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Abstract: An underactuated unmanned surface vessel (USV) is a nonholonomic system, in which
trajectory tracking is a challenging problem that has drawn more and more attention from researchers
recently. The control of trajectory tracking is of critical importance since it determines whether the
task can be carried out successfully. In this paper, a non-singular terminal sliding model (NTSM)
controller is proposed for the trajectory tracking control of the underactuated USV, with a nonlinear
disturbance observer which is designed to measure complex environmental disturbances such as
wind, waves, and currents. Exploratory simulations were carried out and the results show that the
proposed controller is effective and robust for the trajectory tracking of underactuated USVs in the
presence of environmental disturbances.

Keywords: underactuated unmanned surface vessel; trajectory tracking; non-singular terminal
sliding control; disturbance observer; Lyapunov stability theorem

1. Introduction

In recent years, with the dramatic development of unmanned driving technology,
research on USVs has received great attention in the military and civilian fields. Equipped
with different device systems, the USV can accomplish various operational tasks such
as security patrols, marine environment monitoring, searching for resources, and rescue
tasks [1–5]. The USV system itself is nonlinear, and there are many coupling terms [6]. In
addition, most USVs are underactuated systems, and there will be parameter uncertainties
during navigation. The influence of unknown disturbances and the speed vectors are often
difficult to measure directly. Because of these problems, underactuated USVs are unable to
track a specific predefined trajectory, which leads to inability to complete the task. In order
to devise a solution to the problem of trajectory tracking control, researchers have applied
many control methods such as backstepping, adaptive control, sliding mode control [7–10],
neural network control [11,12], output feedback control [13,14], model prediction [15–17],
L1 adaptive control [18], and finite time control [19–23], as well as combinations of various
control theories.

The backstepping method has been widely used to deal with uncertain systems and
adaptive controls. The core idea of the backstepping method is to recursively deduct the
control design of the entire system by means of designing the virtual control variables
and the Lyapunov function of the subsystems. However, in the process of the backstep-
ping method design, the derivatives of virtual variables must be calculated. The higher
the order of the system, the higher the order of the derivatives to be calculated. As a
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result, a differential explosion phenomenon appears, which increases the difficulty of
controller design.

In order to reduce the difficulty of control design, a low-pass filter is usually used
to replace the derivation of the virtual variables. Dynamic surface control (DSC) uses a
low-pass filter to avoid the differential explosion phenomenon in the design process. The
dynamic surface control method was applied in [24] to solve the control problem of a class of
nonlinear systems. In [25], two cascaded subsystems were formed by coordinate conversion
of the system error model, and the DSC method was introduced into the trajectory tracking
control of the USV. In [26], an adaptive dynamic sliding mode control based on the idea of
the backstepping method was proposed to solve the trajectory tracking control problem
for an unmanned underwater vessel (UUV) for modeling parameter uncertainty and
environmental perturbation. Due to the inevitable calculation of multiple design virtual
control variables in the design process, the calculation complexity can be reduced using the
differential substitution characteristics of the model based on a biologically inspired model.
In [27], an adaptive backstep sliding mode controller was designed based on a biologically
inspired model to realize the trajectory tracking of a USV.

The underactuated USV has no lateral thrusters to control the lateral displacement.
The objective of control of underactuated vessels is to solve the problem that occurs when
a fully actuated USV breaks down, or in the absence of bow thrusters, where only the
propellers and the yaw moment are utilized to achieve the purpose of trajectory tracking
control. An underactuated USV with a forward speed is inevitably affected by the wind,
waves, currents, and other unknown disturbances. If these unknown disturbances cannot
be handled properly, the functionality of the underactuated USVs will be much reduced.

