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Abstract: The hermetic refrigeration compressor is the core component of the refrigeration system,
failure of which will cause energy waste and reduce service life. Fault diagnosis based on vibration
signal is a research hotspot. However, it is challenging to extract features of nonlinear and non-
stationary vibration signals, which severely restricts the development of this method. This paper
proposes a dual time-frequency images fusion method to obtain more effective features for diagnosing
compressor manufacturing defects. Firstly, two time-frequency images are obtained by implementing
continuous wavelet transform and Hilbert-Huang transform of the same vibration signal sample.
Then, a convolutional neural network is used for image feature extraction and fusion, where the
features extracted from two time-frequency images have complementarity. A data set containing
six categories of typical manufacturing defects is used to verify the proposed method. The results
show that the average diagnostic accuracy of the proposed method reaches 95.9%, and the proposed
method has a better performance than other methods.

Keywords: manufacturing defect diagnosis; dual time-frequency images fusion; deep learning;
convolutions neural network; hermetic refrigeration compressor

1. Introduction

Refrigerators and air conditioners, as essential household appliances, have a very
high prevalence rate around the world. A total of 1.4 billion refrigerators are used, and
the annual power consumption exceeds 650 TWh/year [1]. As the main body of building
energy consumption, air conditioner systems account for almost half of building energy
consumption and approximately 10–20% of total energy consumption [2]. Many researchers
have conducted extensive studies on refrigeration [3,4] and heat pump systems [5] in order
to improve the operational efficiency of refrigeration systems and reduce energy wastage.
However, as the core component of refrigerators and air conditioners, hermetic refrigeration
compressors directly determine the overall performance and stability of the system. For
example, failure of hermetic refrigeration compressors will cause refrigeration system
failure, increase noise, reduce service life and reduce COP. Breuker and Braun’s [6] research
showed that compressor failures are by far the costliest failure for refrigeration systems and
account for 24% of the costs. Most of the faults already exist in the process of producing
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equipment. Therefore, it is necessary to diagnose the hidden faults and manufacturing
defects of the assembled compressor in the production inspection link. At the same time,
the type of manufacturing defect of compressors can be diagnosed, and the cause of the
defect can be found. Lastly, the automated production line can be optimized.

In the past, fault diagnosis of hermetic refrigeration compressors often relied on man-
ually identifying abnormalities by touching and hearing. This method is not only wasting
manpower, but also makes it difficult to ensure accuracy. To solve this issue, a large number
of researchers have studied intelligent fault diagnosis methods for hermetic refrigeration
compressors. Cui et al. [7] used information entropy to analyze signal characteristics
and used support vector machines (SVM) to diagnosis the fault of the compressor valve.
Deng et al. [8] used infrared thermal imaging and SVM classifiers to diagnose reciprocating
compressors. Farzaneh-Gord et al. [9] used multiscale sample entropy and global distance
for compressor fault diagnosis. These methods can effectively diagnose the type of compres-
sor failure. However, these methods not only require a large amount of a priori knowledge
and take a lot of time, but also cannot handle complex data and big data. Since 2010, with
the rapid development of data-driven methods represented by deep learning, the above
issues have been easily solved. Zhang et al. [10] realized compressor fault diagnosis with
the help of a deep belief network and used ensemble empirical mode decomposition to de-
noise the original signal. Cabrera et al. [11] used long- and short-term memory networks to
diagnose compressor faults and used a Bayesian network to optimize the parameters of the
model. Xiao et al. [12] constructed deep convolutional neural networks (CNN) to diagnose
the fault of the reciprocating compressor air valve. In this paper, CNN are introduced to
automatically learn different feature information from the signal of a hermetic compressor
for fault classification.

In recent years, many studies have proposed intelligent fault diagnosis methods
for rotating machinery based on vibration signals. Xu et al. [13] used raw vibration
signals for fault identification of the fan. Huang et al. [14] proposed a deep decoupled
CNN input as the raw signal to diagnose faults. The time series does not represent the
frequency characteristics and displacement variation characteristics of the raw vibration
signal. Therefore, a time-frequency processing method is introduced to represent the time-
domain and frequency-domain characteristics of the raw vibration signal. Yang et al. [15]
used wavelet transform to extract vibration signal features and used neural networks to
classify the fault of reciprocating compressors. Pichler et al. [16] used the time-frequency
method for extracting features and used logistic regression and SVM to diagnose the fault of
the compressor valve. Konar et al. [17] proposed a comparative analysis of the continuous
wavelet transform (CWT) and the Hilbert transform while using a genetic algorithm
for fault diagnosis of asynchronous motors. Verstraete et al. [18] compared the feature
extraction capabilities of short-time Fourier transforms (STFT), CWT and Hilbert-Huang
transform (HHT), and finally used CNN for fault diagnosis. These methods demonstrate
that the time-frequency processing method has strong feature extraction capability.

