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Abstract: Spatial location of sugarcane nodes using robots in agricultural conditions is a challenge
in modern precision agriculture owing to the complex form of the sugarcane node when wrapped
with leaves and the high computational demand. To solve these problems, a new binocular location
method based on the improved YOLOv4 was proposed in this paper. First, the YOLOv4 deep
learning algorithm was improved by the Channel Pruning Technology in network slimming, so as to
ensure the high recognition accuracy of the deep learning algorithm and to facilitate transplantation
to embedded chips. Secondly, the SIFT feature points were optimised by the RANSAC algorithm
and epipolar constraint, which greatly reduced the mismatching problem caused by the similarity
between stem nodes and sugarcane leaves. Finally, by using the optimised matching point to solve
the homography transformation matrix, the space location of the sugarcane nodes was for the first
time applied to the embedded chip in the complex field environment. The experimental results
showed that the improved YOLOv4 algorithm reduced the model size, parameters and FLOPs by
about 89.1%, while the average precision (AP) of stem node identification only dropped by 0.1% (from
94.5% to 94.4%). Compared with other deep learning algorithms, the improved YOLOv4 algorithm
also has great advantages. Specifically, the improved algorithm was 1.3% and 0.3% higher than SSD
and YOLOv3 in average precision (AP). In terms of parameters, FLOPs and model size, the improved
YOLOv4 algorithm was only about 1/3 of SSD and 1/10 of YOLOv3. At the same time, the average
locational error of the stem node in the Z direction was only 1.88 mm, which totally meets the demand
of sugarcane harvesting robots in the next stage.

Keywords: sugarcane node; binocular vision; spatial location; YOLOv4; channel pruning

1. Introduction

Sugarcane is an important ingredient for sugar production. Although it is widely
planted in China, less than 15% of sugarcane is harvested mechanically. The current
sugarcane harvesters are mainly large non-intelligent combined harvesters with a high
impurity content and high broken root rate, which is not suitable for the small hilly planting
areas in southern China. Therefore, it is necessary to develop a small sugarcane harvester
with high sugarcane harvesting quality that is suitable for small plots. Inspired by human
sugarcane harvesting, the intelligent identification and location of the stem node and
cutting position can effectively reduce the impurity rate and broken root rate. In order to
realise a sugarcane harvesting robot that can simulate manual harvesting, the key is to
identify and locate the cutting position of the sugarcane by simulating human eyes.

For a harvesting robot, the most important thing is to complete the task of identifying
and locating the harvesting target in space. This task can be divided into two stages. The
first stage is the target identification and two-dimensional location; the second stage is
the three-dimensional location. At present, on the basis of the two-dimensional location,
the three-dimensional positioning of the harvesting robot is acquired by obtaining depth
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information through 3D sensors, such as a time-of-flight (TOF) 3D camera, stereo camera, or
structured light camera. For example, Silwal et al. [1] designed a 7-DOF apple-picking robot
with a precise location ability. The Circular Hough Transformation (CHT) was adopted to
identify clearly visible individual apples in clusters, and Blob Analysis (BA) was applied
in an iterative fashion to identify partially visible apples. Then, a TOF-based 3D camera
(Camcube 3.0) was used to obtain the spatial three-dimensional coordinates of the apple.
Zhang et al. [2] put forward a method of identifying and locating apple stems and calyxes
based on near infrared array structured light and 3D reconstruction. Firstly, identification
of the apple stems and calyxes was completed by an image processing algorithm, and
then their depth information was obtained by structured light. Williams et al. [3] designed
a novel multi-arm kiwifruit harvesting robot, which detected kiwifruit by the FCN-8S
algorithm and located the fruit by several stereo cameras installed below. In the literature
there have been many research works on the identification and spatial location of apple [1,2],
kiwifruit [3], tomato [4], litchi [5] and other crops in the natural environment, but research
on the identification and spatial location of sugarcane nodes in the natural environment
has rarely been reported. A few scholars have studied the identification of the stem nodes
of sugarcane without leaves in constant light [6–8].