Measuring the unknown disturbance is the key to underactuated USV trajectory track-
ing control [28]. In addition, in sliding mode control, the upper and lower bounds of the
disturbance are usually estimated, and a larger gain parameter is designed to solve the
disturbance problem. By adopting a disturbance observer, the value of the disturbance
can be estimated, to better solve the disturbance problem. In [29], aiming at the formation
control problem of an underactuated USV, an adaptive finite-time disturbance observer
was introduced to observe external environmental disturbances. In [30], based on fuzzy
theory, a fuzzy unknown observer was proposed to estimate the compound disturbance
of the system, to solve the underactuated USV path tracking control problem. By treating
external disturbances as periodic disturbances, the Fourier series expansion of periodic
disturbances and Lyapunov theory were used to obtain the optimal estimation of environ-
mental disturbances [31]. In [32], model predictive control was used to devise trajectory
tracking control, and nonlinear disturbance observers were introduced to compensate for
unknown disturbances, to achieve optimal trajectory control. In [33], due to the difficulty
of obtaining information about the underactuated state, a sliding mode observer was de-
signed to estimate the linear velocity and angular velocity, combined with a backstepping
sliding mode control principle to realize the underactuated UUV trajectory tracking con-
trol. Since an RBF network is able to approximate arbitrary functions, an adaptive neural
network was designed [34] to approximate unknown external environmental disturbances,
in combination with a high-gain observer to achieve fast feedback, to ensure the transient
performance of underactuated USVs. In approximating unknown disturbances with neural
networks [35,36], the choice of the weighting matrix and the number of nodes in the implicit
layer is a difficult issue. The nonlinear disturbance observer design is transformed into
a linear matrix inequality, making the selection of parameters easier, while the speed of
convergence is related to the selection parameters of the Lyapunov function coefficients.

In this paper, a method combining a nonlinear disturbance observer and NTSM control
is proposed for an underactuated USV, to deal with the trajectory tracking control problem
under external environmental disturbances. In addition, in order to demonstrate the
effectiveness and performance of the derived control strategy, a straight-line trajectory and
a circular trajectory are proposed for simulation verification. The main contributions of this
paper are:
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(1) An NTSM controller integrating a nonlinear disturbance observer is proposed to solve
the trajectory tracking problem under the environmental disturbances of wind, waves,
and currents. The stability of the observer and controller is proved strictly using the
Lyapunov theory.

(2) The non-singular terminal sliding mode control method proposed in this paper results
in a dynamic system with a better performance than that of the classic sliding mode
controller. To improve the robustness of the control system, a disturbance observer is
also designed to observe unknown disturbances.

2. Definition and Lemma

Definition 1. The NTSM is described by the following first-order nonlinear differential equa-
tion [37].

σ(t) = x + k · signa .
x = 0, k > 0, 1 < a < 2 (1)

where x ∈ R and signax , sign(x) · |x|a.

Lemma 1 [38]. Let the partitioned matrix

A =

[
A11 A12
A21 A22

]
(2)

be symmetric. Then,

A < 0⇔ A11 < 0, Scb(A11) < 0⇔ A22 < 0, Scb(A22) < 0 (3)

or
A > 0⇔ A11 > 0, Scb(A11) > 0⇔ A22 > 0, Scb(A22) > 0 (4)

3. Controller Design
3.1. USV Modeling

Assumption 1. The reference trajectories of the USV are smooth and have first and second derivatives.

Assumption 2. The position information and velocity information of the USV can be measured directly.

Assumption 3. The external disturbances d = [d1, d2, d3] acting on the USV are unknown and
vary slowly but are still bounded. There exists an unknown constant, dmax

i ∈ <+ such that every
element in d satisfies di ≤ dmax

i , i = 1, 2, 3.

The standard three-degrees-of-freedom (surge, sway, and yaw) USV model is used,
which is characterized by uniform mass distribution and left–right symmetry, and the
center of gravity of the USV is located at the origin of the coordinate system. Then, the
three-degrees-of-freedom mathematical model of the USV can be obtained as follows.

