated interaction
modes from the meso-scale representation of the macro information. To promote the efficiency of
the DEM and enlarge the modelling scales with a higher realism of the particle shapes, parallel
computing on the graphics processing unit (GPU) is developed in this paper. The potential data race
between the computing cores in the parallelisation is tackled by establishing the contact pair list with
a hybrid technique. All the computations in the DEM are made on the GPU cores. Three benchmark
cases, a triaxial test of a sand specimen, cone penetration test and granular flow due to a dam break,
are used to evaluate the performance of the GPU parallel strategy. Acceleration of the GPU parallel
simulations over the conventional CPU sequential counterparts is quantified in terms of speedup.
The average speedups with the GPU parallelisation are 84, 73, and 60 for the benchmark cases.

Keywords: discrete element method; graphics processing unit; parallel computing; triaxial test; cone
penetration test; dam break

1. Introduction

The discrete element method (DEM), a discontinuum-based method proposed by Cun-
dall and Strack [1], is capable of simulating the interaction between neighbouring grains
directly. The discontinuous nature allows the DEM to tackle large deformations of the ma-
terial, avoiding the potential mesh entanglement and the necessary re-meshing procedures
in the mesh-based methods [2–4]. Particular meso-scale phenomena (such as force network
and coordinate number distribution), depending on the sizes, shapes, and cohesion of the
grains, can be better captured with the DEM over the conventional RVE (representative
volume element)-based methods and possibly also the experimental measurements [5–8].
Averaging techniques were developed to characterise the macro-scale information (such as
density, velocity, strain, and stress) from the meso-scale representations, which make the
DEM results comparable to those of the continuum-based models and the laboratory exper-
iments [9–11]. In recent decades, the DEM has been applied to investigate a wide range
of geotechnical problems, such as soil-structure interaction [12–17], particle breakage [18],
shear localization [19–21], and the dense flow of sand [22–24], relating the micromechanics
of particle interaction and the overall granular behaviour. A more comprehensive descrip-
tion of the DEM developments and their applications can be found in References [25–27],
among many others.

The DEM has been increasingly used in scientific investigations, while its application
in industry is much less commonplace. The reason for this is mainly that the number of
particles, in reality, tends to overwhelm the computation power provided by the processing
devices [28,29]. Therefore, the particle sizes of the prototype were exaggerated on the
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basis of similarity theory, which was previously used in centrifuge tests [30–32]. However,
the grading of realistic sand usually spans many orders of magnitude, which means
the voids created by the large particles need to be filled by massive volumes of fine
particles [33–35]. Then, in the DEM models, a relatively narrow particle distribution
has to be adopted, especially for three-dimensional simulations. Another limitation in
the existing DEM simulations is that the realistic particle shapes were over-simplified
as analytical shapes, spheres [36], clumps [37] and polyhedra [38]. These simplifications
seem to be acceptable for quartz sand, but apparently not for calcareous sand [39,40].
The more complex idealisation of particle shapes requires more computation efforts due
to the complicated contact algorithm. Accurate representation of the particle size and
shape is critical to the modelling results, and hence, needs to be calibrated prior to the
simulations [41]. Unfortunately, a majority of the existing DEM simulations ignored this
procedure and were based on assumptions of input parameters without justification.

To promote the efficiency of the DEM and enlarge the modelling scales with higher
realism of the particle shapes, parallel computing on the central processing unit (CPU)
or graphics processing unit (GPU) has been explored by a limited number of researchers.
References [42–44] developed single-CPU parallel algorithms using a loop-based parallel
library OpenMP with a shared memory. Yan and Regueiro [45] presented a multiple-CPU
parallel framework with a message passing interface on a distributed memory platform. In
comparison with most commercially available CPUs, GPUs feature more dedicated cores
in the processor, lower thread-scheduling cost and higher memory bandwidth; as such,
they are ideal for arithmetically intensive and highly parallel computations. Currently,
most GPU parallelisation is implemented using the ‘compute unified device architecture’
(CUDA) [46], which provides a friendly platform for coding in languages, such as C++
and Fortran [47–50]. Govender et al. [51] performed an industrial-scale analysis of mill
charges with more than eight million polyhedron particles using a GPU-parallelised DEM
code. Due to the differences in architectures between the CPU and GPU, DEM codes
developed for the conventional CPU calculations need to be specially tuned to be efficiently
parallelised on GPUs.