There are several difficulties in locating sugarcane nodes in a complex environment.
Firstly, in the stage of stem node identification, the complex form of sugarcane and the
light changes in the natural environment, such as clumped growth, stalk cover and being
wrapped by sugarcane leaves, lead to the need for a huge amount of recognition data
collection, a large number of image features, and result in reduced recognition accuracy. In
order to solve the problem of identifying the complex form of stem nodes, Chen et al. [9]
introduced the deep learning algorithm YOLOv4 [10] as a preliminary study on the identi-
fication of stem nodes in the complex field environment. However, although the series of
YOLO algorithms and their improved methods [11,12] have high detection accuracy in the
agricultural field, their model parameters are huge and the demand for a GPU is too high,
limiting their application on the embedded chip of the harvesting robot. Secondly, in the
three-dimensional location stage of sugarcane nodes, mismatching often occurs due to the
similarity of the root stem node and sugarcane leaves, which leads to larger location error.
Therefore, it is a great challenge for the harvesting robot to identify and spatially locate the
stem node in the field.

In order to solve the above problems, a new binocular location method based on
the improved YOLOv4 was proposed in this paper, which for the first time achieved the
recognition and spatial location of sugarcane nodes on the embedded chip of a harvesting
robot. The deep learning algorithm of YOLOv4 was improved by the channel pruning
technology in network slimming, so that the algorithm can be successfully deployed to
the embedded chip. Meanwhile, SIFT feature points were optimised by the RANSAC
algorithm and epipolar constraint and reduced the mismatching problem caused by the
similarity between stem nodes and sugarcane leaves. Finally, the optimised matching
point pairs were used to solve the homography transformation matrix so as to achieve
the three-dimensional spatial coordinates of the complex form stem nodes and verify the
spatial location accuracy of the nodes.

2. Prior Work

Figure 1 shows the systematic research route of the new binocular spatial location
of sugarcane nodes based on the improved YOLOv4, which includes binocular camera
calibration and stereo rectification to ensure the reliability of the hardware.
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2.1.1. Camera Imaging Model 

The camera imaging model describes the image formation of the geometric mathe-
matical model transformation, and establishes the coordinate transformation relationship 
between the two-dimensional image plane and three-dimensional space. Camera imaging 
models are generally divided into linear models and nonlinear models, of which the most 
commonly used is the pinhole imaging model, a linear model [13]. In order to describe an 
object in the world coordinate system as an image in a plane two-dimensional image co-
ordinate system, four coordinate systems of the pinhole imaging model need to be estab-
lished to complete this transformation, which are the pixel coordinate system (O0-uv), im-
age coordinate system (O1-xy), camera coordinate system (Oc-XcYcZc) and world coordi-
nate system (Ow-XwYwZw), as shown in Figure 2. 

Figure 1. The systematic research route of the new binocular spatial location of sugarcane nodes
based on the improved YOLOv4.

2.1. Binocular Stereo Vision Location Theory
2.1.1. Camera Imaging Model

The camera imaging model describes the image formation of the geometric mathe-
matical model transformation, and establishes the coordinate transformation relationship
between the two-dimensional image plane and three-dimensional space. Camera imaging
models are generally divided into linear models and nonlinear models, of which the most
commonly used is the pinhole imaging model, a linear model [13]. In order to describe an
object in the world coordinate system as an image in a plane two-dimensional image coordi-
nate system, four coordinate systems of the pinhole imaging model need to be established
to complete this transformation, which are the pixel coordinate system (O0-uv), image
coordinate system (O1-xy), camera coordinate system (Oc-XcYcZc) and world coordinate
system (Ow-XwYwZw), as shown in Figure 2.
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For the ideal pinhole imaging model, the relationship between the world coordinate
system and the pixel coordinate system can be established by mutual transformation of the
four coordinate systems, as shown in Formula (1).

ZC

 u
v
1

 =

 fx 0 u0 0
0 fy v0 0
0 0 1 0

[ R t
0T 1

]
XW
YW
ZW
1

 = MN


XW
YW
ZW
1

 (1)

The four parameters fx, fy, u0 and v0 are internal parameters of the camera, which
are determined by the internal structure of the camera when it was manufactured. Corre-
spondingly, R and t are the external parameters of the camera. The internal and external
parameters of the camera are all obtained by camera calibration. From Formula (1), if the
internal parameter matrix M and the external parameter matrix N are known, the position
(u, v) of any point in space with the coordinates (Xw, Yw, Zw, 1)T can be acquired in the
image pixel coordinate system. However, since M is a 3× 4 irreversible matrix, the position
of the point (u, v) in the world coordinate system cannot be derived by its coordinates in
the image pixel coordinate system. Hence, a stereo vision system is required.

