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Abstract: Accurate segmentation of cardiovascular structures plays an important role in many clinical
applications. Recently, fully convolutional networks (FCNs), led by the UNet architecture, have
significantly improved the accuracy and speed of semantic segmentation tasks, greatly improving
medical segmentation and analysis tasks. The UNet architecture makes heavy use of contextual
information. However, useful channel features are not fully exploited. In this work, we present
an improved UNet architecture that exploits residual learning, squeeze and excitation operations,
Atrous Spatial Pyramid Pooling (ASPP), and the attention mechanism for accurate and effective
segmentation of complex cardiovascular structures and name it AB-ResUNet+. The channel attention
block is inserted into the skip connection to optimize the coding ability of each layer. The ASPP block
is located at the bottom of the network and acts as a bridge between the encoder and decoder. This
increases the field of view of the filters and allows them to include a wider context. The proposed AB-
ResUNet+ is evaluated on eleven datasets of different cardiovascular structures, including coronary
sinus (CS), descending aorta (DA), inferior vena cava (IVC), left atrial appendage (LAA), left atrial
wall (LAW), papillary muscle (PM), posterior mitral leaflet (PML), proximal ascending aorta (PAA),
pulmonary aorta (PA), right ventricular wall (RVW), and superior vena cava (SVC). Our experimental
evaluations show that the proposed AB-ResUNet+ significantly outperforms the UNet, ResUNet,
and ResUNet++ architecture by achieving higher values in terms of Dice coefficient and mIoU.

Keywords: AB-ResUNet+; ASPP; attention mechanism; artificial intelligence; CTA; cardiovascular
segmentation; deep learning; residual learning

1. Introduction

Cardiovascular diseases (CVDs) are the leading cause of death worldwide. The World
Health Organization (WHO) estimates that 17.9 million people died from cardiovascular
disease in 2019, accounting for 32% of deaths worldwide. Of these deaths, 85% were due to
coronary heart disease and stroke [1]. Early diagnosis and appropriate treatment can signif-
icantly reduce mortality and improve the quality of life. The diagnostic process commonly
consists of two main parts. The first part refers to obtaining images of cardiac structures
with the help of imaging devices. Imaging techniques, such as computed tomography
(CT) or magnetic resonance imaging (MRI), allow inspection of a human body without
surgically cutting into it. CT has become one of the most common imaging techniques for
examining the human cardiovascular system. The second part of the diagnostic process is
interpreting and quantifying images using advanced image processing methods.

Manual or semiautomatic segmentation of cardiovascular structures from CT images
is a time-consuming process, often prone to error. Not only may segmentation drawn by
two radiologists differ (inter-observer variability), but there will also not be an agreement
between segmentation drawn by the same radiologist at different occasions (intra-observer
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variability). This is mainly due to the high noise in CT images and their fluctuating contrast.
For example, the coronary sinus is almost devoid of contrast in the CT data, making it
difficult to distinguish from surrounding tissues. The papillary muscles are complex and
small, making them difficult to distinguish from the noise. Segmentation of the right
ventricular wall is complex because of the thin myocardium and considerable inter-patient
individual variability. Therefore, there is a need to develop automated tools to facilitate
cardiovascular images segmentation and interpretation.

Deep learning, particularly convolutional neural networks (CNNs), shows promising
results in automatic segmentation for a variety of medical applications [2,3]. A popular
deep learning architecture in the field of semantic segmentation for biomedical applications
is UNet [4]. UNet’s symmetric, encoder–decoder architecture allows automatic learning
of features at different levels. Nevertheless, low-level features learned in the encoder are
rich with feature space information but lack semantic information, and high-level features
learned from the decoder are the opposite. Thus, the direct concatenation of these features
may not produce the most optimal results. Researchers have already offered plenty of
improvement schemes based on UNet. For example, addition of residual connections in
ResUNet architecture propagates information over layers, allowing building of deeper
neural networks and reducing the impact of exploding or vanishing gradients, which
ultimately alleviates training performance [5]. Moreover, contrary to UNet, architectures
such as RefineNet [6], DenseNet [7], or SegNet [8] only use the highest layer features while
they lack in low-level representation. This was further improved in DeepLabV3 [9] and
ResUNet++ [10], where extracted features are passed through the Atrous Spatial Pyramid
Pooling (ASPP) module to obtain multi-scale information [9]. Although it is advantageous
to have as many extracted features as possible, not all features are equally important.
Therefore, distinguishing between feature importance allows the network to focus on the
most important features. To solve this problem, SENet architecture [11] introduces squeeze-
and-excitation operations that can capture the importance degree of each feature channel
through the feature recalibration strategy. Based on the importance degree, the less useful
features are suppressed while more useful features are enhanced. Similarly, the attention
mechanism dynamically allocates the input weights of neurons to selectively focus on
the most critical part of the information [12] and are often introduced into UNet-based
architectures to improve their performance. Nevertheless, such networks effectively fuse
multi-level features but do not fully utilize the contextual information.

The primary motivation behind this work is to introduce a new UNet-based network
that will fully explore useful features of the channel and capitalize on the contextual infor-
mation with an overall aim of increasing segmentation accuracy and training performance.
To achieve this, we introduce three modifications to the original UNet. First, we add
residual connections to each layer of the encoder and decoder to help network training.
Second, we introduce a self-attentive mechanism in skip connections to capture feature de-
pendencies in the channel dimension while ensuring effective fusion of multi-level features.
This is achieved by assigning the specific attention weight to channels, which reduces noise
and gives more attention to essential regions. Third, we use ASPP blocks as the bottom
structure of UNet to effectively increase the receptive field and reduce the impact of learned
redundant features, with the overall aim of obtaining higher segmentation accuracy.