The main bottleneck in parallelising the DEM is the potential data race between the
computing cores writing to the common memory address concurrently for the creation
of a contact pair list of particles. Gao et al. [17] utilised atomic operations to update the
particle list in the material point method by taking advantage of modern graphics hard-
ware features, whose complication excludes most developers from their implementation.
Govender et al. [51] established a cell-based hash list for the neighbouring particles, in
which extra overhead is taken on sorting the particles by their distances to the origin.
Nishiura et al. [52] placed each individual particle into a specific cell with very fine mesh,
which often means a heavy memory requirement for a large-scale model along with its
simplicity. The technique to update the particle list is vital to the acceleration effect of the
parallel framework. In this paper, a new hybrid technique to establish the contact pair list is
presented, which combines the advantages of the methods developed by References [51,52].
A GPU-parallel framework of the DEM is presented with all the computations taken on
the GPU cores. Three benchmark cases, the triaxial test of a sand specimen, the cone
penetration test and sand flow due to dam break, are used to evaluate the performance
of the GPU parallel strategy. Acceleration of the GPU parallel simulations over the CPU
sequential counterparts is quantified in terms of speedup.

2. Parallelisation of DEM
2.1. DEM Algorithm

The GPU-parallelised computing program DEM-GeoFluidFlow, developed in this
study, was coded in C++ on the Windows operating system. To focus on the parallel
algorithm itself, soft balls were considered for modelling the granular materials with the
novel aspects of the DEM algorithm, such as rolling resistance, mass scaling effect, novel
contact strategy, and irregular particle shapes, being ignored.
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Consider an assembly of N particles. The inherent properties carried by Particle
i are radius Ri, mass mi, moments of inertia Ii, positions Xi, translational velocities vi,
translational accelerations ai, angular velocities ωi and angular accelerations

.
ωi. The

dynamic behaviour of the granular materials is obtained by solving the governing equations,
i.e., Newton’s second law of motion, for individual particles. In each incremental step, the
following essential procedures are performed.

2.1.1. Calculate Contact Forces

A contact pair list between connected particles (also particle-wall) is updated prior to
the essential calculation of the contact forces, which will be detailed in the following section.
Assume Particle i is in contact with Particle j with a distance dij. The overlap between the
two particles will be (Figure 1)

Uij = (Ri + Rj − dij)/2 (1)
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The normal direction from Particle i to j is:

nij = (Xj − Xi)/dij (2)

The normal force imposed on Particle i from Particle j is:

Fn
ij = −KnUijnij (3)

where Kn is the normal stiffness at contact. Calculation of the shear force is more compli-
cated. The relative velocity of Particle j to Particle i is:

∆Vij =
(
Vj − ωj × nij

)
−
(
Vi + ωi × nij

)
(4)

Then the shear component of the relative velocity can be derived as:

∆Vs
ij = ∆Vij −

(
∆Vij·nij

)
nij (5)

The corresponding shear force occurring over an incremental step of ∆t is:

∆Fs
ij = Ks∆Vs

ij∆t (6)
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where Ks is the shear stiffness at contact. The new shear contact force is calculated by
summing the old shear force Fs

ij,old at the start of the timestep by considering the transition
of the contact plane [53,54].

Fs
ij =

{
Fs

ij

}
rot,2

+ ∆Fs
ij (7){

Fs
ij

}
rot,1

= Fs
ij,old − Fs

ij,old × nold
ij × nij (8)

{
Fs

ij

}
rot,2

=
{

Fs
ij

}
rot,1

−
{

Fs
ij

}
rot,1

×
[

1
2
(
ωi + ωj

)
·nij

]
nij∆t (9)

where nold
ij is the old normal direction from Particle i to Particle j at the previous incremental

step. The widely used slip model is adopted to allow for mutual slip between particles by
limiting the shear force values. The frictional force is adjusted by:

Fs
ij = Fs

ij

min
(
µ
∣∣∣Fn

ij

∣∣∣, ∣∣∣Fs
ij

∣∣∣)∣∣∣Fs
ij

∣∣∣ (10)

Then the total force at Particle i from Particle j is:

Fij = Fn
ij + Fs

ij (11)

and the moment is:
Mij = nij × Fs

ij (12)

2.1.2. Update Kinematic State of Particles

The kinematic state of each particle, i.e., translational and rotational motions, is deter-
mined by the resultant force and moment from the surrounding particles. The translational
motion of a particle is described by the position Xi, velocity Vi, and acceleration ai. The
rotational motion is expressed as angular velocity ωi, and angular acceleration