2.1.2. Binocular Stereo Vision System Imaging Model

Binocular stereo vision [13] refers to using two cameras to film the same object from dif-
ferent angles; then, based on triangulation principle, the three-dimensional space position
of the object is obtained by calculating the parallax, as shown in Figure 3.

In the parallel binocular vision model, the projection of any point P(X, Y, Z) in the
camera coordinate system on the left and right camera planes is pl(xl , yl), pr(xr, yr), respec-
tively. When yl = yr, then according to the triangulation principle:

Z
f
=

X
xl

=
X− B

yr
=

Y
yl

=
Y
yr

(2)

Furthermore: 
X = B·xl

d
Y = B·yl

d
Z = B· f

d

(3)

where f is the focal length of the camera, and B is the baseline distance between the left
and right cameras, both of which are fixed parameters of the camera. d = xl − xr is the
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unknown parameter of the parallax. The object position in three-dimensional space can be
restored only by calculating the parallax.
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2.2. Calibration and Rectification of Binocular Camera
2.2.1. Calibration of Binocular Camera

The ZED2 binocular camera producing an RGB image with a resolution of 1280 × 720
pixels at 60 fps was used in this paper. Since the internal and external parameters of the
camera are important for restoring 3D spatial location information, they can be obtained
through the camera calibration. 30 pairs of pictures (60 images) with the calibration
chessboard collected by a ZED2 binocular camera were put into the camera calibration box
of MATLAB to calibrate the ZED2 binocular camera, as shown in Figure 4.
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Figure 4. Image pairs used in binocular camera calibration. (a) Image taken by left camera. (b) Image
taken by right camera.

The camera parameters were calibrated by identifying the corners on the chessboard
picture collected by the camera. After both cameras were calibrated, the calibration error
was analysed by re-projecting the calibration results of the left and right cameras, respec-
tively. The error analysis found that the errors of the left camera in the X and Y directions
were 0.48406 and 0.39770 pixels, and the errors of the right camera in the X and Y directions
were 0.4940 and 0.36554 pixels, which meet the accuracy requirements of the research.
After calibrating the rotation matrix and translation matrix of the two cameras, the rotation
matrix R was found to be similar to the identity matrix, which showed that the optical axes
of the left and right cameras were nearly parallel. Meanwhile, the rotation angle between
them was very small. The coordinate system was established by the optical centre position
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of the left camera as the origin, and the translation vector was acquired. This showed that
the distance between the two cameras in the X-axis direction was 119.79 mm, which was
very close to the given baseline length of 120 mm. At the same time, the deviation in the
Y- and Z-axis directions was very small (0.138 mm and 0.504 mm, respectively). Through
calibration, the camera was confirmed as meeting the needs of sugarcane location.

2.2.2. Stereo Rectification of Binocular Camera

Ideally, the image planes of both cameras lie in the same plane. In this case, the
pixels in the images taken by the left and right cameras are strictly aligned. However, the
actual situation is more complicated. Due to the existence of errors, it is often necessary to
mathematically correct the imaging plane of the camera to ensure the strict alignment of the
pixels of the two images, which we call stereo rectification. In this study, the Bouguet stereo
correction algorithm [14] was used to perform stereo rectification of the binocular cameras,
and the camera parameters obtained from the previous calibration were imported into
Visual Studio 2017, combined with the Opencv3.4.1 visual development library for stereo
rectification. The binocular image pairs before and after stereo rectification are shown in
Figure 5.
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3. Methodology
3.1. YOLOv4 Model Improved by Channel Pruning Technology

Previous research [9] by our team found that from comparative experiments of various
target detection algorithms, YOLOv4 was the most suitable algorithm for detecting complex
form stem nodes so far. However, the disadvantages of this algorithm are also obvious.
It has a very complex network structure and a large number of network parameters,
which requires high GPU processing power and is not suitable for transplanting to the
embedded chip of a harvesting robot. Therefore, the model needs to be compressed.
Channel Pruning Technology (CPT) [15] greatly reduces the size of the model but hardly
affects the identification accuracy by means of eliminating the ineffective channels and
their related inputs and outputs after identifying network channels. In this paper, the CPT
was adopted to simplify the YOLOv4 algorithm model, and the Gamma (γ) coefficient of
the Batch Normalization (BN) layer was selected as the evaluation index of the channel
importance. According to the distribution of the γ coefficient and the pruning rate set by
the optimal solution, the network channels of the algorithm were reduced by reserving the
channels that played a greater role (blue part) and deleting the channels with γ coefficients
approaching zero (orange part), as shown in Figure 6.
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Figure 6. The process of channel pruning in this paper.