1.1. Research Contributions

Therefore, in this paper we present a new AB-ResUNet+ architecture. Our intention is
to construct a network that can achieve high segmentation accuracy with a small dataset
and use it for segmentation of complex cardiovascular structures.

In summary, the contributions of the paper are as follows:

• We present a new AB-ResUNet+ architecture that uses residual learning, squeeze
and excitation operations, Atrous Spatial Pyramid Pooling (ASPP), and the attention
mechanism.
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• The channel attention block is inserted into the skip connection to optimize the coding
ability of each layer.

• The proposed architecture works well with small datasets.
• Our proposed architecture significantly improves the segmentation of challenging

cardiovascular structures.

We evaluated our model on eleven datasets with different cardiovascular structures.
Our experimental evaluations show that the proposed AB-ResUNet+ architecture outper-
forms the UNet, ResUNet, and ResUNet++ architectures by achieving higher values in
terms of Dice coefficient and mean intersection over union (mIoU).

1.2. Paper Overview

The remainder of the paper is structured as follows. In Section 2, we give an overview
of related research. Section 3 gives details about our proposed method. Section 4 provides
dataset description and implementation details. Section 5 presents conducted experiments
and obtained results for different cardiovascular structures. Finally, the discussion and
concluding remarks are given in Sections 6 and 7, respectively.

2. Related Research

In this section, we discuss some related work. First, we briefly review previous
methods in cardiovascular segmentation, focusing on CNN-based approaches. Second, we
introduce essential deep learning concepts and networks relevant to our research.

2.1. Previous Methods for Cardiovascular Segmentation

Recent advances in medical imaging have been facilitated by the widespread ap-
plication of deep learning techniques. Two-stage segmentation methods consisting of
localization and segmentation steps [13–15], FCNs with deep supervision [16,17], multi-
view CNNs [18,19], and residual network variants are most commonly used for various
cardiovascular segmentation tasks. Few works use UNet architecture to provide exper-
imental analysis observing the influence of different parameters for final segmentation
results. For example, Baumgartner et al. [20] investigate two-dimensional (2D) UNet and
three-dimensional (3D) UNet with various hyperparameters. Patravali et al. [21] evaluated
a 2D and 3D UNet trained with varying Dice and cross-entropy losses. Jang et al. [22]
implemented an M-Net architecture in which the decoding layer’s feature maps are con-
catenated with those of the previous layer. Luo et al. [23] propose a method based on
UNet combined with image sequence information. They introduce two modules: the
contextual extraction module and the segmentation module. The context extraction module
can fully extract the context features of the image to be segmented and effectively combine
the sequence features. The segmentation module is an encoder–decoder module and the
input image can directly predict a segmented image. The module effectively learns the
characteristics of the original image and avoids feature loss and gradient dispersion by the
design of the skip connection. Isensee et al. [24] implemented an ensemble of 2D and 3D
UNet architectures (with residual connections along with the upsampling layers). Yang
et al. [25] implemented a 3D UNet with residual connections instead of a commonly used
concatenation operator. Chen et al. [26] proposed TransUNet architecture, with inherent
global self-attention mechanisms into UNet. In the encoder, the transformer tokenizes
image patches from a CNN feature map. At the same time, the decoder upsamples the
encoded features before combining them with the high-resolution CNN feature maps to
enable exact localization. Transformers overcome UNet’s limited localization ability due
to insufficient low-level details. Cao et al. [27] propose UNet-based architecture named
swin-Unet. They use hierarchical swin transformer with shifted windows [28] as the en-
coder to extract context features, and symmetric swin transformer-based decoder with
patch expanding layer designed to perform the upsampling operation to restore the spatial
resolution of the feature maps.
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Furthermore, structure-wise, commonly observed are the whole heart and its main
substructures, such as left ventricle (LV), right ventricle (RV), left atrium (LA), right atrium
(RA), pulmonary artery (PA), descending aorta (DA), and coronary arteries [29,30]. How-
ever, the coronary sinus (CS), right ventricular wall (RVW), left atrial wall (LAW), superior
vena cava, and inferior vena cava (SVC, IVC) are somewhat less explored structures. This
is mainly due to the lack of annotated datasets. Recently, Baskaran et al. [31] used the UNet
architecture to segment the proximal ascending and descending aorta (PAA, DA), superior
and inferior vena cavae (SVC, IVC), pulmonary artery (PA), coronary sinus (CS), right
ventricular wall (RVW), and left atrial wall (LAW) and made the dataset publicly available.
This dataset is used in our work.

2.2. Residual Learning, Spatial Pyramidal Pooling, and Attention Mechanism

Segmentation accuracy can be improved with increasing network depth. However,
this has been shown to hinder the training process and ultimately contribute to accuracy
degradation [32]. He et al. [33] proposed deep residual learning to facilitate the training
process and solve the degradation problem. ResUNet [5] uses full residual units prior
to activation. The residual unit simplifies the training of the deep network, and the skip
connection within the network ensures that the information is passed without degradation.
The improved version of the ResUNet is the ResUNet++ architecture [10]. It takes advantage
of the residual blocks, the squeeze and excitation block, ASPP, and the attention block. The
attention mechanism, placed at the bottom of UNet architecture, determines which parts of
the network require more attention [12]. In this way, it reduces the computational cost of
information encoding and enhances the quality of features that boost the results, ultimately
enhancing the results.