.
ωi. The

translational and angular accelerations can be calculated by:

ai = ∑ Fij/mi + g − α
∣∣∣∑ Fij + g

∣∣∣sign(Vi)/mi (13)

.
ωi = ∑ Mij/Ii − α

∣∣∣∑ Mij

∣∣∣sign(ωi)/Ii (14)

where Σ represents a summation over all neighbour particles that needs a sophisticated
contact detection algorithm and will be detailed in the sequel; the second term is to consider
the local damping effect with coefficient α [1]; g is the gravitational acceleration. Then the
velocities can be updated as:

Vnew
i = Vi + ai∆t (15)

ωnew
i = ωi +

.
ωi∆t (16)

The timestep ∆t for a linear contact model can be determined by:

∆t = β
√

mmin/Kn (17)

where β is a coefficient, mmin is the minimum mass of the particles, and the position of the
particle is updated as:

Xnew
i = Xi + Vi∆t (18)

2.2. GPU Parallelisation of “Calculate Contact Forces”
2.2.1. Naїve Algorithm

The connection network (Figure 2a) between the neighbour particles must be sorted
out before the essential calculation of contact forces. There have been various contact
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detection schemes for specific application purposes, of which the most popular ones are
adopted in this study. The descriptions of other schemes, such as the nearest-neighbour
scheme and the sweep and prune scheme, can be found in References [55–58]. A simple but
“naїve” algorithm is used to check each particle against every other in a nested loop, as in
Algorithm 1, which takes the total number of manipulations of O(N2). The naїve algorithm
would be very time-consuming, even with a small number of particles [59].

Algorithm 1 “naїve” algorithm.

1: For i = 0 to N-1
2: For j = i + 1 to N
3: If distance(i, j) < Ri + Rj
4: Particles i and j in contact
5: end
6: end
7: end
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2.2.2. Advanced Scheme

The advanced scheme can be divided into two phases: neighbour searching and
exact contact detection. The neighbour searching phase roughly identifies the potential
neighbours of each particle and constructs a potential contact pair list, while the exact
contact detection phase accurately calculates the overlaps between particles through naїve
detection. The efficiency of the contact detection schemes is mainly dependent on the
neighbour searching phase by excluding the unconnected particles from the potential
contact pair list. Particularly, the computational domain is divided into a grid of cells
(Figure 2a), each of which accommodates a number of particles. An individual particle may
be in contact with another one sharing a common cell or in neighbouring cells. Then the
computational cost of contact detection is proportional to the average number of particles
in the neighbour cells nc. In Algorithm 2, the total number of manipulations is O(Nnc),
which is much less than in the naїve algorithm.

Algorithm 2 Neighbour cell scheme.

1: For i = 0 to N
2: Check Xi
3: Add Particle i into particle list of Cell c
4: End
5: For i = 0 to N
6: Check Xi, then know:
7: Neighbour cells of Particle i
8: For particles in neighbour cells
9: “Naїve” detection
10: End
11: End

To evaluate the distribution of the workload across the procedures, a sequential CPU
simulation of a triaxial test was performed with a total of 3920 particles (the first scenario in
Table 1, which will be detailed later). As the naїve algorithm is used, more than 99.6% of the
computational effort is allocated to the contact detection operations. With the neighbour
cell contact detection scheme adopted, the computational efficiency is promoted around
44 times. The establishment of the contact pair list takes about 11.6% of the total runtime,
while the essential contact force calculation accounts for 69.2%. The “Update kinematic state
of particles” operations occupy 19.2% of the total computational efforts. Trivial runtime is
allocated to other manipulations, such as the movement of wall and save old state variables.

Table 1. Speedups of CPU and GPU parallel simulations in triaxial test cases (10,000 incremental
steps, d50 = 3.2 mm).

Number of
Particles

D/d50
CPU Sequential CPU Parallel

(10 Threads)
GPU Parallel

(Double-Precision)

Runtime (s) Runtime (s) Speedup Runtime (s) Speedup

3920 25 618 144 4.3 19 33

7840 31.5 2248 500 4.5 49 46

15,680 40 6072 1265 4.8 76 80

31,360 50 13,047 2558 5.1 150 87

100,880 72 40,375 7764 5.2 475 85

250,880 100 115,593 21,810 5.3 1409 82

501,760 126 333,600 60,655 5.5 3879 86

1,003,520 158 666,298 118,980 5.6 8328 80

2,007,040 200 1,399,226 249,861 5.6 16,461 85

4,997,600 316 3,464,750 607,850 5.7 40,287 86
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2.2.3. Hybrid Scheme