The experimental environment used in this improved experiment is as follows: Hard-
ware: Intel Xeon Gold 5218 CPU @ 2.3 GHz processor, 64 GB memory; NVIDIA RTX 2080Ti
GPU, 11 GB memory; Environment: CUDA10.2, cuDNN7.6.5, python3.6, pytorch1.8.1;
Windows10 64 bit operating system.

The dataset used in this improved experiment was sugarcane node images self-
collected from the sugarcane planting base in Agricultural New Town, Guangxi University,
China. The sugarcane variety was Guitang No. 49, and the average stem diameter was
about 2.5 cm. To collect the complex field environment data, images of sugarcane nodes
completely wrapped, half wrapped and unwrapped by sugarcane leaves from different
angles and distances of the camera were collected at different time periods, as shown in
Table 1. The stem node samples collected in different modes are shown in Figure 7.

Table 1. Data collection of stem nodes in a complex field environment.

Time Fully
Wrapped

Half
Wrapped

Not
Wrapped

45
Degrees

90
Degrees

135
Degrees

30 cm
Distance

40 cm
Distance Total

08:00 a.m. 50 50 50 50 50 50 50 50 400
13:00 p.m. 100 100 100 100 100 100 100 100 800
18:00 p.m. 50 50 50 50 50 50 50 50 400
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At the same time, the samples were expanded by changing the saturation, sharpness,
contrast and brightness of the images, and rotating them by 30 degrees. The dataset
consisted of single sugarcane images with a single stem node, single sugarcane images
with three stem nodes averagely and multiple sugarcane images with more than five stem
nodes averagely. Finally, a dataset of 8000 images was obtained, of which 7200 were used
as training sets and 800 as test sets. The method of the YOLOv4 model improved by CPT is
as follows.

(1) Normal training. A convergent and accurate YOLOv4 sugarcane node identification
model is trained normally.

(2) Sparse training. The L1 regularisation training is carried out on the BN layer of the
normal training model, so that the γ coefficient of the BN layer is as close to 0 as
possible, and the sparse weights are redistributed to other effective layers of the
network.

(3) Pruning. The channels in the BN layer with the γ coefficients approaching zero are
picked out, and the channels are pruned according to the set pruning ratio to generate
a simplified model that occupies less memory space.

(4) Fine-tuning of the pruned model. All the BN layers are pruned at one time and
then re-trained to fine-tune to overcome the decline of model accuracy after channel
pruning.

The hyperparameters are the parameters set before training, seen in Table 2. In order
to prevent over-fitting and under-fitting, they were optimized by Random Search (RS).
Firstly, the selection range of each parameter was divided into several large intervals, and
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the parameter was randomly selected in each large interval. Secondly, the interval with the
best training effect was selected, and further subdivided into several cells, before randomly
selecting the parameter in small intervals. Finally, the above process was repeated until
the optimal parameter combination was obtained. The main parameter settings of the
experimental dataset modelling are shown in Table 2.

Table 2. The main parameter settings of the experimental dataset modelling.

Stage Parameter Name Parameter Value

Sparse training

Training batch size 8
Learning rate 0.002

Epoch 120
Sparseness rate 0.001

Channel pruning Pruning rate 0.6

Fine-tune model
Epoch 120

Training batch size 8

3.2. Identification of Sugarcane Nodes Based on Improved YOLOv4

The weights file and the configuration file of the YOLOv4 model improved by Channel
Pruning Technology were extracted and deployed to the embedded chip. The plane position
of the stem nodes in the images collected by the left camera was identified and detected by
the improved YOLOv4 algorithm. The centre point coordinates (x, y) of the stem node in
the pixel coordinate system were also outputted. Furthermore, the detected stem nodes
were labelled from top to bottom and left to right to verify the location accuracy, as shown
in Figure 8.
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3.3. Spatial Location of Sugarcane Nodes Based on Binocular Vision
3.3.1. Stereo Matching Based on SIFT Feature Points

