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Abstract: To achieve a comprehensive understanding of a three-dimensional (3D) wind field and the
speed-up phenomenon in a downburst wind flow over a 3D hilly terrain, a succession of laboratory
tests utilizing 12 hill models with cosine-squared cross-section was conducted using a physical
downburst simulator with a jet diameter of 0.6 m. By placing the models in the strong horizontal
wind region and the strong vertical wind region, the corresponding wind profiles for both the
horizontal and vertical velocities were measured. It was found that the wind flowed predominantly
over the crest of the hill in the case of low hills, whereas wind flow around the hill body became
increasingly pronounced as the hill height increased. In addition, the speed-up region, where the
horizontal wind velocity exceeds the impinging jet velocity, was identified, and found to move from
the crest to the two sides of the hill as the hill height increased. Accordingly, the most significant
topographic multipliers of all locations on the hill might appear at the crest, the hill foot, or elsewhere,
depending largely on the hill height. Among all cases, the maximum topographic multiplier was 1.12,
and occurred at the ridge, while the ratio of hill height to jet height was 5/12. Additionally, empirical
equations are presented to facilitate the determination of wind loads induced by a downburst flow
over an isolated hill.

Keywords: downburst; hilly terrain; wind-tunnel test; three-dimensional wind field; topographic
multiplier

1. Introduction

Downbursts, resulting in a high near-ground wind velocity, are recognized as a pri-
mary factor in most transmission tower collapse events [1,2], and have received much
attention in wind engineering. Figure 1 shows several collapsed transmission towers,
erected on hilly terrain, due to a severe downburst event in Shaoxing, China. In addition,
concerns regarding downburst-induced wind loadings on other structures that are vul-
nerable to winds, e.g., long-span bridges [3] and rail overhead lines [4], have also been
raised recently. Considering downburst effects on structures erected on islands, hills, or
mountains, a large number of studies [5–13] utilizing various idealized hill models have
been conducted in the past decades, and have reached a consensus that the aerodynamic
interference of hilly terrain leads to a speed-up phenomenon, which a priori increases the
risk of structural failure. Nonetheless, Abd-Elaal et al. [5] recently emphasized that the
effects of topography on downburst wind fields require further research, as most studies
have been limited to two-dimensional (2D) topographic features, and the changes in the
vertical downburst wind speed component are not well understood.
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Figure 1. Collapses of transmission towers following a downburst. 

To the best of the authors’ knowledge, no field measurement-based study has been 
performed to examine the effects of hilly terrain on a downburst wind field from the per-
spective of wind engineering. Moreover, in terms of wind profile, which is a factor in de-
termining wind loadings on structures, the relevant field test results are limited and scat-
tered in the literature. The earliest study of downburst phenomena can be traced back to 
the pioneering work of Fujita [14,15], who named the downburst and reported an impres-
sive wind record in a downburst event near Washington, DC, during which the peak ve-
locity reached 67 m/s at 4.9 m above the ground [16]. Choi [17] investigated variation in 
wind velocity with height during a thunderstorm event in Singapore, and documented 
that the measured wind profiles matched the results from the impinging jet model. Using 
the data of the Joint Airport Wind Shear (JAWS) Project, Hjelmfelt [18] presented the ring 
vortex structure of the downburst flow, and pointed out that the outflow was found to 
resemble the impinging jet model in terms of wind profiles. Chen and Letchford [19] re-
ported the full-scale vertical profiles of full-scale nonstationary downburst wind speeds 
via seven evenly deployed towers at the Reese Technology Center, Texas, USA, and found 
that the time function for the time-varying mean speed is significantly different from 
event to event. Additionally, using data collected via Doppler radars, Gunter and 
Schroeder [20] showed the evolution of the mean wind profile from a uniform to an im-
pinging jet shape. 

In contrast, substantial laboratory tests and numerical simulations, most of which are 
based on an impinging jet model, have been conducted to reveal insights into hilly terrain-
disturbed downburst wind fields. Note that the impinging jet model conventionally em-
ployed for these studies makes it difficult to reproduce the dynamic characteristics of 
downbursts, particularly the ring vortex [16]. Selected experimental results and numerical 
simulation results from the literature are tabulated in Table 1, where Djet and h are the jet 
diameter and the jet height of the downburst, respectively; H, and ϕ = H/2Lu are the height 
and the representative slope of the terrain, respectively; Lu is the horizontal distance from 
the crest to the site with altitude of H/2; rh is the horizontal distance from the crest to the 
stagnation point of the downburst; and Mt,max is the topographic multiplier for the maxi-
mum velocity amplification [9,10]. In the table, for the studies in which the maximum of 
Mt,max is not declared, the data are read directly from the relevant figures, which may lead 
to the existence of a small inevitable error. The studies show that the speed-up phenome-
non becomes increasingly significant as the hill height decreases. In addition, most studies 
were concerned with 2D terrains, and the scattered research examining three-dimensional 
(3D) terrain were limited to measuring the wind fields along ridges in the radial direction, 
which might lead to an underestimation of the 3D effects of the terrain, namely the 
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To the best of the authors’ knowledge, no field measurement-based study has been
performed to examine the effects of hilly terrain on a downburst wind field from the
perspective of wind engineering. Moreover, in terms of wind profile, which is a factor in
determining wind loadings on structures, the relevant field test results are limited and
scattered in the literature. The earliest study of downburst phenomena can be traced
back to the pioneering work of Fujita [14,15], who named the downburst and reported an
impressive wind record in a downburst event near Washington, DC, during which the peak
velocity reached 67 m/s at 4.9 m above the ground [16]. Choi [17] investigated variation
in wind velocity with height during a thunderstorm event in Singapore, and documented
that the measured wind profiles matched the results from the impinging jet model. Using
the data of the Joint Airport Wind Shear (JAWS) Project, Hjelmfelt [18] presented the ring
vortex structure of the downburst flow, and pointed out that the outflow was found to
resemble the impinging jet model in terms of wind profiles. Chen and Letchford [19]
reported the full-scale vertical profiles of full-scale nonstationary downburst wind speeds
via seven evenly deployed towers at the Reese Technology Center, Texas, USA, and found
that the time function for the time-varying mean speed is significantly different from event
to event. Additionally, using data collected via Doppler radars, Gunter and Schroeder [20]
showed the evolution of the mean wind profile from a uniform to an impinging jet shape.