A hybrid scheme to detect the contact pair list is developed here, which follows
the two-step framework of the advanced algorithm (Figure 3). In the first phase of the
contact detection operations, the computational domain is divided into a grid of coarse
cells. The sorting of particles into each cell can be parallelised across the GPU threads over
the particles. However, a data race may be induced at the common cell that is shared by
neighbouring particles: the result of writing different particle IDs (i.e., 1 . . . N) concurrently
into a common memory address is unexpected. Therefore, an expanded particle list of each
cell is adopted by further dividing the coarse cell into a number of finer ones (Figure 2b).
Each fine cell corresponds to a specific memory address of the particle list of a coarse cell
and accommodates only one particle or less. That means the data race can be avoided
by writing the particle IDs into different memory addresses of the particle list, which is
determined by the coordinates Xi of the particles (as in Algorithm 3, where Nc is the total
number of the coarse cells). The size of the fine cells should be smaller than 2Rmin to
avoid accommodating more than two particles in one fine cell, where Rmin is the minimum
radius of the particles. The expanded particle list is sparse due to a large number of empty
spaces, which means a heavy memory requirement. An additional compression step is then
performed to obtain a dense particle list. The potential contact pair list will be updated in
a number of incremental steps, in between which the particles would not cross different
coarse cells. The number of incremental steps to regenerate the contact pair list can be
determined by trial calculations and empirical predictions.
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At the second phase, the essential contact force on each particle is calculated by
checking all the particles in its neighbour coarse cells, which is parallelised across the
GPU threads over the particles. For a specific particle i, it may be in contact with all the
particles in its range of Ri + Rmax, where Rmax is the maximum radius of the particles.
Therefore, we construct the coarse cells with a uniform size of 2Rmax and all the particles in
27 neighbouring cells for three-dimensional analysis are involved in the calculations. For
each contact pair of particles, Equations (1)–(12) are used to calculate the contact forces
between the particles.
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Algorithm 3 GPU parallelisation of ‘Calculate contact forces’.

1: For i = 0 to N (divided by threads)
2: Check Xi, based on configuration of fine cells, then:
3: Put Particle i to its position in the expanded particle list of Cell c
4: End
5: For c = 1 to Nc (divided by threads)
6: Compress the expanded particle list
7: End
8: For i = 1 to N (divided by threads)
9: Check Xi, then know:
10: 27 Neighbour cells of Particle i
11: For particles j in neighbour cells
12: Equations (1)–(12)
13: End
14: End

2.3. GPU Parallelisation of “Update Kinematic State of Particles”

The procedure “Update kinematic state of particles” in Equations (13)–(18) is straight-
forward; to be parallelised across the GPU threads over the particles (Figure 3), i.e., the
update of the velocities and accelerations of each particle is scheduled into a thread (as
in Algorithm 4). The required information, such as the contact forces and old velocities,
is in terms of the particular particle in each thread and is not dependent on any variable
on other threads. Therefore, there is no risk of a data race as in the procedure “Calculate
contact forces”.

All of the calculations in Equations (1)–(18) are expected to be parallelised on the GPU to
maximise the speedup of the GPU parallelisation. The variables were copied from the CPU
memory to the GPU counterpart prior to the calculations. The GPU memory spaces include
the global, register, and local memories. The variables transferred between the most functions,
such as the masses, velocities, and momenta at the particles, were allocated to the global
memory; therefore, they can be accessed directly by the executed GPU threads. The temporary
variables, such as the local coordinates of particles in the cells, were stored on the register
memory of each thread. The local memory serves as the backup of the register memory; once
the register memory is fully occupied, the temporary variables are automatically allocated to
the local memory. In comparison to CPU parallelisation, GPU parallelisation is more sensitive
to memory access patterns. To achieve a high memory read/write bandwidth, the access to
the global memory on each thread should have coalesced. Therefore, parallelisation of the
procedure “Update kinematic state of particles” is more efficient, as its threads write variables
to the global memory in a consecutive sequence.

Algorithm 4 GPU parallelisation of ‘Update kinematic state of particles’.