After the identification and plane location of the sugarcane nodes, we needed to locate
the nodes in space. In the binocular stereo vision system, stereo matching is the most
important step to get the spatial position information of objects. The stereo matching can
find the correspondence of the same point in the two images taken by the left and right
cameras. According to the different matching elements, stereo matching can be divided into
matching algorithms based on the regional grey [16], the phase [17] and the features [18].
Due to the complex growing environment of sugarcane and frequent changes of field light,
a feature-based matching algorithm that does not depend excessively on the image grey
level and has good anti-interference performance against external factors is more suitable
for the stereo matching of sugarcane nodes in this study. Scale-invariant feature transform
(SIFT) [19] is a computer vision algorithm used to detect and describe local features in
images by finding extreme points in spatial scales and extracting their position, scale and
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rotation invariants. It has good anti-interference performance against external light and
noise. Figure 9 is the SIFT feature point extraction of the left and right cameras.
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The extracted feature points of the left and right images must be matched one by one.
However, stem nodes covered or shaded by leaves are too similar to other sugarcane leaves
in the field, so the feature points are often mismatched, as shown in Figure 10.
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In order to improve the matching accuracy, the matching constraints were introduced
to eliminate the wrongly matched pairs. Random sample consensus (RANSAC) [20] is
an iterative algorithm to correctly estimate the parameters of a mathematical model from
a set of data containing outliers. “Outliers” generally refer to the noise in the data, such
as wrongly matched points in the above matching. Therefore, we can eliminate these by
introducing the RANSAC algorithm. On the other hand, after stereo correction, we have
aligned the row pixels of the left and right images. Moreover, we can use the epipolar
constraint whereby the connection between matching point pairs can only be a specific
straight line in order to eliminate feature point pairs with inconsistent pixels in the right
row of the left and right images. With the introduction of the RANSAC algorithm and the
epipolar constraint, the mismatch problem has been basically solved, as shown in Figure 11.
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3.3.2. Solution of Homography Matrix H

In order to obtain the three-dimensional coordinates of sugarcane nodes, it is necessary
to know the parallax of the nodes in the left and right camera images, which is the difference
in values between the X coordinates of the nodes in the left and right camera image
coordinate systems. The homography matrix H [21] reflects the mapping relationship of
corresponding points between the left camera image and the right camera image in the
binocular camera. It can be obtained through the optimised stereo matching feature points.
Assuming a pair of optimised matching feature points, the pixel coordinate in the left
camera image is p1(x1, y1), its corresponding point in the right camera image is p2(x2, y2),
and the homography matrix is H, then: x1

y1
1

 = sH

 x2
y2
1

 = s

 h11 h12 h13
h21 h22 h23
h31 h32 h33

 x2
y2
1

 (4)

The above formula is expanded as follows:
x1 = s(h11x2 + h12y2 + h13)
y1 = s(h21x2 + h22y2 + h23)
1 = s(h31x2 + h32y2 + h33)

(5)

Substituting the third equation in Equation (5) into the first two equations, there are
eight unknown parameters in matrix H, in which s is the scale factor (s 6= 0). Because
each pair of matching points can provide two equations, the homography matrix H can
be obtained by only four pairs of matching points. Since the optimised pairs of matching
points in our stereo matching experiment above are far more than four pairs, this is enough
to solve the homography matrix H. In order to improve the robustness, the RANSAC
algorithm is introduced into the process of solving the homography matrix, so as to achieve
the optimal correspondence matrix H.

3.3.3. Spatial Location of Sugarcane Nodes

The centre point coordinates of the stem node in the left camera detected by the
improved YOLOv4 algorithm are recorded as pl(xl , yl). The corresponding point in the
right picture was obtained by putting pl(xl , yl) into Formula (5), then the parallax d =
xl − xr. Finally, the three-dimensional spatial coordinates of the stem node can be acquired
by Formula (3). Because the most important index to evaluate the reliability of a binocular
vision system is the accuracy of the coordinate in the Z-axis under spatial location, the
left camera coordinate system was selected as the world coordinate system to verify the
accuracy of the coordinates in the Z-axis under spatial location. Figure 12 shows the
experimental platform of the spatial location of the binocular camera. The ZED2 binocular
camera was used for image acquisition, and NVIDIA Jetson Nano was applied as an
embedded chip for data processing, which communicate with each other through USB3.0.
The overall platform was equipped with a camera-moving guide with a precise scale, as
well as a power supply, screen and other related accessories.
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Due to the difficulty in accurately measuring the distance from each node to the XOY
plane of the left camera coordinate system, the relative distance was used to measure the
location accuracy of the coordinate in the Z-axis. The experimental process was as follows:

(1) The binocular camera was fixed on the bracket guide rail with a scale, and the position
of the guide rail where the camera was currently located was recorded. Subsequently,
the sugarcane images in the field were collected and the spatial location experiment
was carried out according to the method mentioned above. After sampling three
times, the average XYZ coordinates of each node were recorded as the coordinates
before moving. At the same time, the time spent in each location experiment was
recorded.

(2) The position of the binocular camera in the X and Y directions was kept unchanged,
the camera was moved on the guide rail in the Z direction by D = 100 mm, the spatial
location experiment was conducted again, and the average xyz coordinates of each
node were recorded as the moved coordinates. In addition, the time required for each
location experiment was recorded again.

(3) The Z coordinate was subtracted before and after moving to get the average distance
difference of two positions, and finally D was subtracted from the difference to get
the location error in the Z coordinate.

4. Results and Discussion
4.1. Target Detection Results of YOLOv4 Improved by Channel Pruning Technology

The loss function of the model after sparse training in Section 3.1 is shown in Formula (6):

L = ∑ (x,y)l( f (s, W), y) + λ∑ γ∈Γ(g(γ)) (6)

∑ (x,y)l( f (s, W), y) is the training loss of the network, x and y are the input and
output of model training, respectively, and W is the training parameter in the network.
λ∑ γ∈Γ(g(γ)) is the L1 regular constraint term of the γ coefficient of the BN layer, and λ

is the penalty factor. The distribution diagram of the γ coefficient of the BN layer during
normal training is shown in Figure 13a, and was mainly distributed around 1. The distri-
bution diagram of the γ coefficients of the BN layer during the sparse training is shown
in Figure 13b. In the sparse training process, as the number of epochs increased, the γ
coefficient of the BN layer gradually approached zero, which indicated that the γ coefficient
gradually became sparse. By the 120th epoch, the sparsity change gradually became weak,
and the sparsity training was saturated.
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Five commonly used indicators, average precision (AP), Params, Floating Point opera-
tions (FLOPs), model size and speed, were used to verify the performance of the improved
model. The definition of average precision (AP) is shown in Formula (7), where P(r) repre-
sents a PR curve with precision (P) as the horizontal axis and recall (R) as the vertical axis:

AP =
∫ 1

0
P(r)dr (7)

The Params and Floating Point operations (FLOPs) are defined as shown in Formulas (8)
and (9), where H and W represent the width and height of the input image, K is the convo-
lution kernel size, and Cin and Cout represent the number of convolution kernels input and
output.

Params = Cin × K2 × Cout (8)

FLOPs = 2× H ×W
(

CinK2 +1)Cout (9)

On the premise that the accuracy was not reduced greatly, 0.6 was selected as the
pruning rate to shrink the YOLOv4 target detection model after sparse training. Finally,
the Params, FLOPs and model size were all decreased by about 89.1% after 19,331 channels
were cut off, while the average precision (AP) decreased by only 0.1% (from 94.5% to 94.4%).
To be specific, the Params decreased from 63,937,686 to 6,973,211, the FLOPs decreased from
29.88 G to 3.26 G, and the model size decreased from 244 M to 26.7 M, which indicated that
the pruned model was much smaller than the original one and the improved algorithm
was successful.

4.2. Comparison between Improved YOLOv4 and Other Target Detection Algorithms

Three target detection algorithms that are often used in crop identification were
selected to further verify the effectiveness and superiority of the improved algorithm. The
self-collected data sets of stem nodes in the wild field environment were used to test and
evaluate their performance, as shown in Table 3. In order to ensure robustness, we have
conducted several experiments, but we found that there was almost no difference in the
results of each performance evaluation experiment. The following, main reasons might
explain why this is the case. First of all, the training set and test set was the same dataset
to verify the performance of each algorithm, which can greatly reduce the randomness of
the results. Secondly, the above-mentioned deep learning algorithm ensures a fair degree
of robustness through the large amount of data, and the error can be corrected within the
neural network. Finally, because the recognition object of this paper is only a single target,
which greatly reduces the difficulty of recognition, the difference between each experiment
is very small. Therefore, under the condition of the same experimental hyperparameter
settings, the differences between the repeated experiments were inconsiderable.
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Table 3. Comparison of improved YOLOv4 algorithm with SSD, YOLOv3 and YOLOv4 algorithm.