In contrast, substantial laboratory tests and numerical simulations, most of which
are based on an impinging jet model, have been conducted to reveal insights into hilly
terrain-disturbed downburst wind fields. Note that the impinging jet model conventionally
employed for these studies makes it difficult to reproduce the dynamic characteristics of
downbursts, particularly the ring vortex [16]. Selected experimental results and numerical
simulation results from the literature are tabulated in Table 1, where Djet and h are the
jet diameter and the jet height of the downburst, respectively; H, and φ = H/2Lu are the
height and the representative slope of the terrain, respectively; Lu is the horizontal distance
from the crest to the site with altitude of H/2; rh is the horizontal distance from the crest
to the stagnation point of the downburst; and Mt,max is the topographic multiplier for the
maximum velocity amplification [9,10]. In the table, for the studies in which the maximum
of Mt,max is not declared, the data are read directly from the relevant figures, which may
lead to the existence of a small inevitable error. The studies show that the speed-up
phenomenon becomes increasingly significant as the hill height decreases. In addition,
most studies were concerned with 2D terrains, and the scattered research examining three-
dimensional (3D) terrain were limited to measuring the wind fields along ridges in the
radial direction, which might lead to an underestimation of the 3D effects of the terrain,
namely the maximum speed-up, which may also occur on the sides of the hill, if the hill is
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sufficiently high. Moreover, studies of the changes in the vertical wind velocity are rather
rare, even though vertical wind, which can lead to a skewed wind effect on structures,
features in the downburst wind field. Recently, Abd-Elaal et al. [5] stated that hilly terrain-
disturbed vertical wind could reach half the impinging jet speed, and there is a need to
investigate transmission-line systems subjected to vertical winds.

Table 1. Selected topographic multipliers in the literature.

Reference Djet h/Djet Terrain ** φ H/Djet rh/Djet
Maximum of Mt,max

Method
Value Location

Selvam et al. [6] 900 m 2.98 E (2D) 0.25 0.044 1.29 / Crest CFD
Wood et al. [8] 0.31 m 2.00 E (2D) 0.5 0.129 1.5, 2.0 0.96–1.22 * Crest CFD
Mason et al. [9] 0.104 m 2.00 E, TH, BH (2D) 0.2, 0.5 0.024,0.048 1.0, 1.5 1.09–1.26 Crest CFD

Mason et al. [10] 1000 m, 3000 m 0.67, 2.00 BH, BE (2D) 0.2–1.0 0.017- 0.100 0.75–1.75 1.00–1.71 Crest CFD
Abd-Elaal et al. [5] 0.75 m 3.50 E, TH (2D) 0.2 0.048 1.74 1.19, 1.21 Crest CFD

Fang et al. [12] 0.60 m 2.00 E(3D) 0.25–0.5 0.125–0.250 1.5 0.9–1.0 * Crest CFD
Letchford et al. [7] 1.225 m 0.72 E (3D) 0.2–0.6 0.082 1.0, 1.4 1.08–1.33 * Crest Test

Wood et al. [8] 0.31 m 2.00 E (3D) 0.5 0.129 1.5, 2.0 0.98–1.11 * Crest Test
Mason et al. [9] 0.104 m 2.00 E, TH, BH (3D) 0.2, 0.5 0.048 1.0 1.10–1.24 Crest Test

Ji et al. [11] 0.40 m 3.00 CH (3D) 0.58 0.5 1.8, 2.8 0.80 *, 1.02 * Hill foot Test
Fang et al. [12] 0.60 m 2.00 E (3D) 0.25–0.5 0.125–0.250 1.5 0.9–1.1 * Crest Test

* Mt,max is computed via the data read directly from the relevant figures. ** “E”, “BE”, “BH”, “TH”, and “CH”
indicate that the terrains investigated were escarpment, bell-shaped escarpment, bell-shaped hill, triangular hill,
and cosine-shaped hill respectively.

In this paper, a succession of 3D hill models with a cosine-squared cross-section are
employed for laboratory tests using a physical downburst simulator. The hilly terrain-
disturbed downburst wind field is measured, in terms of the horizontal and the vertical
wind velocities. By using the test results of a downburst wind flow over a flat surface,
the spatial distributions of the topographic multiplier for the maximum horizontal wind
velocity are investigated, in terms of contour maps. Accordingly, the effects of the hill size
and the hill position on the wind profiles and the speed-up region are analyzed. Finally,
for the benefit of future structure design, empirical formulas are presented that enable the
calculation of wind loads induced by horizontal and the vertical winds, respectively, taking
into account the location of the structure, and the effects of the hill features.