Convolution is an essential step in both CNN and FCN models, as it allows models
to learn increasingly abstract feature representations. However, the pooling operations
and the convolution steps between layers in the convolution process reduce the spatial
resolution of the feature map, resulting in a loss of spatial detail. To learn the contextual
information at multiple scales, dilated or atroid convolutions [34–36] are introduced. They
are able to increase the receptive field and maintain the resolution of the feature map
by injecting holes into the standard convolution. Compared to the original standard
convolution, the dilation convolution has a hyperparameter called dilation rate, which
refers to the number of intervals of the convolution kernel. The idea of capturing contextual
information at different scales subsequently led to the ASPP module [9,37]. Here, a large
number of parallel atrous convolutions with different rates are fused together in the input
feature map to control the field of view and accurately capture information at different
scales [38]. The most prominent network that uses dilated convolution is DeepLabV3 [39].
This network combines the contextual information at multiple scales by fusing the lower
and upper layer features. In addition, PSPNet18 [40] uses a pyramid pooling module that
aggregates contextual information of different grid scales to improve the ability to obtain
global information. In DeconvNet [41], stacked deconvolution layers are used for full
resolution recovery. However, this results in a large number of parameters and can lead to
difficulties in training.

3. Methodology

This section presents a theoretical overview of the proposed encoder–decoder-based
architecture. We give an overall architecture design and introduce the main building blocks
and their purpose.

3.1. Architecture Overview

In this work, we present a new UNet-inspired architecture, AB-ResUNet+, that exploits
residual learning, squeeze and excitation operations, Atrous Spatial Pyramid Pooling
(ASPP), and the attention mechanism for accurate and effective segmentation of complex
cardiovascular structures.
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The proposed AB-ResUNet+ architecture consists of one stem block and three encoder
blocks, ASPP and three decoder blocks. The encoder consists of squeeze-and-excitation
and residual blocks, i.e., two successive 3× 3 convolutional layers and identity mapping.
Each convolution layer includes an ReLU activation layer and batch normalization. The
identity mapping connects the input and output of the encoder block. The output of the
residual blocks in the encoder part is routed through the squeeze-and-excitation block
to increase the representational power of the network. The main improvement is mainly
achieved by adding the channel attention block into the skip connection. The addition of
the channel attention block in each skip connection improves the coding ability in each
layer and successfully eliminates irrelevant and redundant information. This improves
the network’s ability to distinguish between feature importance and focus on the most
important features. The ASPP block is placed at the bottom of the network and acts as
a bridge between the encoder and the decoder, increasing the field of view of the filters
and allowing them to include a wider context. The decoder consists of residual blocks, a
1× 1 convolution with sigmoid activation, that provides the final segmentation map. An
illustration of the proposed network is shown in Figure 1.

Figure 1. An illustration of the proposed AB-ResUNet+ architecture. The encoder consists of squeeze-
and-excitation and residual blocks, while the decoder includes only residual blocks. The channel
attention block is inserted into the skip connection to optimize the coding ability of each layer. The
ASPP block is placed at the bottom of the network and acts as a bridge between the encoder and
decoder.

3.2. Residual Block

Deep residual learning is characterized by the addition of shortcut connections be-
tween every few stacked layers to build residual blocks. Generally, each residual block can
be expressed with the following two formulations:

yl = h(xl + F(xl , Wi)) (1)

and
xl+1 = f (yl) (2)

where F(xl , Wi) is the residual mapping which needs to be learned, xl and xl+1 are the input
and output of the l-th residual block, f (yl) is an activation function, and h(xl) is the identity
mapping function. The mapping function has a typical form that can be expressed as

h(xl) = xl (3)
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In this work, we employ residual blocks in both contracting path and expansive path,
as illustrated in Figure 1. Additionally, the output of residual blocks in the encoder part is
passed through the squeeze and excitation block to increase the network’s representational
power. Figure 2 shows the structure of residual and squeeze and excitation blocks.

Figure 2. The structure of the residual and squeeze and excitation blocks.

3.3. Attention Block

An input feature map I ∈ RC∗H∗W can be reshaped in matrices K ∈ RC∗(H∗W) and
Q ∈ R(H∗W)∗C. The channel attention map A ∈ RC∗C is obtained by dividing K and Q by
the factor

√
C and applying a softmax layer. This can be written as

aij = So f tmax
( f (Ii, Ij)√

C

)
(4)

where aij refers to ith channel’s influence on jth channel, while function f calculates their
relationship.

The channel statistics of a channel from an original feature map can be acquired with
global average pooling (GAP), which can be expressed using

g(Ik) =
1

H ×W

H

∑
i=1

W

∑
j=1

Ik(i, j) (5)

where k = 1, 2, ...c, I = [i1, i2, ..., ic] and g is GAP function.
GAP is obtained as an attention vector and compresses global information, which

allows feature dimensionality reduction and high-level feature extraction. This preserves
salient features. Furthermore, by multiplying matrices A and V, we obtain the result
transformed into RC∗1∗1, which can be multiplied by the parameter γ. We can then use the
original feature map I to obtain the final output, which can be written as

Oj = γ
C

∑
i
(aij · g(Ik)) + σθ Ij + bθ (6)

where γ starts from 0 and learns weight during training, σθ refers to the weight of the 1× 1
convolution, and bθ is the bias. Therefore, the final output is a weighted sum between
feature maps obtained by convolution and those that came from attention with GAP.