The time-frequency processing method can improve the stability of the diagnosis
algorithm. It is difficult to find a method with absolute advantages because different
time-frequency processing methods have different advantages for the compressor vibration
signals. To avoid the disadvantage that a single type of time-frequency processing method
cannot express the rich information in the raw vibration signal, this paper proposes a dual
time-frequency image fusion method based on convolutional neural network for compres-
sor manufacturing defect diagnosis. This method realizes the fusion and complementation
of different time-frequency information and makes full use of the image feature recognition
ability of the deep neural network. The main contributions of the paper can be summarized
as follows:

(1) The proposed method uses CWT and HHT for feature extraction of the same raw
vibration signal, and the extracted features are complementary. The proposed method
achieves richer feature extraction for a single vibration signal and ensures the accuracy
of diagnosis.
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(2) The proposed method constructs a dual-channel fusion convolutional neural net-
work that can effectively learn manufacturing defect features from two time-frequency
images and fuse them to realize an end-to-end diagnosis of compressor manufacturing
defect based on the time-frequency image of the vibration signal.

(3) A large number of experiments verified the differences between different time-
frequency processing methods and different classification models and proved the superior-
ity of the proposed method with higher diagnostic performance and robustness.

The rest of this paper is organized as follows: Section 2 introduces the feature extraction
method—dual time-frequency images fusion. Section 3 presents a diagnosis method of
hermetic refrigeration compressors based on dual time-frequency images fusion. Section 4
introduces the experimental setup and data processing. Section 5 gives the experimental
results and comparative study, and Section 6 concludes the paper.

2. Feature Extraction Method—Dual Time-Frequency Images Fusion
2.1. Data Preprocessing

The time-domain signal of the compressor shows less characteristic information be-
cause the coupling between the fluid flow and the mechanical structure of the hermetic
refrigeration compressor causes the vibration signal to have complex characteristics. It
is necessary that the vibration signal is transformed in the time-frequency domain to ob-
tain richer feature information. Time-frequency transform methods, such as Wigner-Ville
distribution (WVD) [19], short-time Fourier transform (STFT) [20], continuous wavelet
transform (CWT) [18] and Hilbert-Huang transform (HHT) [21], have been widely used
to extract feature from vibration signal. However, WVD and STFT are hindered by low
time-frequency concentration and cross-term interference, and they also need additional
expertise and prior knowledge to identify the fault features [22,23]. The most widely used
methods are CWT and HHT. In the following, the principles of the two time-frequency
transformations are introduced in detail.

2.1.1. Continuous Wavelet Transforms

The continuous wavelet transform (CWT) has higher time resolution and lower fre-
quency resolution at high frequencies and has lower time resolution and higher frequency
resolution at low frequencies, which exhibits multiresolution analysis characteristics. The
CWT implements the wavelet transform, which is used to analyze nonperiodic signals and
transient signals at different scales or resolutions. The CWT of the signal x(t) is defined as:

Wϕ(b, a) =
1√
|a|

∫
x(t)ϕ∗(

t− b
a

)dt (1)

where ϕ∗ represents the conjugate transpose of the mother wavelet function ϕ, a is a scale
factor, b is the translation factor and |a|1/2 represents the energy normalization across the
different scales.

2.1.2. Hilbert-Huang Transform

The Hilbert-Huang transform (HHT) is NASA’s designated name for the combination
of empirical mode decomposition (EMD) [24] and Hilbert spectral analysis (HAS). The
HHT analysis process is implemented in two steps: the first step uses EMD to pre-process
the data, and the original data are decomposed into a set of finite intrinsic mode functions
(IMF); the second step is the Hilbert transform (HT) of the decomposed IMF to obtain
energy-frequency-time distribution.