2. Experimental Setup

As shown in Figure 2a, the laboratory tests were conducted by using a physical
downburst simulator in Zhejiang University. The impinging jet consists of four parts: a
fan, a diffuser, a settling chamber, and a contraction unit [21]. In the tests, the jet diameter
Djet was 0.6 m; the jet height h, from the ground to the nozzle, was set to be two times
the jet diameter; r denotes the radial horizontal distance from the stagnation point. The
temperature of the downdraft was the same as the indoor ambient temperature, ranging
from 6 to 14 ◦C. A Cartesian coordinate system for the hill was employed and is illustrated
in Figure 2b, with the origin set at the center of the hill bottom face, and where x and
y are the orthogonal horizontal coordinates. Without loss of generality, the x-axis of the
hill coincided with the radial direction of the jet flow. A cosine-squared cross-section was
adopted to represent an idealized axisymmetric hill [22], in the form of

z(x, y) =
{

H cos2(π
√

x2 + y2/2L),
√

x2 + y2 < L
0,

√
x2 + y2 ≥ L

(1)

where L is the radius of the bottom face of the hill and z is the altitude of the point on the
hill surface. Accordingly, Equation (1) yields L = 2Lu. Moreover, a local coordinate, Z, is
used to denote the relative height from the surface of the hill. A total of 12 hill models, with
parameters tabulated in Table 2, were employed in the laboratory tests to investigate the
effects of the height, size, and location of the hill on the wind field above the hill. The hill
models can be classified into two categories, namely the hill models with L = 0.5Djet and
those with L = 1.0Djet. The hill models were made from rigid extruded polystyrene foam
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board. Assuming a scale of 1:1000 and an average vegetation height of 2.0 m, the vegetation
was simulated by gluing 2 mm long plastic fibers onto the surface of the hill models (see
Figure 3), according to previous work by Shen et al. [22], and the surface roughness of the
hill models was approximately the same for all models. Figure 3 shows the hill models with
the simulated vegetation. To examine the strong horizontal wind region, the hill models
were first placed at three locations for the experimental study, namely rh = 0.8Djet, 1.0Djet,
and 1.2Djet. For the next part of the test, the hill models were placed at rh = 0.0Djet, where a
strong vertical wind would occur.
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Table 2. Dimensions of hill models.

Hill Model H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

H (m) 0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
L (m) 0.3 0.3 0.3 0.3 0.3 0.3 0.6 0.6 0.6 0.6 0.6 0.6
H/L 1/3 2/3 1.0 4/3 5/3 2.0 1/6 1/3 1/2 2/3 5/6 1.0

Appl. Sci. 2022, 12, x FOR PEER REVIEW 5 of 24 
 

  

(a) (b) 

Figure 3. Photos of hill models: (a) L = 0.5Djet; (b) L = 1.0Djet. 

The Cobra Probe [23] produced by Turbulent Flow Instrumentation Pty Ltd. was em-
ployed to measure the wind velocity field of the downburst. The Cobra Probe is a 4-hole 
pressure probe that provides dynamic, 3-component and local pressure measurements in 
real-time. The Cobra Probe features a linear frequency-response from 0 Hz (mean flow) to 
more than 2000 Hz and is available in various ranges for use between 2 m/s and 100 m/s. 
In addition, 3-component velocity and static pressure measurements within a ± 45° ac-
ceptance cone can be performed. The measurement accuracies of the velocity and the flow 
angle are ±0.3 m/s and ±1°, respectively. 

Taking advantage of symmetry, the wind velocity profiles at 21 measuring locations 
were measured. Figure 4a shows the measuring locations at the hill foot (0.0H), ridge 
(0.25H, 0.5H, 0.75H), and crest (1.0H), respectively. In this study, the ridge is defined as 
the profile of the hill model, where the crest and the hill foot are excluded, as shown in 
Figure 4b. The measuring locations were arranged at the ridges of the x-axis, y-axis, 45° 
ray, and 135° ray, respectively, namely at the ridges whose projections on the x–y plane 
coincide with the x-axis, y-axis, 45° ray, and 135° ray respectively. The 45° ray and 135° 
ray are the closed half-lines in the x–y plane, whose initial points are at the origin of the 
coordinate system for the hill, having the clockwise angles of 45° and 135° respectively 
from the positive direction of the x-axis. For each measuring location, the arrangement of 
the measuring points in a vertical line were the same. For illustration, the relative heights 
of the measuring points for P2 are shown in Figure 4b. 

  

(a) (b) 

Figure 4. Layout of measuring locations and measuring points: (a) measuring location; (b) measur-
ing points for measuring location of P2. 

To determine the jet velocity for the tests, a preliminary study on the effects of the 
Reynolds number (Re) was performed in advance. The Reynolds number can be com-
puted according to the formula Re = VjetD/ν, where Vjet is the jet velocity, D is the 

Figure 3. Photos of hill models: (a) L = 0.5Djet; (b) L = 1.0Djet.

The Cobra Probe [23] produced by Turbulent Flow Instrumentation Pty Ltd. was
employed to measure the wind velocity field of the downburst. The Cobra Probe is a 4-hole
pressure probe that provides dynamic, 3-component and local pressure measurements
in real-time. The Cobra Probe features a linear frequency-response from 0 Hz (mean
flow) to more than 2000 Hz and is available in various ranges for use between 2 m/s and
100 m/s. In addition, 3-component velocity and static pressure measurements within a
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± 45◦ acceptance cone can be performed. The measurement accuracies of the velocity and
the flow angle are ±0.3 m/s and ±1◦, respectively.

Taking advantage of symmetry, the wind velocity profiles at 21 measuring locations
were measured. Figure 4a shows the measuring locations at the hill foot (0.0H), ridge
(0.25H, 0.5H, 0.75H), and crest (1.0H), respectively. In this study, the ridge is defined as
the profile of the hill model, where the crest and the hill foot are excluded, as shown in
Figure 4b. The measuring locations were arranged at the ridges of the x-axis, y-axis, 45◦

ray, and 135◦ ray, respectively, namely at the ridges whose projections on the x–y plane
coincide with the x-axis, y-axis, 45◦ ray, and 135◦ ray respectively. The 45◦ ray and 135◦

ray are the closed half-lines in the x–y plane, whose initial points are at the origin of the
coordinate system for the hill, having the clockwise angles of 45◦ and 135◦ respectively
from the positive direction of the x-axis. For each measuring location, the arrangement of
the measuring points in a vertical line were the same. For illustration, the relative heights
of the measuring points for P2 are shown in Figure 4b.
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Figure 4. Layout of measuring locations and measuring points: (a) measuring location; (b) measuring
points for measuring location of P2.