.
x = u cos(ψ)− v sin(ψ)
.
y = u sin(ψ) + v cos(ψ)
.
ψ = r
.
u = 1

m11
(m22vr− d11u + τu + d1)

.
v = 1

m22
(−m11ur− d22v + d2)

.
r = 1

m33
[(m11 −m22)uv− d33r + τr + d3]

(5)

where x and y denote the surge displacement and sway displacement, and ψ is the heading
angle. In addition, u and v denote the surge velocity and sway velocity; r is the angular
velocity; τu and τr denote the surge force and yaw moment; d1, d2 and d3, are the environ-
ment disturbances induced by waves, wind, and ocean currents, respectively. Furthermore,
m11 = m − X .

u, m22 = m − Y .
v, m33 = Iz − N.

r, d11 = −Xu, d22 = −Yv, and d33 = −Nr,
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where m is the mass of the USV; Iz is the ship’s moment of inertia about the Z−axis of the
body-fixed frame; Xu, Yv, Nr are the linear hydrodynamic damping coefficients; and X .

u,
Y .

v, N.
r, are the additional mass coefficients [39].
In order to better reflect the relationship between kinematics and kinetics, this relation-

ship is described in a matrix form, to facilitate the subsequent design of the disturbance
observer. The kinematic equation is

.
η = R(ψ)V (6)

and the dynamic equation is

M
.

V = −CV−DV + τ+ d (7)

where η =
[

x y ψ
]T denotes the position and orientation vector of the USV in the

earth-fixed inertial frame; and V =
[

u v r
]T denotes the velocity vector of the USV

in the body-fixed frame. The earth-fixed inertia frame O − XoYo and body-fixed frame
A− XY are depicted in Figure 1. In addition, τ =

[
τu 0 τr

]T is the control vector of

the USV; and d =
[

d1 d2 d3
]T are the environment disturbances. R(ψ) is a rotation

matrix that satisfies R(ψ)RT(ψ) = I3×3, where I3×3 represents the third-order unit matrix.
M is the inertia matrix of the system, which satisfies M = MT > 0 and

.
M = 03×3. C is the

Coriolis and centripetal matrix, which satisfies C = −CT. D is the hydrodynamic damping
matrix, which satisfies D > 0. They are, respectively,

R(ψ) =

 cos(ψ) − sin(ψ) 0
sin(ψ) cos(ψ) 0

0 0 1

 M =

 m11 0 0
0 m22 0
0 0 m33


C =

 0 0 −m22v
0 0 m11u

m22v −m11u 0

D =

 d11 0 0
0 d22 0
0 0 d33

 (8)
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3.2. Design of Virtual Velocities

Usually, the aim of trajectory tracking control is to make the actual trajectory follow
the reference trajectory by adjusting the controller according to the position error. In order
to construct the Lyapunov function according to the position error equation and the design,
a suitable control expression to satisfy the Lyapunov stability theory to achieve trajectory
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tracking, the actual position, and the reference position are calculated to obtain the position
error equation. [

xe
ye

]
=

[
x− xd
y− yd

]
(9)

where (x, y), (xd, yd), (xe, ye) are the USV time-varying actual trajectory coordinates, refer-
ence trajectory coordinates, and error trajectory coordinates, respectively.

The derivation of the two sides of Equation (9) with respect to time t can be obtained.[ .
xe.
ye

]
=

[ .
x− .

xd.
y− .

yd

]
= J
[

u
v

]
−
[ .

xd.
yd

]
(10)

where J =
[

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
.

In order to devise the controller based on the dynamic equation, the virtual speed is
defined as follows: [

ud
vd

]
= JT

 .
xd + bxtanh(− ax

bx
xe)

.
yd + bytanh(− ay

by
ye)

 (11)

where ax and ay are positive numbers, and bx, by 6= 0.
The position error converges to (0, 0) when the actual velocity satisfies the defined

virtual velocity. The velocity error is defined in the same way as the position error:[
eu
ev

]
=

[
u
v

]
−
[

ud
vd

]
(12)

where
[

u
v

]
= JT

[ .
x
.
y

]
. Then the velocity errors can be calculated as:

[
eu
ev

]
= JT

 .
xe − bxtanh(− ax

bx
xe)

.
ye − bytanh(− ay

by
ye)

 (13)

When the velocity error converges to (0, 0), the position error satisfies the following
expression: 

.
xe = bxtanh(− ax

bx
xe)

.
ye = bytanh(− ay

by
ye)

(14)

Therefore, the following Lyapunov function can be defined according to the position error.