Since each channel corresponds to a specific semantic response, different channels
have different contributions for acquiring useful feature information. By modeling the de-
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pendencies of each channel and by adjusting features channel by channel, the network can
selectively learn to identify which features contain useful information and which contain
useless information, and can strengthen or suppress them accordingly. Therefore, addition
of attention blocks into skip connections helps in eliminating redundant information and
improves networks’ representational power.

Figure 3a shows the detailed block structure of the described attention block.

Figure 3. The structure of the attention block and ASPP. (a) The structure of the channel attention
block. (b) APPP exploits multi-scale features using multiple parallel filters with different rates with
the aim of classifying the center pixel (red).

3.4. ASPP for Dense Feature Extraction

Atrous convolution allows us to compute the responses of any layer at any desirable
resolution. It can be mathematically expressed with the following:

y[i, j] =
K

∑
k=1

x[i + r · k, j + r · k]w[k] (7)

where x[i, j] refers to an input signal, y[i, j] is the output of an atrous convolution, w
represents the convolution kernel of length k, and r denotes the rate parameter of the stride
to which the input signal is sampled.

Figure 3b illustrates the atrous convolution on image with 3× 3 kernel and target
pixel rates of r = 1, r = 2, and r = 4. Therefore, the larger field of view is obtained with
higher sampling rates. A standard convolution filter requires more parameters to enlarge
the field of view, while an atrous filter can increase the field of view without an increase
in parameters. This significantly reduces the computational cost. Similarly, ASPP follows
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this idea by parallel implementation of multiple atrous convolution layers with different
sampling rates. The multi-scale features are then integrated to generate a final feature
map [38,42].

4. Implementation Details

In this section, we give a dataset description on which we conducted our experiments.
After that, we give details about network training and implementation. To provide ex-
perimental analysis we train four models: (1) UNet, (2) ResUNet, (3) ResUNet++, and
(4) proposed AB-ResUNet+. Finally, we briefly describe used evaluation metrics.

4.1. Dataset Description and Preprocessing

The network presented in the previous section was applied to the task of the multiple
cardiovascular structures from the Kaggle Dataset [31,43]. This data was collected on
patients from the everyday clinical environment. It has various qualities to preserve the
robustness of the developed algorithms when it comes to real clinical usage. The cardiac
CTA data are obtained using 64-slice CT scanners, and images are reconstructed at 0.50 mm
thickness. The datasets include the following eleven cardiovascular structures: coronary
sinus (CS), descending aorta (DA), inferior vena cava (IVC), left atrial appendage (LAA),
left atrial wall (LAW), papillary muscle (PM), posterior mitral leaflet (PML), proximal
ascending aorta (PAA), pulmonary aorta (PA), right ventricular wall (RVW), and superior
vena cava (SVC). Dataset details regarding the number of patients and the total number
of 2D images are expressed in Table 1. The PAA begins in the plane corresponding to the
nadirs of all three aortic valve cusps, which is also the plane closest to the origin of the
brachiocephalic artery. The DA begins distal to the origin of the left subclavian artery and
extends to the lowest axial disc. The vena cavae are venous veins that run through the right
middle mediastinum adjacent to and to the right of the trachea and PAA and empty into the
right atrium. The main left and right pulmonary arteries were all included in the PA. The
CS is a venous structure that runs from the great cardiac vein through the atrioventricular
groove near the left circumflex coronary artery and empties into the right atrium. The
RVW is the volume of myocardial tissue in the right ventricle calculated by delineating the
endocardial and epicardial boundaries of the ventricle, omitting the papillary muscles.

Table 1. Dataset details. Number of different patients per cardiovascular structure and total number
of 2D images.

Dataset CS DA IVC LAA LAW PM PML PAA PA RVW SVC

Number of patients 20 21 20 21 22 22 22 21 21 22 22
Number of 2D images 153 2005 288 365 806 869 454 355 309 1445 538

4.2. Training Details

In our experiments, we train four encoder–decoder based architectures: (1) original
UNet, (2) ResUNet, (3) ResUNet++, and (4) propsoed AB-ResUNet+. All architectures were
implemented using the Keras framework with TensorFlow as the backend. We performed
our experiment on a single Nvidia GEForce GTX 1070 GPU. We started the training with a
batch size of four, and the proposed architecture was optimized by Adam optimizer. The
learning rate of the algorithm was set to 4× 10−3. The images of size 256× 256 pixels were
fed to the model. To alleviate the number of training samples, we used the following data
augmentation techniques: random crop, horizontal flip, vertical flip, scale, and random
rotation. The rotation angle was randomly chosen in between −20 and 20 degrees. Fivefold
cross-validation was employed to assess the performance of the proposed model. We
trained all models for 200 epochs. We also used the stochastic gradient descent with restart
(SGDR) to improve the model’s performance. Table 2 summarizes used data augmentation
methods training parameters.
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Table 2. Summary of data augmentation methods and training parameters for UNet, ResUNet,
ResUNet++, and AB-ResUNet+ model training.