1: For i = 0 to N (divided by threads)
2: Equations (13)–(18)
3: End

3. Performance Evaluation

Three benchmark cases, the triaxial test of a sand specimen, cone penetration test and
sand flow due to dam break, were used to evaluate the performance of the GPU parallel
computing strategy. The parallel computing was conducted on a workstation with a GPU
NVIDIA GeForce Titan V and a 6-core (12-thread) CPU Intel i7-6850K with a frequency of 3.6
GHz. On the GPU, a maximum of 3840 cores were available, and the global memory was 12
GB. For comparison purposes, the benchmark cases were simulated with a single-CPU core,
multiple-CPU cores (OpenMP) and a single-GPU (CUDA), respectively, with a well-tuned
code on each platform. All the simulations were using double-precision numbers as single-
precision seems to be insufficiently accurate to describe the tiny particles with a radius of less
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than 0.1 mm [60]. A “speedup” factor for the whole incremental step or each operation within
the incremental step is used to quantify the effect of parallel computing, expressed as:

Speedup = TSequential/TParallel (19)

where TSequential and TParallel represent the average runtimes of CPU sequential and CPU
or GPU parallel calculations per increment.

3.1. Triaxial Test

The micro characteristics of the granular material are often calibrated using the triaxial
element test by comparing the macro response of the samples. Simulation of triaxial tests
was performed to evaluate the performance of the GPU parallel strategy. A cylindrical
element of a standard sand specimen, with a height H of 8 cm and a diameter D of 4 cm,
was modelled and enclosed by smooth boundary walls, as shown in Figure 4a. The Fujian
standard sand—a marine sand—with the particle size distribution shown in Figure 4b, was
considered. In order to reduce the computing time, particle diameters in the simulations
were scaled up to 7.5 times the real sand particles, which were represented as d10 = 2.4 mm,
d50 = 3.2 mm and d90 = 5 mm. The uniformity coefficient was Cu = d60/d10 = 1.57 (well
sorted). The initial void ratio was 0.592. Therefore, a total of 3920 spheres were generated
and randomly distributed, corresponding to the characteristic ratio D/d50 as 12.5. Given
the real particle sizes are used, more than 1,650,000 particles would be required. The density
of the particles was 2643 kg/m3. The self-gravity of the particles was not considered. The
normal and tangential stiffness (Kn, Ks) were taken as 300 MPa and 200 MPa, respectively,
and the friction coefficient was 0.5. A local damping ratio of 0.7 was used to accelerate the
equilibrium process. A confining pressure of 300 kPa was imposed prior to the loading
procedure through a servo system on the boundary walls. The under-compaction method
was adopted to prepare a homogenous specimen [61], then the specimen was loaded with
the top and bottom plates moving inward at a velocity of 1 cm/s (i.e., a strain rate of 12.5%),
while the confining pressure in the lateral direction was maintained.

The stress–strain curves from the CPU and GPU computations are shown in Figure 5a.
Considering the uncertainty due to the relatively small particle numbers, the predictions
with different tools agree well with each other. The derivative stress converges to a critical
value of 320 kPa. Figure 6 presents the transient velocity, the accumulative displacement,
and the force chains on the particles at an axial strain of 6.2%. Another sequential CPU
analysis using the widely used software package Particle Flow Code in 3 Dimensions
(PFC3D) was also performed, and the results agree well with the CPU and GPU curves at
the plastic stage of deformation, which verifies the accuracy of the tools developed in this
study. An average runtime of 618 s was consumed in the CPU sequential calculations for
10,000 incremental steps, in which around 78% of the efforts were taken over the procedure
“Calculate contact forces”, and 22% over the procedure “Update kinematic state of particles”.
As 10 threads were invoked in the CPU parallel computation, a speedup of 4.3 was obtained
over the CPU sequential calculation (Table 1). In comparison, the GPU parallelisation
accelerates the computations 33 times over the CPU calculations using a single thread. In
particular, the speedups of the GPU parallelisation for the procedures “Calculate contact
forces” and “Update kinematic state of particles” are 26 and 272 (Table 2), respectively.