V1 =
1
2

x2
e +

1
2

y2
e (15)

The time derivative of V1 is

.
V1 = xe

.
xe + ye

.
ye = −xebxtanh(

ax

bx
xe)− yebytanh(

ay

by
ye) ≤ 0 (16)

It can be seen that Inequality (16) is semi-negative definite, and the position error
converges asymptotically, which means that when the speed error converges to (0, 0), the
position error also converges to (0, 0).

3.3. Design of the USV Controller

Next, it must be ensured that the convergence of the velocity error satisfies the con-
vergence of the position error. For the sliding mode control, a sliding mode surface is
constructed according to the error, and a suitable control law is designed to ensure that the
sliding mode surface satisfies the Lyapunov stability condition.
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Without considering the environmental disturbances, we consider the following
NTSM surfaces:  S1 =

∫ t
0 eudt + β1(eu)

p1
q1

S2 = ev + β2
( .
ev
) p2

q2

(17)

where β1, β2 > 0, pi > qi(i = 1, 2) are positive odd integers.
The derivative of the virtual speed can be obtained:

[ .
ud.
vd

]
= r

[
− sin(ψ) cos(ψ)
− cos(ψ) − sin(ψ)

] .
xd + bxtanh(− ax

bx
xe)

.
yd + bytanh(− ay

by
ye)

+ JT

 ..
xd − kx

.
xesech2(− ax

bx
xe)

..
yd − ky

.
yesech2(− ay

by
ye)


= r
[

vd
−ud

]
+ JT

[ ..
xd − G1..
yd − G2

] (18)

where G1 = kx
.
xesech2(− ax

bx
xe), G2 = ky

.
yesech2(− ay

by
ye).

Then, the second derivative of vd is

..
vd = − .

rud − r
.
ud − r cos(ψ)

( ..
xd − G1

)
− sin(ψ)

(...
x d −

.
G1

)
− r sin(ψ)

( ..
yd − G2

)
+ cos(ψ)

(...
y d −

.
G2

)
= −...

x d sin(ψ) +
...
y d cos(ψ)− ..

xdr cos(ψ)− ..
ydr sin(ψ)− .

udr + G′ − ud
.
r

(19)

where G′ =
.

G1 sin(ψ)−
.

G2 cos(ψ) + G1r cos(ψ) + G2r sin(ψ).
Let Γ = −...

x d sin(ψ) +
...
y d cos(ψ) − ..

xdr cos(ψ) − ..
ydr sin(ψ) − .

udr + G′, then
..
vd be-

comes
..
vd = Γ− ud

.
r.

Then, the time derivative of Equation (18) is:

.
S1 = eu +

p1β1
.
eu

q1
(eu)

p1
q1
−1

= eu +
β1 p1

q1

(m22vr−d11u+τu)−m11ud
m11

(eu)
p1
q1
−1

(20)

.
S2 =

.
ev + β2

(
p2
q2

)..
ev(ev)

p2
q2
−1

=
.
ev + β2

(
p2
q2

)( .
ev
) p2

q2
−1
[

1
m22

(
−m11

.
ur−m11u

.
r− d22

.
v
)
− Γ + ud

.
r
]

=
.
ev + β2

(
p2
q2

)( .
ev
) p2

q2
−1
{

m22ud−m11u
m22m33

[(m11 −m22)uv− d33r + τr]

+ 1
m22

(
−m11

.
ur− d22

.
v
)
− Γ

} (21)

Due to the USV tracking error in Equation (13), the following control inputs can
be designed.