Data Augmentation Method Values Training Parameters Value

Random crop
Crop: 128 × 128
Randomness = 50% Initial learning rate 0.004

Horizontal flip Randomness = 50% Number of epoch 200
Vertical flip Randomness = 50% Filter size 3 × 3
Scale augmentation Scaling factor: [1, 1.3] Pooling size 2 × 2
Random rotation Angle: Random [−20 to +20] Batch size 4

4.3. Evaluation Metrics

Comparing images to assess the accuracy of segmentation is critical for evaluating
progress in this field of research. To evaluate segmentation performance, we use the
following four metrics: mean intersection over union (mIoU), Dice similarity coefficient
(DSC), precision (P), and recall (R). These metrics are mathematically defined with the
following equations:

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

mIoU =
TP

TP + FP + FN
(10)

where FP refers to the number of false positives, TP refers to the number of true positives,
TN refers to the number of true negatives, and FN refers to the number of false negatives.

The DSC metric measures the degree of overlap between the ground truth and pre-
dicted segmentation and can be written as follows:

DSC(G, P) =
2|G ∪ P|
|G|+ |P| (11)

where P is the predicted mask and G is the ground truth.

5. Experiments and Results

This section gives a quantitative and qualitative analysis of obtained results. To evalu-
ate the AB-ResUNet+ architecture, we train, validate, and test models using eleven datasets
of cardiovascular structures. We compare the performance of our proposed AB-ResUNet+
architecture with results obtained using UNet, ResUNet, and ResUNet++. We compare our
obtained results with AB-ResUnet+ architecture to other significant architectures in the
field of cardiac segmentation. Finally, we provide and discuss qualitative results.

5.1. Quantitative Results

In our experiments, we trained four encoder–decoder-based architectures: (1) the
original UNet [4], (2) ResUNet [5], (3) ResUNet++ [10], and (4) the proposed AB-ResUNet+.
These experiments provide insight into our proposed architecture’s competitiveness com-
pared to previously published architectures relevant to our work. The detailed qualitative
segmentation results are shown in Tables 3–6.

According to results, we can observe that addition of attention blocks in the skip
connection obtains finer results than original UNet. Generally, after the skip connection,
there are two features that are combined—one is from the decoder layer and the others from
the matching encoder layer. In the original UNet, these two features are directly combined
with a concatenation function. On the other hand, in our proposed AB-ResUNet+ model,
we combine these features using attention block. Therefore, after the channel compression,
the encoded feature contains more local information from the input sample and global
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information of the channel, which yields better results. The ASPP block assists the decoded
feature to possess more semantic information of the input sample while the interaction
between encoding and decoding features may form a group of feature maps with both
sample global information and semantic information. Addition of residual connections
mostly accelerates networks’ learning process.

Moreover, we may observe that UNet can segment the general outlines of most
cardiovascular structures from the results. However, it cannot segment regions with high
contrast variability and prominent edges. ResUNet has a better performance than UNet,
in which the residual connection enhances the segmentation ability. We can see from the
results that the proposed AB-ResUNet+ provides higher segmentation accuracy than the
other original UNet, ResUnet, and ResUNet++ regarding DSC and mIoU for all cardiac
structures, except for PVW, where ResUNet++ achieves the highest DSC. Furthermore,
regarding precision and recall, we observe that the proposed AB-ResUNet+ outperforms in
all cardiovascular structures except RVW, LAW, and IVC, respectively. This is probably due
to the overfitting that occurs for these structures. Nevertheless, the proposed architecture
significantly outperformed the baseline architectures for all other datasets.

The ROC curve showing the tradeoff between sensitivity and specificity of our pro-
posed AB-ResUNet+ network architecture is shown in Figure 4. The area under the ROC
curve (AUC) for CS, DA, IVC, LAA, LAW, PM, PML, PAA, PA, RVW, and SVC were 0.74,
0.96, 0.91, 0.90, 0.81, 0.75, 0.72, 0.94, 0.93, 0.90, and 0.95, respectively. From the ROC curve,
we can see that DA, PA, and SVC obtain a significant altitude, which is reflected in a very
robust segmentation performance.

Table 3. Obtained segmentation results of different cardiovascular structures for UNet network
architecture.

Dataset
UNet

DSC mIoU Recall Precision

CS 0.5893 ± 0.0545 0.4231 ± 0.0611 0.6721 ± 0.0466 0.6842 ± 0.0325
DA 0.8834 ± 0.0375 0.8392 ± 0.0445 0.8621 ± 0.0488 0.8892 ± 0.0465
IVC 0.8175 ± 0.0485 0.7910 ± 0.0531 0.8114 ± 0.0518 0.8310 ± 0.0707
LAA 0.7845 ± 0.0440 0.6788 ± 0.0412 0.6654 ± 0.0610 0.7094 ± 0.0659
LAW 0.7671 ± 0.0591 0.6384 ± 0.0484 0.6610 ± 0.0522 0.6912 ± 0.0588
PM 0.7398 ± 0.0461 0.6970 ± 0.0520 0.7588 ± 0.0488 0.8096 ± 0.0677
PML 0.5299 ± 0.0457 0.4815 ± 0.0489 0.5922 ± 0.0464 0.6386 ± 0.0550
PAA 0.8891 ± 0.0443 0.8410 ± 0.0662 0.8614 ± 0.0422 0.8812 ± 0.0656
PA 0.8697 ± 0.0575 0.7824 ± 0.0502 0.7598 ± 0.0349 0.7892 ± 0.0573
RVW 0.8702 ± 0.0513 0.6804 ± 0.0645 0.7012 ± 0.0452 0.7214 ± 0.0737
SVC 0.8892 ± 0.0462 0.7198 ± 0.0468 0.7394 ± 0.0388 0.7598 ± 0.0560

Table 4. Obtained segmentation results of different cardiovascular structures for ResUNet network
architecture.