The EMD decomposes any signal in the IMFs as follows: For any data sequence, x(t)
and m1, the local maximum and local minimum of the raw signal, are interpolated by cubic
splines to form the mean value of the upper and lower envelopes. The difference between
the signal and m1 is defined as component h1:

h1 = x(t)−m1 (2)
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This process can be repeated k times until h1k is a basic mode component:

h1k = h1(k−1) −m1k (3)

Then the first prototype component C1 obtained from the raw data is:

C1 = h1k (4)

After sorting out C1 from the raw data:

r1 = x(t)− C1 (5)

Since r1 still contains information of longer period components, r1 is still treated as
new data and processed as described above. This strategy can process all subsequent
remaining components r1. The sifting process ends when the preset stoppage criterion is
satisfied. The stoppage criterion can be set as follows: when the remaining component
becomes smaller than a predetermined value or when the remaining component becomes
a monotonic function. The EMD algorithm is based on the local characteristics of the
signal, and the basic mode components and residual components are obtained by iterative
screening of the local mean. It can be explained that the decomposition and reconstruction
of the signal have advantages, such as reducing noise interference and eliminating data.

According to the definition of HT, the HT of real function x(t) is the real-valued
function, which is defined as:

y(t) = H(x(t)) =
1
π

P
∫ +∞

−∞

x(u)
t− u

du (6)

Here, the P indicates the principal value of the singular integral. An analytical signal
was z(t), consisting of x(t) and y(t) in the complex number of x(t).

z(t) = x(t) + iy(t) = a(t)ejθ(t) (7)

Here, a(t) is the amplitude of the analytical signal, and θ(t) is the phase of the analyti-
cal signal.

a(t) =
√

x(t)2 + y(t)2 (8)

θ(t) = arctan(y(t)/x(t)) (9)

Therefore, according to the definition, the instantaneous frequency expression is:

ω(t) = dθ(t)/dt (10)

The polar coordinate expression shown in Equation (7) further emphasizes the local
characteristics. It can be seen from this expression that both amplitude and phase are
functions of time, and these form the basis of signal expression in the time domain.

2.2. Establishment of Dual Time-Frequency Images Fusion

According to the above part, it can be seen that the principles of the two time-frequency
transformation methods are different, so the extracted features are complementary in the
dual time-frequency images. To extract more features and improve the diagnosis accuracy
of compressor manufacturing defects, this paper proposes a dual time-frequency image
fusion method, and its structure is shown in Figure 1. The inputs of two parallel convolution
and pooling layers are different time-frequency images, and the output is the one-hot label
of the input image. The CNN has been successfully applied in various aspects such as
image processing [25] and speech recognition [26].
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Figure 1 shows that the proposed method structure consists of signal preprocessing
and CNN. In the signal preprocessing part, CWT and HHT are performed on the same raw
vibration signal to obtain two time-frequency images, which reshape to be 128 × 128 pixels.
The CNN comprises two parallel convolution and pooling modules, two fully connected
layers and an output layer. First, two parallel convolution and pooling modules extract
features from dual time-frequency images, respectively.

Feature maps can be obtained in the convolutional layer by convolving the input
images with multiple convolutional kernels. The results are input into the activation
function. The formula is as follows:

ac,k = f (X ∗Wc,k + bc,k) (11)

Here, ac,k represents the output of the k-th convolutional surface of the convolutional
layer; Wc,k represents the weight matrix corresponding to the k-th convolution kernel; X
represents the input matrix; bc,k represents the bias term; and f represents the activation
function. We chose the most widely used activation function ReLU.

For the pooling layer, this paper chooses the maximum pooling. The formula is
as follows:

an,k = max(aij)i, j = 1, 2, . . . , n (12)

Here, an,k represents the k-th pooling layer, aij represents the block of the output matrix
of the previous convolutional layer and n represents the dimension of sub−block of the
output matrix of the previous convolutional layer. The pooling layer often follows the
convolution layers. The pooling layers play the role of quadratic feature extraction, feature
dimensionality reduction and limited feature selection.

Secondly, two parallel convolution and pooling modules extract CWT time-frequency
image and HHT time-frequency image features, which spliced in the first fully connected
layer. Therefore, this process shows realistic feature fusion.

The calculation formula of the fully connected layer is as follows:

a f c = f (anW f c + b f c) (13)

Here, a f c represents the output; an represents input; W f c represents the weight matrix;
b f c represents the bias term; and f represents the ReLU activation function.