τu = d11u−m22vr + m11

[
.
ud −

q1

β1 p1
(eu)

2− p1
q1 − ε1q1

β1 p1
sign(S1)

]
(22)

τr = d33r− (m11 −m22)uv + m22m33
m22ud−m11u

{
− 1

m22

(
−m11

.
ur− d22v

)
+ Γ

− q2
β2 p2

( .
ev
)2− p2

q2 − ε2q2
β2 p2

( .
ev
)1− p2

q2 sign(S2)
}

(23)

Stability Analysis of the USV Controller

Consider the following Lyapunov function for the NTSM:

V2 =
1
2

S2
1 +

1
2

S2
2 (24)



Appl. Sci. 2022, 12, 3004 7 of 17

By taking the first time derivative of the Lyapunov function V2, along with Equations (19)
and (20), one can obtain

.
V2 = S1

.
S1 + S2

.
S2

= S1

[
eu +

β1 p1
q1

(m22vr−d11u+τu)−m11ud
m11

(eu)
p1
q1
−1
]

+
{

m22ud−m11u
m22m33

[(m11 −m22)uv− d33r + τr] + S2
.
ev

+ 1
m22

(
−m11

.
ur− d22

.
v
)
− Γ

}
· S2β2

(
p2
q2

)( .
ev
) p2

q2
−1

(25)

Substituting Equations (21) and (22) into Equation (24) yields

.
V2 = −S1ε1sign(S1)− S2ε2sign(S2)

= −ε1|S1| − ε2|S2|
(26)

where ε1, ε2 > 0. Because V2 is positively defined and
.

V2 is negatively defined, it can be seen
that the NTSM surfaces meet the Lyapunov stability condition, which indicates that the sys-
tem can reach the sliding mode surfaces from any initial position, as given in Equation (18).
When the trajectory reaches the sliding mode surfaces, S1 = S2 = 0, ev = −β2

( .
ev
)p2/q2 ,

and
∫ t

0 eudt = −β1(eu)
p1/q1 can be obtained. That is to say, the constructed NTSM can

make the velocity error converge, thus indicating the position error convergence.

3.4. Disturbance Observer

The disturbance of the external environment cannot be ignored in the actual navigation
of underactuated USVs. In order to eliminate the influence of disturbances on the controller,
a nonlinear disturbance observer [40] was introduced to estimate the unknown disturbances
and compensate for disturbances in the controller, to achieve high-quality control of the
closed-loop system. 

.
Z = L(CV + DV− τ)− L

^
d

^
d = Z + P

(27)

L and P can take the following forms:

L = X−1M−1 (28)

P = X−1V (29)

The nonlinear disturbance observer was constructed using Equations (26)–(28), where
X is an invertible matrix which can be solved for via linear matrix inequality (LMI).

The stability of the disturbance observer is proved in the next subsection. If the
disturbance errors converge, then the disturbance observer is stable, and it can be used for
controller design.

Proof of the Disturbance Observer

The Lyapunov function for the disturbance error is constructed as

V3=
~
d

T
XTMX

~
d (30)

Combining Equations (27)–(29), the following equation can be obtained:

.
V3 =

.
~
d

T

XTMX
~
d +

~
d

T
XTMX

.
~
d

= −
~
d

T
M−1X−TX−TMX

~
d−

~
d

T
XTMXX−1M−1

~
d

= −
~
d

T(
X + XT

)~
d

(31)
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where
~
d = d−

^
d is the disturbance error.

Since it is assumed in this study that the perturbation changes slowly, it can be
considered that

.
d = 0. The observation error equation is obtained by combining with

Equation (27).
.
~
d + L

~
d = 0 (32)

The following inequality is constructed:

X + XT ≥ κ (33)

where κ is the positively defined matrix, and the existence of κ′ > 0 makes
.

V3 ≤ −
~
d

T
κ

~
d =

−κ′V3 valid. Clearly, the disturbance observer converges exponentially, and the accuracy
and speed of convergence depend on the value of κ.