To determine the jet velocity for the tests, a preliminary study on the effects of the
Reynolds number (Re) was performed in advance. The Reynolds number can be computed
according to the formula Re = VjetD/ν, where Vjet is the jet velocity, D is the characteristic
length equal to the radius of the curvature at the crest, and ν = 1.45×10−5 m2/s is the
kinetic air viscosity at 15 ◦C. Four hill models, namely H1, H6, H7, and H12 were selected
for the preliminary study. The hill models were placed at the position of rh = 1.0Djet, and
the jet velocity was varied as follows: Vjet= 4, 6, 8, 10, and 12 m/s. Figure 5 shows the
corresponding wind profiles of the horizontal wind velocity at the crest, as well as those
at the hill foot lying on the 135◦ ray. Similarly, the hill models were placed at the position
of rh = 0.0Djet and the jet velocity was varied, as described above. Figure 6 depicts the
corresponding profiles of the vertical wind velocity at the crest. Note that any measured
velocities of less than 2 m/s might be inaccurate, due to the limited sensitivity of the Cobra
Probe. For example, in Figure 6, the points where Vh/Vjet < 0.2 on a curve with a jet
velocity of 10 m/s might be questionable. It was found that for the same hill model, the
variation in the Reynolds number due to changes in the jet velocity had negligible effects
on both the horizontal and the vertical wind velocities, since the wind profiles almost
coincide. Accordingly, considering both the requirements of the Cobra Probe and the
capacity of the downburst simulator, Vjet= 12 m/s was employed in the following tests,
and the corresponding Reynolds numbers are summarized in Table 3.
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Table 3. Reynolds numbers for hill models (Vjet = 12 m/s).

Hill Model H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Re 150,934 75,467 50,311 37,733 30,187 25,156 603,735 301,867 201,245 150,934 120,747 100,622

3. Results and Discussion

To facilitate the design of structures erected on a hill, the resultant horizontal wind
velocity, U, as a function of Z, is herein utilized for the analysis of the wind field. To
characterize the speed-up phenomenon, the topographic multiplier for the maximum
velocity amplification [9,10], Mt,max, is utilized herein, in the form of

Mt,max =
max[Utopography(Z)]

max[Uflat(Z)]
(2)

where the subscripts “topography” and “flat” represent the hilly terrain and the flat surface,
respectively. The test results for the downburst wind flow over a flat surface without vege-
tation (undisturbed downburst, see Figure 7) show that the maximum Uflat is about 1.0Vjet,
which is similar to the findings of previous studies [24–28]. The Mt,max values greater than
1.0 indicate a strong horizontal wind occurring at that location with an intensity greater
than the maximum found during an undisturbed downburst. Note that the traditional
speed-up ratio, which is defined as the ratio of the wind velocity of a hilly terrain-disturbed
atmospheric boundary layer (ABL) wind to that of an undisturbed ABL wind at the same
height, cannot account for the speed-up of a downburst wind flow over hilly terrains,
because the wind profiles of the undisturbed downburst wind vary with the distance from
the stagnation point, in contrast to the invariant wind profile in the undisturbed ABL wind.
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3.1. Horizontal Wind Velocity

For illustration, the downburst wind flows over the hill models with L = 0.5Djet and
rh = 1.0Djet are first discussed. Figures 7–9 show the profiles of the horizontal velocity at
different measuring locations. For the same location, the corresponding profiles in the
undisturbed downburst wind field where the wall jet thickness δ is about 0.15Djet are
also depicted in the figures. It is evident that the horizontal wind velocity varies with
the relative height from the ground/hill surface. For convenience, we herein define “the
global maximum” as the highest value for the entire wind field over the hill, and “the
maximum” as the highest value for the same measuring location simultaneously measured
at the different relative heights from the hill surface.
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Regarding the horizontal wind on the x-axis ridge, as shown in Figure 7, it was found
that the effects of the hill with a low height (H/h = 1/12) were relatively small in terms
of the shape of the wind profile, as well as the location where the maximum horizontal
wind velocity occurred (around 1.0Djet). The predominant factor in determining the
variation in the wind profile was the distance from the stagnation point. However, provided
H/h > 1/12, the increase in H/h was found to reduce the intensity of the horizontal wind
in general. It was also observed that the near-ground maximum horizontal wind velocity
decreased correspondingly with the increase in the hill height. In the cases of H/h > 1/3,
the wind velocities measured at the crest were even lower than those measured near
the windward hill foot. This may be attributed to the blockage effect caused by the hill
becoming increasingly significant as the height of the hill increased, weakening the intensity
of the downburst wind flow over the crest. The speed-up phenomenon on the x-axis ridge
was only observed in the case of the hill with low elevation (H/h = 1/12), and occurred
near the crest of hill, with a corresponding Mt,max of 1.07Vjet. Furthermore, it was found
that the horizontal wind velocities measured on the windward side were generally greater
than those measured on the leeward part.

The wind profiles on the y-axis ridge are shown in Figure 8. At the hill foot with a
radial distance of roughly r = 1.12Djet, the wind intensity became relatively stronger. The
maximum wind velocity at the hill foot was a little greater than the impinging jet velocity.
However, regardless of the hill height, the wind profiles measured at the hill foot were
generally similar, which implies that the hill height had a negligible effect at this location.
For the hills with H/h > 1/6, it was found that the horizontal wind velocity was significantly
decreased along the ridge, implying that the blockage effect was pronounced. Furthermore,
corresponding with the increase in the hill height, the maximum wind velocity decreased.
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If H/h ≤ 1/6, the speed-up phenomenon could be observed along the whole ridge, and the
maximum topographic multiplier was found at z = H/4 with a value of 1.08Vjet.