The fusion stage is implemented by feeding all the extracted dual time-frequency
images features into a full-connected layer where the process of feature fusion is realized.
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The fully connected layer passes the output value to the output layer for classification. The
expression of the softmax function of the output layer is as follows:

softmax(y)i = eyi

/
n

∑
j=1

eyi (14)

Here, yi represents the i-th output in the fully connected layer; softmax(y)i represents
the probability of the corresponding manufacturing defect types corresponding to the
i-th outputs.

The method of “Dropout” [27] is introduced within the fully connected layer to
prevent over-fitting during classification. During training, some neuron in the hidden layer
is stopped. This improves the network’s capability to generalize and prevents overfitting.

According to the above section, the proposed method consists of four convolutional
layers and pooling layers, two connected layers and a Softmax layer. We used cross-entropy
loss function and Adam [28] optimization function to train the model. The learning rate is
0.001. This optimizer is suitable for models with many parameters, extensive data and small
calculation memory requirements. The weights and biases of the local convolutional and
fully connected layers are all trained together through backpropagation. The parameters of
the proposed method are shown in Table 1, where i represents the i-th channel.

Table 1. Parameters of the proposed method.

No. Layer Type Kernel Size/Stride Output Size

1 Convolution 1—i, i = 1, 2 4 × 4 × 16/1 × 1 125 × 125 × 16
2 Max-pooling 1—i, i = 1, 2 2 × 2 62 × 62 × 16
3 Convolution 2—i, i = 1, 2 4 × 4 × 32/1 × 1 59 × 59 × 32
4 Max-pooling 2—i, i = 1, 2 2 × 2 29 × 29 × 32
5 Convolution 3—i, i = 1, 2 3 × 3 × 64/1 × 1 27 × 27 × 64
6 Max-pooling 3—i, i = 1, 2 2 × 2 13 × 13 × 64
7 Convolution 4—i, i = 1, 2 3 × 3 × 128/1 × 1 13 × 13 × 128
8 Max-pooling 4—i, i = 1, 2 2 × 2 6 × 6 × 128
9 Flattened layer 1 × 15,488

10 Concatenating 1 × 30,976
11 Full-connected layer 1 128 1 × 128
12 Dropout
13 Full-connected layer 2 32 1 × 32
14 Softmax 6 1 × 6

3. Diagnosis Method for Hermetic Refrigeration Compressor Based on Dual
Time-Frequency Images Fusion

This paper proposes a dual time-frequency image fusion based on CNN to diagnose
compressor manufacturing defects. This method uses CWT time-frequency image and
HHT time-frequency image as the input of the CNN and automatically extracts rich features
from dual time-frequency images, and extracted features are complementary. The overall
framework is shown in Figure 2. The detailed procedure of the general framework is
described as follows:

Step 1: Some vibration data samples are collected by accelerometers mounted on the upper
surface of the compressor for different types of manufacturing defects.
Step 2: The same vibration signal is simultaneously transformed by HHT and CWT to
obtain two time-frequency images.
Step 3: The time-frequency images are divided into the training set, validation set and
testing set, with each group of time-frequency images being selected randomly and mapped
into one−hot vectors.
Step 4: Training sets are applied to train the proposed method to obtain the optimal model
parameters.
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Step 5: Testing sets are input into the well−trained model for manufacturing defect diag-
nosis and method evaluations.
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4. Experimental Setup and Data Processing
4.1. Experimental Setup

The data acquisition system includes compressors, an acceleration sensor, a data
acquisition card with a corresponding crate and a computer. The connectivity of the data
acquisition system components is shown in Figure 3. The computer uses LabVIEW2020,
a software that integrates signal measurement, control and visualization. The crate and
data acquisition card are both made by National Instruments. The crate is a Cdaq-9171
minicrate, and the data acquisition card is a NI-9234 high−speed acquisition board. The
acceleration sensor is installed in the center of the upper surface of the compressor, as
shown in Figure 3. In order to match the detection time on the production line with the
production beat, it can be seen that a sensor measuring vibration signal is the best choice.
The sensor has a sensitivity of 100 mV/g. The sampling frequency of the sensor is 25.6 kHz.
The speed of the compressor is 3000 rpm. These typical manufacturing defects are shown
in Table 2 and Figure 4. The model is conducted in Python 3.6, 64 bits running on Windows
10 × 64, an Intel Xeon Silver 4214 CPU with 128 G and a GeForce RTX 2080Ti GPU with
11 GB. Keras version 2.1.6 is used for deep learning analysis.
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Table 2. Description of hermetic refrigeration compressor manufacturing defect.