The higher the value of κ, the higher the convergence speed and precision.
Let Q = X−1, then Inequality (33) becomes

QT + Q−QTκQ ≥ 0 (34)

From Equation (28), according to the Schur complement lemma, we can derive[
QT + Q QT

Q κ−1

]
≥ 0 (35)

The value of Q can be obtained by solving Inequality (34), and thus the unknown X in
Inequality (33) can be obtained.

The USV controller is redesigned to account for disturbances. The time derivative of
Equation (18) is:

.
S1 = eu +

β1 p1
q1

(m22vr−d11u+τu+d1)−m11ud
m11

(eu)
p1
q1
−1

.
S2 =

.
ev + β2

(
p2
q2

)( .
ev
) p2

q2
−1
{

m22ud−m11u
m22m33

[(m11 −m22)uv− d33r + τr + d3]

+ 1
m22

(
−m11

.
ur− d22

.
v
)
− Γ

} (36)

The surge force and yaw moment can be defined as follows:

τu = d11u−m22vr− d̂1 + m11

[
.
ud −

q1

β1 p1
(eu)

2− p1
q1 − ε1q1

β1 p1
sign(S1)

]
(37)

τr = d33r− (m11 −m22)uv− d̂3 +
m22m33

m22ud−m11u

{
− 1

m22

(
−m11

.
ur− d22v

)
+ Γ

− q2
β2 p2

( .
ev
)2− p2

q2 − ε2q2
β2 p2

( .
ev
)1− p2

q2 sign(S2)
}

(38)

For the stability analysis of the trajectory tracking control law under disturbances, the
following Lyapunov function is constructed:

V4 =
1
2

(
S2

1 + S2
2

)
(39)

Taking the time derivative at both ends of Equation (38), and then substituting the
control laws, Equations (36) and (37) yield

.
V4 = S1

.
S1 + S2

.
S2

= −S1

[
d1 − d̂1 + ε1sign(S1)

]
− S2

[
d3 − d̂3 + ε2sign(S2)

] (40)
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Since the designed disturbance observer converges, Equation (39) can be rewritten as

.
V4 = −ε1S1sign(S1)− ε2S2sign(S2)

= −ε1|S1| − ε2|S2| ≤ 0
(41)

where ε1, ε2 > 0, V4 > 0 and V4 > 0. In a similar way, the designed NTSM control law can
converge to b in a finite period of time.

To eliminate the chattering phenomenon arising from the discontinuous sign function,
the following saturation function is used to replace the sign function,

sat(Si) =

{
sign(Si/φ), Si > |φ|
Si/φ, Si ≤ |φ|

(42)

where φ > 0 and i = 1, 2.

4. Simulations and Discussion

In this section, the USV model, controller, and disturbance observer are written in
MATLAB functions based on the Simulink environment, and numerical simulations are
performed using a variable step size to verify the effectiveness of the designed control strat-
egy. First, the trajectory tracking performance was validated under ideal conditions. Under
non-ideal conditions, the disturbance caused by the external environment is unknown and
cannot be directly measured. Next, constant environmental disturbances were introduced,
disturbance observers were used to measure disturbances, and NTSM controllers with
disturbance compensation were employed to achieve trajectory tracking. The inclusion of
constant environmental disturbances alone is insufficient to prove the observation effect
of the disturbance observer for unknown disturbances and cannot reflect real-world sce-
narios. Therefore, time-varying environmental disturbances were introduced to verify the
compensation for the disturbance and the trajectory tracking. The model parameters of the
USV can be found in [41] and are shown in Table 1.

Table 1. Hydrodynamic parameters of the REMUS AUV.

Parameter Definition Value Unit

m Mass of USV 30.48 kg
Iz Moment of inertia 3.45 kg·m2

Xu Linear hydrodynamic damping coefficient −8.8065 kg/s
Yv Linear hydrodynamic damping coefficient −65.5457 kg/s
Nr Linear hydrodynamic damping coefficient −6.7352 kg/s
X .

u Additional mass coefficient −0.93 kg
Y .

v Additional mass coefficient −35.5 kg
N .

r Additional mass coefficient −35.5 kg·m2

The controller’s control performance was verified using the following two trajectories
under three different conditions.