Then, the ratio of the specimen diameter to the mean particle diameter, D/d50, was
increased from 25 to 31.5, 40, 50, 72, 100, 126, 158, 200 and 316 by enlarging the model sizes
to increase the computational scale, while the aspect ratio H/D of the specimen remained
as 2; the corresponding particle numbers increased from 3920 to 7840, 15,680, 31,360,
100,880, 250,880, 501,760, 2,007,040 and 4,997,600. Theoretically, the space of the global
memory (12 GB) of the GPU used in this study is capable of accommodating particles up to
27,000,000, for which the total runtime to finish an integrated case would be unacceptably
long. Therefore, the maximum number of particles was kept below 5,000,000 as the concern
of many geotechnical problems. The loading velocity remained at 1 cm/s. The stress–strain
curves obtained with 31,360 and 250,880 particles present better convergence and stability
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(Figure 5b). The average runtime of the CPU sequential simulation in 10,000 incremental
steps was investigated for a comparison with the CPU and GPU parallel simulations. For
the CPU sequential calculations, the runtime is nearly linearly proportional to the number
of particles (Table 1). The CPU parallel simulations were also performed using the OpenMP
with up to 10 cores. The speedups of the CPU parallel simulations increase with the number
of CPU cores (see Table 1 and Figure 7a). The maximum speedup with 10 threads is 5.7.
With more CPU threads mobilised, the acceleration efficiency wanes, which is due to the
overhead on the scheduling manipulations.
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The significant reduction in runtimes by the GPU parallel strategy is clear. The speedup
increases to less than 31,360 particles; if the computational scale is enlarged further, the
GPU runs with a full load, and the improvement presents a good scaling behaviour and
gradually stabilises to an average speedup of 84 (Figure 7b). The total runtime for the whole
simulation process within an axial strain of 20% is proportional to the square of D/d50, e.g.,
8.3 h for D/d50 = 50 (31,360 particles) and 18.75 h for D/d50 = 75 (100,880 particles), and
that for D/d50 = 158 (1,003,520 particles) is estimated as 75 h. However, for the real Fujian
sand with d10 = 0.32 mm, d50 = 0.43 mm and d90 = 0.67 mm, the runtime is further increased
by the leap of an incremental step. Therefore, the total runtimes for a standard sample with
H = 8 cm and D = 4 cm accommodating 1,650,000 real sand grains is extrapolated to be
more than 92 days, which remains unacceptable for quantitative analysis of the real sand.
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Therefore, compromising techniques, such as decreasing the particles’ stiffness, expanding
the particle sizes and mass scaling, may remain necessary.

The performance of the GPU parallel computing varies between the two computational
procedures, which are listed in Table 2. The efficiency of the procedure “Update kinematic
state of particles” is enhanced tremendously with speedups of more than 150. In contrast,
the acceleration effect of the “Calculate contact forces” procedure is much less, mainly due
to the low arithmetic intensity in the operations. The overhead on updating the contact
pair list accounts for about 15% of that on the whole “Calculate contact forces” procedure.
The acceleration effect of the GPU parallelisation can be influenced by various factors, e.g.,
the size of the coarse cells and the number of empty cells. To accommodate all the potential
connecting particles, the coarse mesh needs to be larger than 2Rmax. Given that a larger
coarse mesh size is used, the cell number reduces and the particle number in each cell
accordingly increases (Figure 8). The speedup increases from 82 to 123 with the coarse mesh
size varying from 2Rmax (0.005 m) to 4Rmax (0.01 m), and then its value decreases with a
coarse mesh larger than 4Rmax. For consistency purposes, the coarse mesh size remained
as 2Rmax in the following simulations. The speedups can be undermined by the existence
of empty cells, which means some GPU threads are idle in the calculations. The influence
of the empty cells can be roughly estimated by the ratio of the number of empty cells to
engaged ones.
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Table 2. Speedups of GPU parallel calculations for the procedures in triaxial test cases.

Number of
Particles

Calculate Contact Forces between Particles Update Kinematic State of Each Particle

CPU Sequential GPU Parallel Speedup CPU Sequential GPU Parallel Speedup

3920 482 18.5 26 136 0.5 272

7840 1900 47 40 348 1.8 193

15,680 5478 73 75 594 3.3 180

31,360 11,764 144 82 1283 5.9 217

100,880 36,404 455 80 3971 20 198

250,880 107,312 1369 78 8281 40 210

501,760 316,020 3784 83 17,580 95 185

1,003,520 627,622 8070 78 38,676 258 150

2,007,040 1,326,887 16,291 81 72,339 425 170

4,997,600 3,273,441 39,280 83 191,309 1007 190
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3.2. Cone Penetration Test