Label Manufacturing Defect Description Number of Training/Testing Sample

#0 Normal hermetic refrigeration compressor 1200/300
#1 Discharge pipe contacting stator 1200/300
#2 Crankshaft contacting discharge pipe 1200/300
#3 Shedding of support spring 1200/300
#4 Incorrect position of silencer 1200/300
#5 Foreign body in suction valve 1200/300
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In order to analyze the system of acquiring and analyzing data in energy saving, the
following calculation steps are required. Firstly, we calculate the energy consumption when
the acquisition and analysis system diagnoses a malfunctioning compressor. Assuming
that a factory produces 3000 units a day, the probability of failure (∆p) is 0.5%.

Qacq = Pacq ∗ hacq/(P ∗ ∆p) (15)
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The power of the acquisition and analysis system (Pacq) is 450 w/h, and the system
run time (hacq) is 20 h a day. P is daily production. Therefore, Qacq is 0.6 kWh.

Secondly, we calculate the energy consumption of the refrigerator when the compressor
fails.

Qre f = Wcomp ∗ ∆w ∗ hr ∗ β (16)

The refrigerator compressor consumes (Wcomp) 385 kWh of energy annually [29]; the
life of the refrigerator (hr) is ten years; the utilization rate of the refrigerator (β) is 0.8; and
∆w represents power consumed increase rate. The calculation formula of COP is as follows:

COP = Qh/W (17)

Here, Qh represents the heating capacity (kW), and W represents the power consumed (kW).
The COP of a compressor (∆cop) reduces by about 10% when the compressor valve

leaks [6]. When the heating capacity is not changed, power consumed (∆w) increases by
about 10%.

Therefore, the energy consumption of the refrigerator increases by 308 kWh when
the compressor fails. The energy that can be saved is 307.4 kWh when producing a
malfunctioning compressor.

4.2. Data Processing

In the experiment, we repeated measurements 30 times for each type of manufacturing
defect, and the duration of a single measure was 5 s. The total sampling time was 150 s.
The sampling time of each sample was 0.1 s, and each sample contained 2560 data points.
Thus, the data set had 9000 samples, of which 7200 samples are the training set, and the
remaining 1800 samples are the testing set. The number of samples for the training set
and test set for six typical manufacturing defects are shown in Table 2. We randomly
selected 20% of the training set data as the validation set. Each sample was transformed
into a group of time-frequency images using CWTs and HHTs, simultaneously. The energy
scales of CWT time-frequency images and the HHT time-frequency image are [0, 0.1] and
[0, 0.01], respectively.

5. Experiment Result and Comparative Study

Extensive research has been carried out to prove the superiority of the proposed
method. In Section 5.1, the similarities and differences between the time-domain diagram
and time-frequency image of typical manufacturing defects are introduced, proving that it
is difficult to diagnose types of manufacturing defects. Section 5.2 uses confusion matrix
and t-distributed stochastic neighbor embedding (t-SNE) to demonstrate the classification
ability of the proposed method. In Section 5.3, four evaluation indicators are used to
evaluate different diagnostic methods to illustrate the superiority of the proposed method.

5.1. Experimental Data for Typical Manufacturing Defects

Hermetic refrigeration compressors have a complex structure and many excitation
sources. The raw vibration signals of six typical hermetic refrigeration compressors manu-
facturing defects are shown in Figure 5. It can be observed seen that the amplitude of #2
and #4 are 8 g and 0.8 g, respectively. The amplitudes of the other four typical manufactur-
ing defect compressors are similar except for #2 and #5; the time-domain diagram of the
vibration signal depicts a sine wave.

A time-frequency image is a two-dimensional data matrix that carries more informa-
tion in the time and frequency domains than a one−dimensional signal. The raw vibration
signals are transformed by CWT and HHT, and the time-frequency images are shown
in Figures 6 and 7. Notably, the CWT time-frequency image shows more features in the
low-frequency part, and the HHT time-frequency image shows more features in the high-
frequency part. It can be demonstrated that the features of two time-frequency images
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are complementary. It can be observed that the CWT time-frequency image has obvious
frequency bands, while the HHT time-frequency image has apparent aliasing phenomena.
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spring; (#4) Incorrect position of silencer; (#5) Foreign body in suction valve.