4.1. Straight-Line Trajectory Simulation

The following straight-line trajectory was used in the simulation:{
xd = 0.8t + 1
yd = 0.5t + 1

(43)

Case 1 was without environment disturbances.
Case 2 had constant environmental disturbances, where the following disturbances

were chosen:
d
′
1 =

[
d′11, d′12, d′13

]
= [5, 2, 3] (44)



Appl. Sci. 2022, 12, 3004 10 of 17

Case 3 had time-varying environmental disturbances, where the following form of the
disturbances was used:

d
′
2 =

[
d′21, d′22, d′23

]
=

 0.3 cos(0.1πt− π/3)
0.4 cos(0.2πt− π/4)
0.6 cos(0.3πt− π/6)

 (45)

The initial position of the USV was η = [0, 0, 0], the initial velocity was V = [0, 0, 0], the
initial value of eu was 0.5, and ax = ay = 2, ax = ay = 0.5. For the disturbance observer, the
parameters κ = diag

[
0.5 1 5

]
× 0.005 and Q =

[
0.0097 0.0103 0.0148

]
were cho-

sen. The parameters used to design the NTSM controller based on Equations (37) and (42)
are listed in Table 2.

Table 2. Controller parameters for the straight-line trajectory.

Parameter Value Used in Case 1 Value Used in Case 2 Value Used in Case 3

β1 0.5 1 1
β2 0.3 0.5 0.5
ε1 1.4 1.4 1.4
ε2 1 1.5 0.5
φ 0.01 0.01 0.01
p1 3 3 3
p2 3 3 3
q1 5 5 5
q2 5 5 5

Figure 2a shows the straight-line trajectory curve of the underactuated USV without
any disturbances, with steady disturbances d

′
1, and with time-varying disturbances d

′
2.

The solid line is the reference trajectory curve, and the three dotted lines are the actual
trajectory curves of the USV under different conditions. From the figure, it can be seen that
with the control strategy proposed in this paper, the USV is able to overcome the influence
of external environmental disturbances and track a straight trajectory in three different
cases. Figure 2b represents the curves of the USV in the AXY plane, the surge (X−axis
direction), and the sway (Y−axis direction) positions over time. It can better reflect the
change of the trajectory over time. It can be seen from the figure that the USV tracks the
reference trajectory in a very short period of time and maintains stable tracking at all times.
Since the USV is underactuated and has no thrusters in the sway direction, it can be seen
from the figure that it takes more time to track the reference curve in the Y−axis direction
than in the X−axis direction.

Figure 3 shows the observed curves and the observed error curves of the nonlinear
perturbation observer for two different environmental perturbations d

′
1 and d

′
2. It can

clearly be seen in Figure 3a,b that the disturbance observer is able to quickly approximate
the external unknown environmental disturbances. Figure 3c,d show the errors between
the actual disturbances and the observed values, showing that the designed disturbance
observer for both the constant disturbances and the time-varying external environmental
disturbances is able to estimate the actual disturbance values quickly and accurately.
Therefore, the disturbance values observed by the disturbance observer can be used to
replace the disturbances caused by wind, waves, and currents in the external environment,
thus improving the robustness of the system.

Figure 4a,b show the actual position variation curves and the actual velocity variation
curves of the USV, respectively, in the three cases. As can be seen from the figures, the
position and speed curves under the effect of disturbances have the same pattern as
those without disturbances, which further indicates that the controller has an excellent anti-
disturbance capability. Figure 4c,d show the position error variation curve and velocity error
variation curve of the USV, respectively, in the three cases. The position and velocity error
curves more clearly reflect the USV tracking reference trajectory. As shown in the figures,
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there is a large error at the initial stage of navigation, but after a period of intervention
both the position error and velocity error approach zero, which shows that the designed
controller can effectively track the linear reference trajectory. Figure 5 shows the variation
curves for the surge force and yaw moment. The output curve of the controller becomes a
smooth curve, maintaining tracking with a short adjustment time.
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From the simulation results presented in Figures 2–5, it can be concluded that the
control strategy proposed in this study performs well in overcoming external environmental
disturbances and in tracking the linear reference trajectory.