A series of cone penetration tests of Ticino sand in a virtual calibration chamber were
performed using the DEM code PFC3D [62,63], which were simulated in this study for
comparison. The chamber was a cylindrical container with a height H of 0.7 m and a
diameter D of 1.2 m. The cone had a diameter dc of 71.2 mm, and its tip had an angle of
60◦, as shown in Figure 9a. The cone tip and frontal section of the shaft with a length of
0.1 m had a friction coefficient of 0.35.
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The grain size distribution of the Ticino sand is shown in Figure 9b, which was scaled
by a factor of 50 and represented as d10 = 18 mm, d30 = 22 mm, d50 = 26 mm, d70 = 32 mm,
and d90 = 40 mm. The uniformity coefficient was Cu = 1.61 (well sorted). Therefore, a total
of 65,000 particles were initialised, corresponding to the characteristic ratios D/d50 = 46
and dc/d50 = 2.74. The boundary effect from the container could be eliminated with the
sufficiently large value of D/d50, while the penetration resistance will fluctuate due to
the relatively low value of dc/d50. Using the real particle sizes in reality, there would be
more than 8,125,000,000 particles involved, which would overwhelm the computational
capacity. The initial void ratio was 0.66. The density of the particles was 2643 kg/m3. The
self-gravity of the particles was not considered. The normal and tangential stiffness of
the particles were taken as 300 MPa and 75 MPa, respectively, and the friction coefficient
was 0.35. A local damping ratio of 0.7 was used to accelerate the equilibrium process. The
specimens were created to the target void ratio using the radius expansion method under
a confining pressure of 100 kPa. In the penetration operations, the cone penetration was
driven at a rate of 0.1 m/s.

The key measurable quantity for the cone penetration test is the cone factor f c, which
is the force measured at the cone surface divided by the cone area. The DEM predictions
with different particle numbers are shown in Figure 10, in which the raw vibrating curves
are fitted using an equation [63]:

fc = a[1 − exp(−bw)] (20)

where a and b are the fitting coefficients; w is the penetration depth. The value of a characterises
the ultimate bearing capacity of the cone below a particular depth. The prediction of a in this
study is 1.25, which is higher than that obtained by Butlanska et al. [63] of 1.17 for 7%, which
is mainly attributed to the inaccuracy of the DEM algorithm itself.
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Smaller particle sizes were adopted with the ratio dc/d50 modified to 3.45, 5.5, 11,
22 and 55, making the particle numbers increase to 150,000, 520,000, 1,001,000, 2,002,000
and 4,881,200. The fitted value of a by the DEM using 150,000 particles (1.21) is similar
to the fitted a with 65,000 particles (1.25), both of which are much higher than the value
with 540,000 particles (0.6). Fewer fluctuations occur in the resistance profile using more
particles. The comparison hints that an obvious scale effect exists in the cone penetration
test relating to the value of dc/d50. The scenario with smaller particles is not simulated in
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this study, as the focus here is on the parallel effect. The scale effect in the cone penetration
test has been studied by References [64,65]. The transient velocity and the force chain of the
particles around the cone with dc/d50 = 3.45 (65,000 particles) are shown in Figure 11. The
average runtimes in 10,000 incremental steps were compared between the CPU sequential,
CPU parallel, and GPU parallel simulations (Table 3). The speedups for the GPU parallel
simulations are relatively stable, implying that the GPU cores are running under full loads.
The maximum speedup of the CPU parallel simulations with 10 threads is 5.0, which is
much less than the average speedup of 73 with the GPU parallelisation (Figure 12). The
average speed up for the cone penetration tests is close to that for the triaxial tests with a
difference of around 15%. Therefore, it is expected that the GPU parallelisation accelerates
the three-dimensional simulations by about 80 times. However, the current single-GPU par-
allelisation is not sufficient for the real-sized simulation of the cone penetration element test,
with more than 8,125,000,000 particles involved, which will be even more particles for the in
situ cone penetration tests for geotechnical investigations. Calibration of scaled numerical
models of the cone penetration test with the real-sized physical ones is then necessary.
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Table 3. Speedups of CPU and GPU parallel simulations in cone penetration test cases (10,000
incremental steps).

Number of
Particles dc/d50 D/d50

CPU
Sequential

CPU Parallel
(10 Threads)

GPU Parallel
(Double-Precision)

Runtime (s) Runtime (s) Speedup Runtime (s) Speedup

65,000 2.74 46 16,918 3525 4.8 236 72

150,000 3.45 58 35,336 7362 4.8 476 74

520,000 5.5 92 179,411 36,615 4.9 2347 76

1,001,000 11 184 373,927 76,312 4.9 5125 73

2,002,000 22 368 748,954 149,790 5.0 9981 75

4,881,200 55 920 1,852,845 370,569 5.0 25,798 72
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3.3. Two-Dimensional Dam Break