Dataset
ResUNet

DSC mIoU Recall Precision

CS 0.6404 ± 0.0324 0.4688 ± 0.0212 0.6876 ± 0.0537 0.7088 ± 0.0213
DA 0.8942 ± 0.0452 0.8814 ± 0.0422 0.8922 ± 0.0421 0.9206 ± 0.0354
IVC 0.8388 ± 0.0372 0.8502 ± 0.0318 0.8586 ± 0.0344 0.8918 ± 0.0421
LAA 0.8225 ± 0.0312 0.6822 ± 0.0386 0.6845 ± 0.0244 0.7254 ± 0.0441
LAW 0.8132 ± 0.0404 0.6645 ± 0.0354 0.6782 ± 0.0243 0.6822 ± 0.0312
PM 0.7288 ± 0.0591 0.7388 ± 0.0466 0.7816 ± 0.0381 0.7985 ± 0.0477
PML 0.5184 ± 0.0266 0.4266 ± 0.0342 0.5708 ± 0.0371 0.6024 ± 0.0672
PAA 0.9178 ± 0.0388 0.8598 ± 0.0322 0.8776 ± 0.0372 0.9345 ± 0.0511
PA 0.8922 ± 0.0420 0.8812 ± 0.0460 0.8954 ± 0.0434 0.9288 ± 0.0437
RVW 0.8914 ± 0.0421 0.6288 ± 0.0344 0.7212 ± 0.0502 0.7366 ± 0.0332
SVC 0.8978 ± 0.0382 0.8194 ± 0.0322 0.8368 ± 0.0442 0.8624 ± 0.0461
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Table 5. Obtained segmentation results of different cardiovascular structures for ResUNet++ network
architecture.

Dataset
ResUNet++

DSC mIoU Recall Precision

CS 0.6688 ± 0.0251 0.5122 ± 0.0245 0.6924 ± 0.0223 0.7276 ± 0.0124
DA 0.9022 ± 0.0344 0.9042 ± 0.0212 0.9144 ± 0.0128 0.9432 ± 0.0098
IVC 0.8852 ± 0.0382 0.8812 ± 0.0198 0.9128 ± 0.0242 0.9314 ± 0.0124
LAA 0.8512 ± 0.0344 0.7144 ± 0.0174 0.7466 ± 0.0262 0.7622 ± 0.0272
LAW 0.8412 ± 0.0342 0.7244 ± 0.0245 0.7789 ± 0.0098 0.7645 ± 0.0212
PM 0.7434 ± 0.0248 0.7524 ± 0.0301 0.7614 ± 0.0146 0.7622 ± 0.0246
PML 0.6104 ± 0.0218 0.3945 ± 0.0271 0.5424 ± 0.0178 0.5948 ± 0.0407
PAA 0.9242 ± 0.0212 0.8644 ± 0.0245 0.8685 ± 0.0268 0.8948 ± 0.0108
PA 0.9142 ± 0.0266 0.9012 ± 0.0168 0.9116 ± 0.0234 0.9214 ± 0.0124
RVW 0.9114 ± 0.0248 0.7644 ± 0.0198 0.8416 ± 0.0247 0.8498 ± 0.0342
SVC 0.9245 ± 0.0302 0.8012 ± 0.0242 0.8418 ± 0.0164 0.8216 ± 0.0284

Table 6. Obtained segmentation results of different cardiovascular structures for AB-ResUnet+
network architecture.

Dataset
AB-ResUNet+

DSC mIoU Recall Precision

CS 0.7168 ± 0.0204 0.6856 ± 0.0242 0.7022 ± 0.0302 0.7475 ± 0.0262
DA 0.9345 ± 0.0184 0.9244 ± 0.0184 0.9024 ± 0.0242 0.9544 ± 0.0128
IVC 0.9145 ± 0.0246 0.9012 ± 0.0164 0.9218 ± 0.0186 0.9124 ± 0.0361
LAA 0.8822 ± 0.0186 0.7422 ± 0.0216 0.7624 ± 0.0214 0.7826 ± 0.0214
LAW 0.8512 ± 0.0248 0.7512 ± 0.0146 0.7422 ± 0.0218 0.7846 ± 0.0154
PM 0.7744 ± 0.0194 0.7822 ± 0.0084 0.7831 ± 0.0242 0.7842 ± 0.0342
PML 0.5864 ± 0.0320 0.5222 ± 0.0124 0.5478 ± 0.0188 0.5744 ± 0.0212
PAA 0.9412 ± 0.0145 0.8828 ± 0.0145 0.8845 ± 0.0086 0.8842 ± 0.0308
PA 0.9425 ± 0.0142 0.9244 ± 0.0246 0.9266 ± 0.0262 0.9284 ± 0.0180
RVW 0.8722 ± 0.0120 0.6844 ± 0.0312 0.6848 ± 0.0212 0.8684 ± 0.0145
SVC 0.9544 ± 0.0088 0.8466 ± 0.0248 0.8424 ± 0.0312 0.8842 ± 0.0168

Figure 4. The ROC curve and AUC values for CS, DA, IVC, LAA, LAW, PM, PML, PAA, PA, RVW,
and SVC dataset of our proposed segmentation method with AB-ResUNet+ network architecture.
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Comparison with State-of-the-Art Methods