Figures 6 and 7 show that the magnitude of the energy in the time-frequency image is
proportional to the amplitude of the vibration signal. It can be seen that the time-domain
diagram and the time-frequency images of some typical manufacturing defect compres-
sors are very similar. The time-frequency characteristics of the two hermetic refrigeration
compressors are different in the same type of manufacturing defect. Therefore, it is chal-
lenging to diagnose the manufacturing defects of hermetic refrigeration compressors by
traditional methods.
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Discharge pipe contacting stator; (#2) Crankshaft contacting discharge pipe; (#3) Shedding of support
spring; (#4) Incorrect position of silencer; (#5) Foreign body in suction valve.

5.2. The Performance of the Proposed Method

In this part, the performance of the proposed method is discussed for the diagnosis
of each manufacturing defect. The testing set for each type of manufacturing defect has
300 samples. The testing results of the proposed method are presented by confusion matrix
and t-SNE.

The confusion matrix of the proposed method is recorded ten times, and the average
value is shown in Figure 8. Figure 8 clearly shows that the diagnostic accuracy of the
#2, #3 and #4 are 100%; the diagnostic accuracy of the #0, #1 and #5 are 90%, 92.3% and
88.1%, respectively. It can be seen that most of the misclassified samples of #0 and #1 are
diagnosed as #5, and the misclassified sample of #5 is diagnosed as #0 and #1. It can be
proved that the proposed method can extract different features for classification in #2, #3
and #4. The extracted features of the proposed method are very similar in #0, #1 and #5. It
can be proved that the data description of typical manufacturing defects is correct in the
previous part.
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The “t-SNE” can express the feature extraction ability of the model and analyze the
clustering of features more intuitively. The visualization tool “t-SNE” implements high-
dimensional feature mapping to visualize the learned characteristics, as shown in Figure 9.
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In Figure 9, it can be seen that the proposed model effectively learned feature informa-
tion, which helps diagnose and classify a manufacturing defect, and high-level features
show prominent clustering characteristics. It is concluded that the proposed method has
better diagnostic performance and learned characteristics capabilities.

5.3. Comparison of Different Methods

In this part, to further illustrate that the proposed method has high diagnostic perfor-
mance, the four different evaluation indexes of the proposed method are compared with
those of other methods. Evaluation indicators include average Accuracy, Precision, Recall
and F1-score. The formulae for average Accuracy, Precision, Recall and F1-score are (18)–(21).

Accuracy =
|TP|+|TN|

|TP|+|FP|+|TN|+|FN| (18)

Precision =
|TP|

|TP|+|FP| (19)

Recall =
|TP|

|TP|+|FN| (20)

F1-score =
2 ∗ Precision ∗ Recall

Precision + Recall
(21)

Take #0 as an example: |TP| represents the number of samples classified correctly
into #0, |TN| represents the number of samples classified correctly into other defects, |FP|
represents the number of samples classified incorrectly into #0 and |FN| represents the
numbers of samples in #0 classified into other classes. The F1-score is used to reflect the
overall indicator comprehensively. Here are six different comparison methods:

(1) Artificial neural network (ANN) using raw vibration signals (RVS) as input (RVS + ANN);
(2) ANN using HHT time-frequency images as input (HHT + ANN);
(3) ANN using CWT time-frequency images as input (CWT + ANN);
(4) One−dimensional CNN using RVS as input (RVS + 1DCNN);
(5) CNN using HHT time-frequency images as input (HHT + CNN);
(6) CNN using CWT time-frequency images as input (CWT + CNN);

The input shapes and parameters of the other methods are shown in Table 3. Different
methods record ten trials of diagnosis accuracy, and the average accuracy is utilized to
quantify the method, as shown in Table 3. The other evaluation indicators of the different
methods are shown in Figure 10 for each type of manufacturing defect.
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Table 3. Comparison results of different methods.