Algorithm AP (%) Params FLOPs Model Size Speed (s)

SSD [22] 93.1 23,612,246 30.44 G 90.5 M 0.023
YOLOv3 [23] 94.1 61,523,734 32.76 G 235 M 0.042
YOLOv4 [24] 94.5 63,937,686 29.88 G 244 M 0.035

Pruned
YOLOv4 94.4 6,973,211 3.26 G 26.7 M 0.032

From Table 3, the improved YOLOv4 algorithm had the strongest comprehensive
performance among the four algorithms. In terms of average precision (AP), the improved
YOLOv4 model was 1.3% and 0.3% higher than SSD and YOLOv3, and only 0.1% lower
than before the improvement. However, in terms of the Params, FLOPs and model size,
the improved YOLOv4 algorithm was only about 1/3 of SSD and 1/10 of YOLOv3 and
YOLOv4. The comparison of results adequately illustrated the superiority of the improved
YOLOv4 algorithm model.

4.3. Analysis of Spatial Location Accuracy of Sugarcane Nodes

In Figure 7, the three-dimensional spatial coordinates of each sugarcane node were
calculated by Formula (3). Now the spatial location coordinate and its accuracy are shown
in Table 4.

Table 4. The spatial location coordinate and its accuracy of sugarcane nodes.

Node
Number

Coordinate before
Move (mm)

Coordinate after
Move (mm)

Z-Coordinate
D-Value (mm)

Actual
D-Value (mm)

Z-Coordinate
Error (mm)

1 (−237.98, 131.46, 370.52) (−236.26, 133.02, 468.25) 97.73 100 −2.27
2 (−209.58, 35.62, 382.81) (−208.17, 36.94, 481.17) 98.36 100 −1.64
3 (−181.95, −50.02, 403.56) (−179.97, −48.98, 502.43) 98.87 100 −1.13
4 (−157.01, −128.03, 422.13) (−155.64, −126.08, 520.72) 98.59 100 −1.41
5 (−137.82, −190.23, 438.76) (−136.56, −189.20, 536.67) 97.91 100 −2.09
6 (131.41, 137.18, 273.34) (133.42, 138.83, 371.46) 98.12 100 −1.88
7 (122.20, 42.91, 288.73) (123.62, 44.29, 386.64) 97.91 100 −2.09
8 (118.98, −50.49, 302.48) (119.48, −49.21, 401.29) 98.81 100 −1.19
9 (119.52, −123.13, 320.42) (120.98, −121.68, 418.16) 97.74 100 −2.26
10 (111.76, −186.15, 328.24) (113.04, −184.36, 425.38) 97.14 100 −2.86

According to Table 4, the maximum and minimum errors of the Z coordinate of the
sugarcane node spatial location were 2.86 mm and 1.13 mm, and the average error was
1.88 mm. It should be noted that the position of the XOY plane will have a slight deviation
with the movement, which is reflected in the slight coordinate difference in the X- and
Y-axis before and after moving.

4.4. Real-Time Performance of the Proposed Method

Although the training time of the improved YOLOv4 model was about 14 h, the time
for identifying stem nodes with the improved model was very short. By program statistics,
the total execution time spent in the sugarcane stem node spatial location is shown in
Table 5. The extraction and matching of feature points and the subsequent elimination of
mismatching points occupied most of the time by the proposed method. It should be noted
that the other time in Table 5 refers to the time for feature point extraction and matching and
the subsequent elimination of mismatching points. Additionally, the before (after) move-
1/2/3 refers to the three location experiments before (after) the camera moves D = 100 mm
in the verification experiment of stem node location accuracy.
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Table 5. The execution time spent in the stem node spatial location.