In Figure 9, the profiles of the horizontal wind velocity on the 45◦-ray ridge (leeward
side), as well as that on the 135◦-axis ridge (windward side), are depicted. Generally, the
wind velocities on the 135◦-axis ridge were greater than those on the 45◦-ray ridge. The
profiles of horizontal wind velocity near the windward hill foot were similar, showing a
negligible effect of hill height at that site. In addition, the corresponding wall jet thickness
at that site was about 0.26Djet, which is greater than that recorded during an undisturbed
downburst wind (0.15Djet), indicating an increased wind intensity. In contrast, the wind
profiles along the 45◦-ray ridge, whether recorded at the hill foot or at the crest, were
influenced by the hill height, which indicates that the blockage effect on the leeward wind
field was relatively significant.

The contour maps of Mt,max are depicted in Figure 10 and show the changes in wind
intensity. As the hill height increases, the area of the speed-up region becomes increasingly
small and the center of the region gradually moves to the windward hill foot lying on
the 135◦ ray. In the cases of high hills, it was found that the speed-up regions when
Mt,max ≥ 1 were mainly located at the two sides of the hill. This again indicates that the
downburst-induced near-ground strong airflow would be blocked if the hill is sufficiently
high, and behaves like a flow around the hill body. In general, provided a high hill, the
maximum horizontal wind velocity recorded for the crest was lower than that found at
the hill foot, as shown in Figure 10. For a hill with a low height, e.g., the case of H = h/12,
in which the near-ground wind is capable of climbing over the hill, the speed-up region
comprised a relatively larger area in the vicinity of the crest. These findings are also
corroborated by the distribution of the wind velocity vector over the hill (see Figure 11),
where the arrows represent the directions and the magnitudes of the horizontal wind
velocities. This flowing-around phenomenon was not observed in the previous studies
using 2D hill models.
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Figures 12 and 13 show the wind profiles when the hill models were placed at
rh = 0.8Djet and rh = 1.2Djet. The variation in the wind field was similar to the forego-
ing findings in the case of rh = 1.0Djet. That is, the profiles for the hill models at these three
hill positions show that the speed-up regions were mainly located in the vicinity of the
edge on the windward side, indicating that more attention should be paid to wind velocity
in this region. In addition, provided 0.8Djet ≤ rh ≤ 1.2Djet, the location of the hill model
had insignificant effects on the magnitude of the wind profile near the hill foot. This lack
of impact of the hill position is consistent with the findings of work by Mason et al. [9,10].
Generally, the wind profiles in the vicinity of the crest, as well as those on the leeward side,
were relatively more susceptible to the hill height.
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It is worth noting that in the cases surveyed, most of the profiles of the horizontal 
wind velocity have similar shapes to the downburst profile proposed by Wood et al. [8], 
i.e., correspondingly with the increase in the relative height from the ground/surface, the 
velocity increases almost linearly, then rapidly decreases after reaching a peak. 
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It is worth noting that in the cases surveyed, most of the profiles of the horizontal
wind velocity have similar shapes to the downburst profile proposed by Wood et al. [8], i.e.,
correspondingly with the increase in the relative height from the ground/surface, the veloc-
ity increases almost linearly, then rapidly decreases after reaching a peak. Comparatively,
the vertical profile of the horizontal wind in the ABL wind (ABL wind profile) usually
exhibits an exponential/logarithmic shape. In the cases of high hills, it was found that the
shape of the wind profile at the windward side of the x-axis ridge changed from a shape
similar to an ABL wind profile to a shape more characteristic of a downburst profile. This
phenomenon can be also observed in other cases, e.g., L = 1.0Djet, as shown in Figures 14–16.
Furthermore, the similarity to the ABL wind profile was usually but not always observed
when r/Djet was around 0.5, and occasionally when r/Djet > 1.0 for high hills (H/h > 1/6).
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Figure 17 shows the contour maps of the global maximum horizontal velocity, where
the conditions under which the speed-up phenomenon occurred can be clearly identified.
In the figure, the abscissa represents the hill position, and the ordinate is the ratio of hill
height to jet height. The results show that the maximum horizontal velocity occurred when
rh was around 1.0Djet. In the cases of the hills with L = 0.5Djet, it was found that a lower
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hill commonly resulted in a higher wind speed. However, in the case of the hill models
with L = 1.0Djet, the maximum of Mt,max was found to be 1.12 when H/h = 5/12.
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In order to further investigate where a speed-up wind would occur on the hilly terrain,
a relative altitude, denoted as Zs, was employed. The relative altitude was designated
as the relative height from the hill surface to Z0, the mean altitude of the hilly terrain in
the stagnation region, which may be expressed as Zs= z − Z0. For each hill model, the
maximum for the relative altitudes in the speed-up region, denoted as Zs,max, was identified
and associated with a corresponding radial distance of rs,max from the stagnation point.
Figure 18 shows Zs,max versus rs,max. It was found that the average of Zs,max was about
0.166Djet (1.1δ). This indicates that the speed-up would occur at the site with a relative
altitude of around/below 0.166Djet, resulting in a more severe downburst wind.
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3.2. Vertical Wind Velocity

For illustration, Figure 19 shows the corresponding profiles obtained experimentally
for vertical wind velocity for the hill models with L = 0.5Djet and rh = 1.0Djet. In the figure,
a negative value indicates a downward flow. It was found that the vertical wind velocities
were lower than the horizontal wind velocities in general, and the global maximum of the
former was less than 0.5Vjet, except for the results measured at the hill foot lying on the
x-axis ridge. Focusing on the x-axis ridge, the profile of vertical wind velocity varied with
the altitude of the measuring site. On the windward part, the variation in wind direction
with the relative height from the surface of the hill, identified in the same profile, indicates
the occurrence of circulation on the ridge. This might be attributed to the flow hitting
the hill surface and being forced into an upward flow to ascend the hill. In addition, it
was found that the position of the circulation on the windward ridge gradually moved
toward the hill foot, as the hill height increased. On the leeward part, a downward flow
was observed.