Methods Input Shape Parameters Average
Accuracy Train Time Test Time of

Each Sample

RVS + ANN (2560, 1)

FC(N = 128, 64) + softmax(N = 6)

61.8% 26.6 s 0.0378 s

HHT + ANN (128, 128, 3) 69.7% 186.1 s 0.0388 s

CWT + ANN (128, 128, 3) 85.0% 188.0 s 0.0378 s

RVS + 1DCNN (2560, 1)
C(KC = 16, 9, 9; Strides = 2, 2, 1) + P(S

= 3, 3, 3) + FC(N = 128, 32) +
softmax(N = 6)

69.8% 26.1 s 0.0548 s

HHT + CNN (128, 128, 3) C(KC = 4, 4, 3, 3; Strides = 1, 1, 1, 1) +
P(S = 2, 2, 2, 2) + FC(N = 128, 32) +

softmax(N = 6)

74.6% 55.8 s 0.0378 s

CWT + CNN (128, 128, 3) 90.0% 63.3 s 0.0886 s

Proposed
method

(128, 128, 3)
— 95.9% 104.0 s 0.1314 s

(128, 128, 3)

C = convolution layer; P = pooling layer; FC = fully connected layers; KC = number of kernels in convolutional
layer; S = subsampling rate; N = nodes.
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Table 3 shows that the proposed method yields the highest accuracy up to 95.9%,
training time is 104 s for 7200 samples and testing time of each sample is 0.1314 s. Therefore,
it can be calculated that the proposed method can test 465 samples per minute. Comparing
the diagnostic accuracy of different classifiers shows that the diagnostic accuracy of CNN is
significantly higher than that of ANN. It can be explained that the CNN, as a deep model, is
competent to fuse features in depth and extract more valuable features for compressor man-
ufacturing defect diagnosis. Comparing the diagnostic accuracy of different preprocessing
methods shows that the diagnostic accuracy of the HHT and CWT methods is higher than
that of the RVS method because the time-frequency image can show more features than the
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raw vibration signal for manufacturing defect diagnosis. The training time of the proposed
method is only lower than that of the HHT + ANN method and CWT + ANN method. The
testing time of each sample of the proposed method is larger than that of other methods,
but the test rate meets the requirements of the production line.

Figure 10 clearly shows that the evaluation indicator of the proposed method is
generally better than that of the other methods for each typical manufacturing defect. A
detailed analysis of #0 shows that the recall of CWT + ANN is 9.9% higher than that of
the proposed method. However, the precision of CWT + ANN is 31.2% lower than that
of the proposed method in #0. From the analysis of CWT + ANN, it can be observed that
a small number of normal compressor (#0) samples are misdiagnosed as other defects,
but some defective compressor samples are misdiagnosed as #0. If the faulty samples are
misdiagnosed as normal samples, it may lead to the failure of the refrigeration system.
Thus, it is unreliable to rely only on recall and precision to evaluate the model. The F1-score
is an evaluation index that combines the two indicators and comprehensively reflects the
overall indicator. It can be seen from Figure 10c that the F1-score of the proposed method is
13.6% higher than that of the CWT + ANN for #0. A detailed analysis of #3 and #5 reveals
that recall, precision and F1-score of the proposed method are higher than that of other
methods. The recall, precision and F1-score of each typical manufacturing defect are mostly
greater than 90%. It can be proved that the performance of the proposed method is superior
to other methods for the diagnosis of compressor manufacturing defects. Since the dual
time-frequency image features extracted can be complementary, the proposed methods
obtain richer features and higher diagnostic performance.

The hermetic refrigeration compressor usually is tested in varying ambient noise levels.
Therefore, it is necessary to study the diagnosis performance of the proposed methods
under various conditions with a low signal-to-noise ratio (SNR). Robust fault diagnosis
of rotating machinery is realized at low SNR conditions [30]. Gaussian white noise with
different standard deviations is added to the raw vibration signal to create signals with
different SNRs. The formula for SNR is given below:

SNR = 10 log10(Psignal/Pnoise) (22)

Here, Psignal is the signal power, and Pnoise is the noise power.
The diagnostic accuracy of the three models is compared when the SNR ranges from

−6 dB to 6 dB. Each model records ten trials of diagnostic accuracy; the average diagnostic
accuracy is utilized to quantify the model performance. The diagnostic accuracy of the
different methods under different SNR is shown in Figure 11.
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It can be seen in Figure 11 that the diagnostic accuracy of different methods decreases
as noise power increases. When SNR is 6 dB, the accuracy of the proposed method, the
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CWT + CNN method and the HHT + CNN are 92.9%, 89.1% and 72.9%, respectively. When
SNR is the same, the accuracy of the proposed method is higher than that of other methods.
The result shows that the proposed method has strong antinoise abilities and robustness in
noisy environments.