A planar granular runout induced by a dam break was carried out by instantaneously
releasing a sand pile along a smooth bed, which initially had a height H of 0.2 m and a
length L of 0.2 m (Figure 13). The particle size distribution was d10 = 1.4 mm, d30 = 2 mm,
d50 = 3 mm, d70 = 3.4 mm and d90 = 4 mm. A total of 4000 particles were initially gener-
ated. Before the release of the dam, the uniform packing of sand particles was initially
consolidated under their own self-weight, obtaining a height of 0.172 m and a void ratio
of 0.28. The density of the particles was 2643 kg/m3. The normal and tangential stiffness
were taken as 50 MPa and 20 MPa, respectively, and the friction coefficient was 0.5. A local
damping ratio of 0.7 was adopted. Verification of the code in this study was performed
by comparing the runout morphologies with those using PFC3D (Figure 13). The velocity
field and force chains of the particles at 50 s are shown in Figure 14. The average runtimes
in 10,000 steps are 20 s and 6 s for the CPU- and GPU-parallel computations, respectively,
which are much smaller than those for the three-dimensional cases with 144 s and 19 s for
counterparts in the triaxial test case with 3920 particles. This is the reason for the wide
application of two-dimensional simulations of the DEM.
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The model heights were then increased to 0.28, 0.448, 0.632, 1.264, 2.528, 3.576, 5.056,
and 7.152, while the aspect ratio H/L of the specimen remained as 1. The corresponding
particle numbers increased to 8000, 20,000, 40,000, 160,000, 640,000, 1,280,000, 2,560,000,
and 5,000,000. The average runtimes in 10,000 incremental steps were compared between
the CPU sequential, CPU parallel and GPU parallel simulations (see Table 4). The speedups
by the CPU parallelisation are relatively stable, varying between 4.4 and 4.8. With the
GPU parallelisation, the speedup increases for less than 40,000 particles as the GPU cores
are not fully loaded, which then stabilises around 60. The average speedup of the GPU
parallelisation for the two-dimensional (60) (Figure 15) scenario appears to be lower than
that for the three-dimensional ones (84 and 73), which hints that the three-dimensional
simulations have higher computational intensity and better parallelisability. Particularly for
the largest model with 1,280,000 particles in this study, the average runtime in 10,000 steps
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is around 378 s, which means that the GPU parallelised two-dimensional DEM can be used
to simulate large-scale problems with better consideration of the real shape and size of the
particles. The granular runout with 1,280,000 particles was terminated at 25 s, with the
runout morphology shown in Figure 16. The simulation took 5,270,000 incremental steps
and a physical runtime of 55 h.

Table 4. Speedups of CPU and GPU parallel simulations in dam break cases (10,000 incremental steps).

Number of
Particles

H/d50
CPU Sequential CPU Parallel

(10 Threads)
GPU Parallel

(Double-Precision)

Runtime (s) Runtime (s) Speedup Runtime (s) Speedup

4000 67 89 20 4.4 6 15

8000 93 200 45 4.4 8 25

20,000 150 398 88 4.5 7 57

40,000 210 756 164 4.6 12 63

160,000 424 2814 611 4.6 47 60

640,000 848 11,217 2386 4.7 193 58

1,280,000 1,200 22,311 4648 4.8 378 59

2,560,000 1700 46,019 9587 4.8 742 62

5,000,000 2400 90,159 18,783 4.8 1502 60
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4. Conclusions

The discrete element method (DEM), a discontinuum-based method to simulate the
interaction between neighbouring particles of granular materials, has a very high com-
putational intensity raised by the meso-scale representation of the macro information. A
GPU-based parallel technique was developed to boost the computational efficiency of the
DEM and allow a higher realism of the particle shapes. The computations were performed
fully on the GPU cores with a platform of the computer unified device architecture (CUDA)
rather than on the CPU cores as in the conventional calculations. The potential data race
between the computing cores in the parallelisation was tackled by establishing a contact
pair list with a hybrid technique, which was further optimised with better parallelisability.

Compared with the sequential CPU simulations, significant speedups of 84, 73 and 60,
were obtained in the benchmark cases, triaxial test of a sand specimen, cone penetration
test and granular flow due to a dam break, respectively. Higher speedups were gained for
the parallelisation of the procedure “Update kinematic state of particles” (~150) than that
of the “Calculate contact forces” procedure (~80). The influence of the coarse mesh size and
empty cells on the parallelisation effect was also investigated. For the three-dimensional
analysis, the real-sized sand grains remain unacceptable for quantitative analysis due
to the very long runtimes of the whole computation process. Therefore, compromising
techniques, such as increasing the particles’ stiffness, expanding the particle sizes and mass
scaling, may remain necessary. In comparison, simulations with a particle size of an order
of millimetre were allowable, with a case of 1,280,000 particles completed in 55 h.
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