Considering the 135◦-ray ridge (windward), the profiles also show the occurrence of
circulation on the ridge, which was relatively weaker compared to that on the x-axis ridge.
In addition, the weak vertical wind found at the hill foot implies a flowing-over horizontal
wind at that place. For the sites located at the y-axis and 45◦-ray ridges, the wind profiles
also showed a downward flow. Moreover, the vertical winds on the 135◦-ray, y-axis and
45◦-ray ridges were relatively weaker, compared to that found on the x-axis ridge.
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Figure 19. Profiles of vertical wind velocity (L = 0.5Djet, rh = 1.0Djet).

Figure 20 shows the contour maps of the maximum vertical wind velocity. It was
observed that both the global maximum vertical wind velocities corresponding to the
upward airflow and those corresponding to the downward airflow initially increased with
the increase in hill height before reaching a peak value, then decreasing. The peak value
for the upward airflow was 0.5Vjet (H/h = 1/4), whereas that for the downward flow
was 0.65Vjet (H/h = 1/6). Regarding the downward wind, it was found that the global
maximum typically occurred at the leeward part of the x-axis ridge if H/h ≤ 1/6, and at
the hill foot of the y-axis ridge if H/h > 1/6. With regards to the upward wind, the global
maximum appeared at the windward x-axis ridge if H/h ≤ 1/4, and at the two sides of
the hill if H/h > 1/4. These findings again highlight that if the hill is sufficiently high, a
circumfluent flow occurs on the sides of the hill.
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To clarify the impact of the hill position on the maximum vertical wind velocity,
Figure 21 illustrates the corresponding contour maps for a typical hill model (L = 0.5Djet
and H/h = 0.25) placed at rh = 0.8Djet, rh = 1.0Djet, and rh = 1.2Djet, respectively. These
locations of the hill models are around where the strongest near-ground horizontal wind
would be observed in a corresponding undisturbed downburst. The three subplots show
a similar phenomenon; that is, the upward airflow occurs on the windward side and the
downward airflow mainly occurs on leeward side. In addition, correspondingly with
the increase in the horizontal distance from the downburst, the vertical wind velocity of
the upward flow increased, whereas that of the downward flow decreased. Furthermore,
the strong upward flow mainly appeared around the x-axis ridge, whereas the strong
downward flow appeared at the hill foot of the y-axis ridges.
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Figure 23 shows the contour maps of the vertical velocity at the crest. Note that the 
hill model in Figure 23a has a steeper slope than the hill model in Figure 23b, but the two 
hill models have the same hill height. It was found that a steeper slope led to a greater 
gradient in the vertical velocity. 
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Though the foregoing analyses show that a significant vertical wind field was observed
when the hill model was placed in the strong horizontal wind region, it is a priori true that
the vertical wind field above the hill would be much stronger when the hill model is placed
in the stagnation region. Figure 22 shows the profiles of vertical wind velocity when the hill
models were located at rh = 0.0Djet, namely directly below the impinging jet. The maximum
among the measured vertical wind velocities at the crest was about 1.0Vjet. Comparison
of the results with the wind profiles at the same locations in the downburst over a flat
surface shows a similar curve shape. Generally, the vertical wind velocity at a site that was
farther from the crest/stagnation point was lower. In the stagnation region, the vertical
wind velocities increased monotonically with the increase in the relative height from the
hill surface, as well as the increase in the hill height, which implies that the variation in
wind velocity corresponding to height can be mainly attributed to the vertical distance
from the nozzle; that is, a shorter vertical distance results in a higher vertical wind velocity.
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Figure 23 shows the contour maps of the vertical velocity at the crest. Note that the
hill model in Figure 23a has a steeper slope than the hill model in Figure 23b, but the two
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hill models have the same hill height. It was found that a steeper slope led to a greater
gradient in the vertical velocity.
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3.3. Comparison with the Results of Previous Studies

Since the results of previous studies mainly pertain to horizontal wind dynamics, this
section focuses only on the comparison of the horizontal wind velocities. Regarding the hill
models located in the strong horizontal wind region, the maximum Mt,max for each model
and hill position are summarized in Table 4. The maximum Mt,max shown in the table could
aid in determining downburst wind loads and inform a simplified design of structures
subjected to such conditions. It is evident that both the maximum Mt,max obtained at the
crest and that observed at the hill foot decreased with the increase in the hill height. In
addition, the maximums of Mt,max obtained elsewhere were relatively large, in the range
of 1.03 to 1.12. Note that the work by Shen et al. [22], utilizing a hill model with a similar
shape to those employed in the present study, found that the maximum speed-up ratio
during an ABL wind flow over a 3D hill was about 1.34. It can be thus concluded that the
speed-up effect found during a downburst wind is commonly smaller than occurs during
an ABL wind, provided the hill terrain is the same. This is consistent with the findings of
previous studies [6,7].

Table 4. Maximum of Mt,max for hill models.