6. Conclusions

This paper proposes a novel diagnosis method for compressor manufacturing defects,
including data processing, time-frequency feature extract using CWT and HHT and feature
fusion using CNN. The main conclusions are as follows:

(1) The proposed method uses CNN to fuse the features of CWT time-frequency image
and HHT time-frequency images to obtain more fault-related features for compressor
manufacturing defect diagnosis.

(2) The performance of the proposed method is verified by the confusion matrix and
t-SNE. The diagnostic accuracy of the proposed method is greater than 88% in each
type of manufacturing defect.

(3) It is found that the average accuracy of the proposed method can reach 95.9%, which
is far better than other methods. The recall, precision and F1-score of the proposed
method are significantly improved for each type of manufacturing defect. Although
the recall of CWT + ANN is 9.9% higher than that of the proposed method in #0, the
precision and F1-score of the proposed method are 31.2% and 13.6% higher than that
of CWT + ANN in #0, respectively. Therefore, this further illustrates the effectiveness
of the proposed method for compressor manufacturing defect diagnosis.

The study uses vibration signals to diagnose manufacturing defects of compressors,
but the diagnostic performance and the normal compressor’s recall of the proposed method
need to be further improved. In future work, when the diagnostic rate of the compressor
matches the beat of the production line, the addition of different kinds of sensor information,
such as current signal and sound signal, can be considered for integrated analysis. Adding
different sensor information will improve the diagnostic performance and recall of the
algorithm in different working environments.
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29. Gürel, A.E.; Ağbulut, Ü.; Ergün, A.; Ceylan, İ. Environmental and economic assessment of a low energy consumption household

refrigerator. Eng. Sci. Technol. Int. J. 2020, 23, 365–372. [CrossRef]
30. Ferracuti, F.; Freddi, A.; Monteriù, A.; Romeo, L. Fault Diagnosis of Rotating Machinery Based on Wasserstein Distance and

Feature Selection. IEEE Trans. Autom. Sci. Eng. 2021, 1–11. [CrossRef]

http://doi.org/10.1016/j.energy.2020.119232
http://doi.org/10.1080/10789669.1998.10391406
http://doi.org/10.1016/j.jlp.2009.08.012
http://doi.org/10.3390/s20123436
http://www.ncbi.nlm.nih.gov/pubmed/32570714
http://doi.org/10.1016/j.jngse.2016.09.062
http://doi.org/10.1016/j.measurement.2020.107619
http://doi.org/10.1016/j.neucom.2019.11.006
http://doi.org/10.3390/app10186596
http://doi.org/10.1016/j.seta.2020.100975
http://doi.org/10.1109/ACCESS.2018.2886343
http://doi.org/10.1016/j.ymssp.2004.06.002
http://doi.org/10.1016/j.ymssp.2015.09.005
http://doi.org/10.1016/j.asoc.2014.11.062
http://doi.org/10.1155/2017/5067651
http://doi.org/10.1016/j.jsv.2003.07.002
http://doi.org/10.1016/j.ymssp.2013.01.017
http://doi.org/10.1098/rspa.1998.0193
http://doi.org/10.1016/j.dsp.2014.12.015
http://doi.org/10.1016/j.measurement.2018.04.059
http://doi.org/10.1002/9780470061626.shm052
http://doi.org/10.1109/TASLP.2014.2339736
http://doi.org/10.1016/j.jestch.2019.06.003
http://doi.org/10.1109/TASE.2021.3069109

	Introduction 
	Feature Extraction Method—Dual Time-Frequency Images Fusion 
	Data Preprocessing 
	Continuous Wavelet Transforms 
	Hilbert-Huang Transform 

	Establishment of Dual Time-Frequency Images Fusion 

	Diagnosis Method for Hermetic Refrigeration Compressor Based on Dual Time-Frequency Images Fusion 
	Experimental Setup and Data Processing 
	Experimental Setup 
	Data Processing 

	Experiment Result and Comparative Study 
	Experimental Data for Typical Manufacturing Defects 
	The Performance of the Proposed Method 
	Comparison of Different Methods 

	Conclusions 
	References