The proposed approach was compared with other similar deep learning approaches
in terms of image segmentation accuracy, as shown in Table 7. The most similar work,
regarding observed structures, to our work is work by Baskaran et al. [31]. They used UNet
architecture for PAA, DA, SVC, IVC, PA, CS, RVW, and LAW segmentation. Nevertheless,
their dataset consisted of 206 patients with 2D images of size 512× 512, which contributed
to high accuracy. Moreover, they used CAT images. The use of contrast and ECG gating
that may have better delineated the border between the vessel wall and lumen may be
partly attributable to higher DSC regarding PAA and DA segmentation. Another approach
introduced by Jin et al. [44] uses fully convolutional neural networks (FCNs) with three-
dimensional (3D) conditional random fields (CRFs) for LAA segmentation. After manual
localization of LAA, they employed the FCNs and fine-tuned them to segment each 2D
LAA image slice. Further, they used a dense 3D CRF to refine the segmentations of all slices.
Noothout et al. [45] proposed a method for DA and AA segmentation low-dose chest CT
without contrast enhancement. They used a dilated convolutional neural network (CNN)
that classifies voxels in axial, coronal, and sagittal image slices. The probabilities of the
three planes were averaged per class and voxels were subsequently assigned to the class
with the highest class probability to obtain final segmentation. Furthermore, Shi et al. [46]
proposed a probabilistic deep voxelwise dilated residual network named Bayesian VoxDRN
that can predict voxelwise class labels with a measure of model uncertainty. By utilizing
the dropout process, the model is able to learn weight distributions with a higher degree of
data explanation. This considerably reduces the likelihood of overfitting.

Nevertheless, it is important to highlight that compared methods use different datasets,
often not publicly available for the research community. Datasets differ in the number
of patients, 2D images per patient, and image modality. Moreover, most of the previous
studies report the results of the commonly researched cardiovascular structures such
as whole heart, left atrium, left ventricle, right atrium, and right ventricle (RV), while
cardiac structures investigated in this work are significantly less represented in previous
research (due to unavailability of publicly available datasets). This makes it hard to provide
representative and quality comparisons with our work.

Table 7. Comparison of DSC results obtained with our proposed AB-ResUNet+ architecture and the
state-of-the-art segmentation methods.

Authors Method Modality
Cardiac Structures

CS DA IVC LAA LAW PM PML PAA PA RVW SVC

Baskaran et al. [31] UNet CTA 0.720 0.953 0.903 7 0.625 7 7 0.969 0.775 0.685 0.937
Jin et al. [44] FCN + CRFs CTA 7 7 7 0.9476 7 7 7 7 7 7 7

Noothout et al. [44] FCN + CRFs CT 7 0.88 7 7 7 7 7 0.83 7 7 7
Shi et al. [46] Bayesian VoxDRN MRI 7 7 7 7 7 7 7 0.857 7 7 7

Proposed AB-ResUNet+ CT 0.72 0.93 0.91 0.88 0.85 0.77 0.59 0.94 0.94 0.87 0.95

5.2. Qualitative Results

Figure 5 shows a visual comparison of the successful segmentation predictions from
the test datasets, generated by UNet, ResUNet, ResUNet++, and the proposed AB-ResUNet+,
respectively. The most accurate segmentation results are obtained for DA, IVC, PAA, and
PA. This is probably due to their circular structure and the high contrast in the images
around these structures.
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Figure 5. Qualitative results comparison of the different cardiac structures. Rows from left to the
right represent original image, ground truth, UNet results, ResUNet results, ResUNet++ results, and
AB-ResUNet+, respectively.
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Nevertheless, while observing obtained segmentation predictions, we found some
cases of missing or wrong segmentation results. A missing segmentation refers to an
incomplete segmentation, i.e., when part of the area to be segmented is missing. This is
a common problem in small structures such as CS, PML, and SVC. In particular, since
the mask of PML is represented almost as a single point, the model could not segment it
completely in case of any segmentation failure. An example of incorrect segmentation of
CS and SVC can be found in Figure 6.

Figure 6. An example of incorrect segmentation results for CS and SVC datasets. From left to right:
original image, ground truth, UNet results, ResUNet results, ResUNet++ results, and AB-ResUNet+.

The overfitting issue is successfully overcome in most cases. Nevertheless, we observe
some overfitting while segmenting PM and LAA, where the model hardly distinguishes
between background and these structures due to low contrast and anatomical complexity.
An example of such errors can be found in Figure 7.

Figure 7. An examples of overfitting issue for PM and LAA datasets. From left to right: original
image, ground truth, UNet results, ResUNet results, ResUNet++ results, and AB-ResUNet+.

Visual comparisons between the original image, the manual labeling, and the AB-
ResUNet+ model prediction are shown in Figure 8. The segmentation prediction examples
and GT overlays over the original image for LVW, RVW, PM, DA, IVC, and CS more
accurately illustrate the potential difficulties in segmentation due to low image quality,
high and low contrast differences, and the highly anatomical complexity of the structures.
The difficulty in identifying the irregularly shaped CS, especially with suboptimal contrast
fluoroscopy, may account for the lower accuracy compared to the other vessels. The
complex structure of LVWs and RVWs, which varies in different layers and in different
patients, makes them a particular challenge for automatic segmentation methods.
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Figure 8. An example of original images from LVW, RVW, PM, DA, IVC, and CS dataset with an
overlay of successful segmentation prediction (red) and corresponding GT (green).