Location
Hill Models

H1 H2 H3 H4 H5 H6 H7 H8 H9 H10 H11 H12

Crest 1.07 0.88 0.56 0.41 0.28 0.21 0.98 0.92 0.66 0.44 0.30 0.23
Hill foot 1.04 1.04 1.04 1.04 1.06 1.06 0.97 0.98 0.96 0.96 0.96 0.95

Else 1.08 1.07 1.03 1.03 1.04 0.97 1.05 1.11 1.06 1.06 1.12 1.07

The Australian and New Zealand standard entitled “Overhead line design—detailed
procedures” (AS/NZS 7000: 2010) [29] specifies that the topographical multiplier Mt,downdraft
for downbursts can be computed using the formula

Mt, downbnurst = 0.5 + 0.5Mt, synoptic (3)

where Mt,synoptic is the topographical multiplier for synoptic winds and is defined in the
code entitled “Structural design actions-Part 2: wind actions” (AS/NZS 1170.2: 2011) [30].
For the present study, Mt,synoptic = Mh, where Mh is the hill shape multiplier specified in
AS/NZS 1170.2: 2011 [30] and can be computed using the formula

Mh =


1, φ < 0.05
1 + ( H

3.5(Z+L1)
)(1− |x|L2

), 0.05 ≤ φ ≤ 0.45

1 + 0.71(1− |x|L2
), φ > 0.45 and x ∈ [0, H

4 ]

1 + ( H
3.5(Z+L1)

)(1− |x|L2
), φ > 0.45 and x /∈ [0, H

4 ]

(4)
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where L1 and L2 = 4L1 are the length scales used to determine the vertical and the horizontal
variations in Mh, and L1 can be taken as the greater of 0.36Lu or 0.4H.

For the Mt,max at the crest, Figure 24 shows the results from the previous research, the
curves defined using Equation (3), and the experimental results from the present study. It
can be observed that in the case of a small slope (φ ≤ 0.45) the results show good agreement.
With the increase in the slope, the Mt,max at the crest decreases, whereas AS/NZS 7000:
2010 [29] merely provides a constant topographic multiplier, which results in an excessively
conservative design in general. There is a need for formulas that enable a relatively accurate
prediction of Mt,max in order to inform a rational design of structures. The discrepancy is
largely attributable to the confined nature of the downburst. Moreover, the topographic
multiplier defined for an ABL wind, e.g., Equation (4), is not suitable for a downburst wind,
particularly in the case of high hills. Regarding the downburst wind, it is worth noting
that a relatively higher Mt,max than those illustrated in Figure 24 probably occurs at other
locations, as shown in Table 4.
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4. Empirical Equations for Wind Profiles
4.1. Horizontal Wind

As the foregoing analyses show that the most significant speed-up occurs when
rh = 1.0Djet, the corresponding cases were used to inform the determination of the design
wind loads. Five positions, including the crest, the hill foot, and the locations with altitudes
of 0.25H, 0.5H, and 0.75H, respectively, are considered in this section. From the perspective
of design, a conservative but reasonable wind load is preferred. Umax denotes the maximum
horizontal wind velocity of the profile. Thus, for each position at a given altitude in each
case, the envelope values of horizontal wind velocity, in which the value at a relative height
is the maximum among the corresponding horizontal velocities measured at all measuring
locations, are utilized to enable a conservative design, as illustrated in Figure 25. In the
figure, the normalized envelope values are compared with the curve proposed by Wood
et al. [8] in the form of

U(Z)
Umax

= 1.55(
Z
δ
)

1
6
[

1− erf(0.7(
Z
δ
))

]
(5)

where δ is the wall jet thickness equal to the relative height from the ground to where
the horizontal wind velocity is 0.5Umax [8]. As shown in Figure 25, except for the values
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measured at the hill foot, the test results are in good agreement with Equation (5). Further-
more, based on Equation (5), a modified phenomenological model is summarized herein to
characterize the test results measured at the hill foot, and has the form of

U(Z)
Umax

= 7.311(
Z
δ
)

0.528
[1− erf(−1.267(

Z
δ
))]− 15.062

(
Z
δ

)
+ 1.475

(
Z
δ

)3
(6)
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The comparison of Equation (6) with the test results for the hill foot shows a satisfactory
agreement, as shown in Figure 25b.

In Equations (5) and (6), Umax and δ can be estimated using the formulae

δ/Djet = a1 + a2φ + a3φ2 + a4φ3 + a5φ4 + a6/η + a7η + a8η2 + a9η3 (7a)

Umax/Vjet = b1 + b2φ + b3φ2 + b4φ3 + b5/η2 + b6/η + b7η + b8η2 + b9η3 + b10η4 (7b)

where η = H/Djet. Moreover, ai (i = 1, . . . , 9) and bi (i = 1, . . . , 10) are the coefficients, and can
be obtained by fitting the test results. The values of ai and bi are tabulated in Tables 5 and 6,
respectively. Equation (7) accounts for the effects of the slope of the hill and the hill height
on the wind profiles. Actually, considering that the maximum horizontal velocity observed
in an undisturbed downburst wind field is approximately 1.0Vjet, Equation (7b) provides
a relatively accurate estimation of Mt,max, which would enable a rational and economic
structure design. The comparison of the test results with the estimated results is illustrated
in Figure 26. In the figure, selected hill models with L = 0.5Djet and selected hill models
with L = 1.0Djet are used for the comparison. A satisfactory agreement is observed.

Table 5. Values of ai.

a1 a2 a3 a4 a5 a6 a7 a8 a9

Crest 0.17 −0.15 0.07 0 0 0 −0.39 1.19 −0.76
z = 3/4H 0.24 −0.56 0.54 −0.13 0 0 −0.07 0 0
z = 2/4H 0.26 −0.16 −0.16 0.28 −0.08 −0.007 0 0 0
z = 1/4H 0.31 −0.28 0.14 −0.02 0 −0.01 0.09 0 0
Hill foot 0.20 −0.20 0.13 −0.03 0 0 0.59 −0.78 0.39

The value γU can be calculated as the ratio of the measured horizontal wind velocity,
UExp, to the estimated horizontal wind velocity, UE, as follows:

γU = UExp/UE (8)
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For velocities greater than 3 m/s, and in the range of 0.5Umax to 1.0Umax, the mean
value and the coefficient of variation (COV) of γU are listed in Table 7. It can be observed
that the COVs are less than 9%, indicating a relatively satisfactory agreement.