Number Identification Time (ms) Other Time (ms) Total Time (ms)

Before move—1 32 1533 1565
Before move—2 33 1537 1570
Before move—3 30 1539 1569
After move—1 32 1538 1570
After move—2 31 1540 1571
After move—3 34 1535 1569
Average time 32 1537 1569

4.5. Location Methods Comparison and Discussion

The new binocular location method based on improved YOLOv4 proposed in this
paper not only successfully solved the difficult problem of stem node location, but also
achieved better results in location accuracy than traditional crop location methods. For
example, Xiong et al. [25] proposed a binocular vision method for picking point positioning
of disturbance litchi cluster, and the H component of litchi image was directly used for stereo
matching. This method does not extract and optimize feature points as present in this paper,
resulting in the maximum location error of 58 mm in Z direction. Xie et al. [26] identified
the position of beef tomato based on R-CNN and binocular imaging technology. It directly
used the SDK of the binocular camera to measure the distance without considering the
targeted improvement for the location object, which led to a large number of mismatches.
Therefore, the maximum location error of its Z axis was 18.6 mm, which was not ideal for
small crops location. Luo et al. [27] obtained the position information of grape clusters
based on the dense disparity calculation method of gray value matching, and finally the
maximum location error of Z axis was 12 mm. Because the gray value might be affected
by illumination, the location accuracy based on the matching method of gray value was
lower than that of the feature point-based. In the previous finding of Wang et al. [28],
which used two CCD color cameras integrated with a window zooming-based algorithm
to locate multiple fruits and vegetables, results showed that the maximum Z-axis location
error was 7.5 mm. On the contrary, the maximum Z-axis location error of the method
proposed in this paper was only 2.86 mm, which was far lower than the location methods
in the above-mentioned literatures. This fully demonstrates the superiority of the method
proposed in this paper. The main reason that this might be applied is because the improved
YOLOv4 algorithm can still keep high accuracy with greatly reduced complexity. At the
same time, a large number of mismatching points are eliminated by RANSAC algorithm
and epipolar constraint, thus further improving the location accuracy.

5. Conclusions

In this paper, a new binocular location method based on an improved YOLOv4 was
proposed to solve the problem of the difficulty of sugarcane nodes spatial location due
to the complex form characteristics in the field environment and the high demand for
computational capability.

(1) The deep learning algorithm of YOLOv4 was improved by the Channel Pruning
Technology in network slimming, so as to ensure the high recognition accuracy of
the deep learning algorithm and to facilitate transplantation to embedded chips. The
experimental results showed that the Params, FLOPs and model size were all reduced
by about 89.1%, while the average precision (AP) decreased by only 0.1% (from 94.5%
to 94.4%). To be specific, the Params decreased from 63,937,686 to 6,973,211, the FLOPs
decreased from 29.88 G to 3.26 G, and the model size decreased from 244 M to 26.7 M,
which greatly reduced the computational demand.

(2) Compared with other deep learning algorithms, the improved YOLOv4 algorithm
also has great advantages. Specifically, the improved algorithm was 1.3% and 0.3%
higher than SSD and YOLOv3 in average precision (AP). In terms of parameters,
FLOPs and model size, the improved YOLOv4 algorithm was only about 1/3 of SSD
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and 1/10 of YOLOv3. The above data sufficiently demonstrated the superiority of the
improved YOLOv4 algorithm model.

(3) The SIFT algorithm, with its strong anti-light interference ability, was used to extract
feature points from complex form sugarcane pictures. Furthermore, the SIFT feature
points were optimised by the RANSAC algorithm and epipolar constraint, which
effectively reduced the mismatching problem caused by the similarity between stem
nodes and sugarcane leaves.

(4) The optimised matching point pairs were used to solve the homography transforma-
tion matrix, so as to obtain the three-dimensional spatial coordinates of the complex
form stem nodes and verify their spatial location accuracy. The experimental results
showed that the maximum error of the Z coordinate in the spatial location of complex
form stem nodes was 2.86 mm, the minimum error was 1.13 mm, and the average
error was 1.88 mm, which totally meet the demand of sugarcane harvesting robots in
the next stage.

Considering the requirements for extended application on extreme environments,
further research investigating effects of the stem node recognition and location on the night
time with supplementary light may be beneficial. The parameters of the supplementary
lights, including the angle of supplementary lights, the number of lights, the change of
illuminance and the interference of surrounding light source, are worth being discussed.
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