6. Discussion

In this work, we aimed to develop a new deep learning model for accurate segmen-
tation of most of the great vessels, left atrial and right ventricular walls, and coronary
sinus. So far, we have presented our newly developed AB-ResUNet+ architecture that uti-
lizes residual learning, squeeze and excitation operations, Atrous Spatial Pyramid Pooling
(ASPP), and the attention mechanism for accurate and effective segmentation of complex
cardiovascular structures. The encoder consists of squeeze-and-excitation and residual
blocks. The output of the residual blocks in the encoder part is routed through the squeeze-
and-excitation block to increase the representational power of the network. Squeeze and
excitation operations capture the importance degree of each feature channel through feature
recalibration strategy. Based on the importance degree, the less useful channel features are
suppressed while useful features are enhanced. The decoder consists of residual blocks
and generates final segmentation predictions. Moreover, the main improvement is mainly
achieved by adding the channel attention block into the skip connection. The addition of
the channel attention block in each skip connection improves the coding ability in each
layer and successfully eliminates irrelevant and redundant information. This improves
the network’s ability to distinguish between feature importance and focus on the most
important features. The ASPP block is placed at the bottom of the network and acts as a
bridge between the encoder and the decoder, increasing the field of view of the filters and
allowing them to include a wider context.

To evaluate the quality of our design choice, we implemented and trained a total of
four networks, namely, UNet, ResUNet, ResUNet++, and the proposed AB-ResUNet+,
and evaluated them on eleven test datasets of complex cardiovascular structures, namely,
coronary sinus (CS), descending aorta (DA), inferior vena cava (IVC), left atrial appendage
(LAA), left atrial wall (LAW), papillary muscle (PM), posterior mitral leaflet (PML), prox-
imal ascending aorta (PAA), pulmonary aorta (PA), right ventricular wall (RVW), and
superior vena cava (SVC). The proposed network achieved more accurate DSC results for
most of the datasets used compared to ResUNet++. In particular, our proposed architecture
improved the DSC of CS, DA, IVC, LAA, LAW, PM, PAA, PA, and SVC by 4.57%, 2.76%,
2.63%, 3.11%, 0.95%, 3.15%, 1.68%, 2.37%, and 2.68%, respectively. However, for the PML
and RVW datasets, we obtained the worst DSC compared to ResUNet++. Moreover, we
obtained better results for mIoU compared to ResUNet++, except for the LAA and PAA
datasets. Moreover, we observed that the proposed AB -ResUNet+ architecture achieved
higher DSC and mIoU metrics, as well as competitive precision and recall, for most datasets
compared to the baseline models. Based on the obtained results, it is clear that the inclusion
of AB blocks in the proposed AB-ResUNet+ architecture leads to slightly better results
than the plain ResUNet++ architecture. The designed AB block in skip connections helped
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the proposed network to exploit the intra-slice information to a certain extent; thus, the
network obtained higher segmentation results.

There are several limitations associated with our current study. First, while obtained
results are promising, it is important to determine whether such a model may be applied
in clinical practice. Given that clinical practice often involves recordings of live video, a
model with a fast inference time is required to process images in real time. Therefore, a
proposed method should be improved by using lightweight models. Second, although
the proposed method improves performance, the lack of medical data related to observed
images limits the segmentation effect. Therefore, for future work, we plan to further
improve segmentation accuracy by facilitating the dataset used with more advanced data
augmentation methods. For example, generative adversarial networks [47] have great
potential to obtain a larger training dataset by generating synthetic data. In addition, we
aim to explore the possibilities of few-shot learning to reduce the impact of the lack of
annotated data on segmentation accuracy.

7. Conclusions

In this work, we propose the AB-ResUNet+ for the segmentation of complex cardiovas-
cular structures. Our network follows UNet structure and strengthens its representational
power by incorporating residual learning, squeeze and excitation operations, ASPP, and
the attention mechanism. The channel attention block is inserted into the skip connection
to optimize the coding ability of each layer. The ASPP block is located at the bottom of the
network and acts as a bridge between the encoder and decoder to increase the field of view.
The proposed AB-ResUNet+ is evaluated on eleven datasets of complex cardiovascular
structures. We obtain an average DSC of 71.68%, 93.45%, 91.45%, 88.22%, 85.12%, 77.44%,
58.64%, 94.12%, 94.25%, 87.22%, and 95.44% for CS, DA, IVC, LAA, LAW, PM, PML, PAA,
PA, RVW, and SVC, respectively. Moreover, we observe that the proposed AB-ResUNet+
architecture achieves higher DSC and mIoU metrics, as well as competitive precision and
recall, for most datasets compared to the baseline models.

Author Contributions: M.H.: Conceptualization, methodology, development, writing—original
draft, editing; I.G.: Conceptualization, methodology, development, writing original draft, supervision;
H.L.: Editing, validation, visualization; K.R.: Editing, validation, visualization. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The prepared dataset is available at https://www.dropbox.com/sh/
8jzrpd1c2gpg3p9/AACBVbH65y_mJ-MDZFkIqs_ra?dl=0 (accessed on 30 December 2021). Source
code of our work is available at https://github.com/mhabijan/seg_multiple_cardio1 (accessed on 9
March 2022).

Acknowledgments: This work has been supported in part by the Croatian Science Foundation under
the project UIP-2017-05-4968.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. WHO. Cardiovascular Diseases (CVDs)—Key Facts. Available online: https://www.who.int/news-room/fact-sheets/detail/

cardiovascular-diseases-(cvds) (accessed on 25 October 2021).
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