Table 6. Values of bi.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Crest −0.16 −0.14 0.04 0 −0.056 0.54 0 0 0 0
z = 3/4H 0.99 0.90 −1.19 0.35 0 0 −0.52 0 0 0
z = 2/4H 1.01 0.19 −0.22 0 0 0 0.007 0 0 0
z = 1/4H 0.76 0. 01 −0.04 0 0 0 3.31 −11 14.31 −6.28
Hill foot 1.01 0.43 −0.24 0.06 0 0 −0.64 0.58 −0.24 0
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Figure 26. Experimental and predicted envelope values for horizontal wind velocity: (a) Crest, L = 
0.5Djet; (b) Crest, L = 1.0Djet; (c) Hill foot, L = 0.5Djet; (d) Hill foot, L = 1.0Djet. 

The value γU can be calculated as the ratio of the measured horizontal wind velocity, 
UExp, to the estimated horizontal wind velocity, UE, as follows:  

U Exp E/U Uγ =   (8)

Figure 26. Experimental and predicted envelope values for horizontal wind velocity: (a) Crest,
L = 0.5Djet; (b) Crest, L = 1.0Djet; (c) Hill foot, L = 0.5Djet; (d) Hill foot, L = 1.0Djet.

Table 7. Mean value and COV of γU.

Mean COV

Crest 1.005 4.8%
z = 3/4H 0.976 8.7%
z = 2/4H 0.985 5.0%
z = 1/4H 0.982 4.4%
Hill foot 0.996 2.5%
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4.2. Vertical Wind

Since the maximum vertical velocity occurs when rh = 0.0Djet, and is located at the crest,
only the phenomenological model for the case of rh = 0.0Djet was utilized for predictions of
the vertical wind velocities at the crest, to ensure a conservative design. This model is in
the form of

VC(Z)
Vjet

=
p

1 + q
Djet
Z

(9)

where VC, as a function of the relative height Z, is the vertical wind velocity on the crest,
and p and q are the coefficients, which can be computed as follows:

p = c1 + c2φ + c3φ2 + c4φ3 + c5φ4 + c6η

q = d1 + d2φ + d3φ2 + d4φ3 + d5φ4 + d6η
(10)

where ci (i = 1, . . . , 5) and di (i = 1, . . . , 5) are the coefficients, and can be obtained by fitting
the test results. The values of ci and di are tabulated in Table 8. Both the experimental
results and the predicted results are illustrated in Figure 27, indicating a good agreement
between them.

Table 8. Values of ci and di.

c1 c2 c3 c4 c5 c6 d1 d2 d3 d4 d5 d6

1.454 −1.182 1.226 −0.6082 0.1118 0.1118 0.3935 −0.9798 0.9711 −0.4579 0.08016 0.08016
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Figure 27. Experimental and predicted vertical wind velocities on crest (rh = 0.0Djet). (a) L = 0.5Djet;
(b) L = 1.0Djet.

In a similar fashion, γV is defined as the ratio of the measured vertical wind velocity,
VExp, to the predicted vertical wind velocity, VE, as follows:

γV = VExp/VE (11)

With regards to the results measured at relative heights greater than 0.05Djet, the mean
value and the COV of γW are 1.012 and 2.6%, respectively.

5. Conclusions

1. The laboratory tests conducted using a physical downburst simulator revealed re-
markable effects of hilly terrain on the downburst wind field. It was found that the
speed-up was not only related to the slope, but also to the hill height and ratio of hill
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height to jet height. This finding is evidently different from the ABL wind case, and
can be largely attributed to the nature of the downburst.

2. Horizontal wind velocity predominated when the hill was placed in the strong hori-
zontal wind region, i.e., when the distance from the stagnation point to the crest was
around 1.0Djet. Under this circumstance, the wind tended to flow over the crest when
the height of the hill was sufficiently low, and flowed around the hill body in the cases
of high hills. As the hill height increased, the speed-up region gradually moved from
the crest to the sides of the hill, namely to the vicinity of the windward edges. As a
result, the maximum speed-up effect was frequently found on the ridge or at the hill
foot, in the cases of high hills. Among all cases, the maximum topographic multiplier
was 1.12, and appeared at the ridge when the ratio of hill height to jet height was 5/12,
in terms of horizontal wind. In addition, the corresponding maximum vertical wind
velocity value reached about half that of the impinging jet velocity.

3. A strong vertical wind field on the hill was observed when the hill model was placed
directly under the impinging jet. It was found that the maximum strong vertical wind
appeared at the crest of the hill, and that either a steeper slope or a higher hill led
to a greater gradient of vertical wind velocity in the direction of elevation. As the
hill height increased, the vertical wind velocity at the relative height of 0.3Djet would
increasingly approach the impinging jet velocity.

4. To inform future structure design, explicit formulas for estimating the envelope
values at the typical locations were presented that enable conservative estimations
of horizontal downburst wind loads. Moreover, a phenomenological model was
proposed to predict the vertical wind velocities on the crest when the hill is directly
under the impinging jet, and shows a satisfactory agreement with the test results.

5. The physical downburst simulator employed herein is mainly based on the impinging
jet model that has been widely accepted in wind engineering for the experimental
study of downburst wind and its effects on structures. However, the simulator is not
capable of reproducing the dynamic characteristics of the downburst, in particular
the ring vortex that is occasionally observed during downburst events. Accordingly,
there is a need for further study to examine the effects of the presence of ring vortices.
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