4.2. Circular Trajectory Simulation

The following circular trajectory was chosen for the circle trajectory simulations:{
xd = cos(0.125t)
yd = sin(0.125t)

(46)
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Figure 3. Disturbance observer simulation results: (a) actual values and observed values for constant
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disturbance errors; (d) time-varying disturbance errors.

Case 1 was without environment disturbances.
Case 2 had constant environment disturbances d

′
1, chosen as described in Equation (44).

Case 3 had time-varying environment disturbances d
′
2, as described in Equation (45).

The initial conditions of the USV and the parameters of the disturbance observer were
consistent with the parameters of the linear trajectory. The parameters used to design the
NTSM controller based on Equations (37) and (42) are listed in Table 3.

Table 3. Controller parameters for the circular trajectory.

Parameter Value Used in Case 1 Value Used in Case 2 Value Used in Case 3

β1 0.5 2.5 5
β2 0.3 1.5 5
ε1 1.4 0.3 0.01
ε2 2.5 1 0.5
φ 0.01 0.01 0.01
p1 3 3 3
p2 3 3 3
q1 5 5 5
q2 5 5 5

Figures 6–8 show the simulation curves for the circular trajectory. From the simulation
results, it can be seen that for circular trajectories in three different cases, the designed
control strategy enabled the USV to overcome the external disturbances to achieve tracking
on circular trajectories. Figure 6a illustrates the overall trajectory tracking of the USV
in the AXY plane. Figure 6b presents the trajectory tracking curves over time in the
surge (X−axis) and sway (Y−axis) directions. The observation approximation effect and
estimation errors are presented in Figure 3. Figure 7a shows the six state curves including
position and velocity curves during the USV navigation. It can be observed in Figure 7b
that, in the simulations with time-varying disturbances, the velocity curve has smaller
fluctuations compared with the other two cases. This is because there is a certain error in
the observed effect of the disturbance observer for the time-varying disturbances. From the
position error curve and velocity error curve in Figure 7c,d, it can be seen that the error
has a good convergence pattern, which means that the USV can achieve circular trajectory
tracking. Figure 8 shows the variation curves for the surge force and yaw moment.
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Figure 7. Position and velocity curves: (a) the actual position of USV in three cases; (b) the actual
velocity of USV in three cases; (c) position tracking errors in three cases; (d) velocity tracking errors
in three cases.
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The simulations for the straight-line and circular trajectories indicate that the designed
control strategy is able to overcome external environmental disturbances in the process of
trajectory tracking.

5. Conclusions

In this paper, an NTSM controller was designed for the trajectory tracking problem of
underactuated USVs in the absence of disturbance, then a nonlinear disturbance observer
was devised to observe wind, wave, and current disturbances. The designed control
strategy was strictly proved to be asymptotically stable using the Lyapunov stability theory.
Finally, the NTSM and the nonlinear disturbance observer were combined, and the output
of the disturbance observer was used to replace the actual environmental disturbance. The
following conclusions are drawn from the theoretical analysis and numerical simulations
of circular and linear trajectories:

(1) The trajectory tracking results were obtained by Simulink numerical simulation using
the parameters of an existing USV model. In the case of no disturbance, the errors in
the linear trajectory and circular trajectory speeds converged to zero quickly while the
error in the position results converged to zero within 10 s to follow the the predefined
trajectory, which verifies the feasibility of the controller.

(2) Numerical simulations of both constant and time-varying external environmental
wind, wave, and current disturbances were performed, and estimates were obtained
with the designed disturbance observer. In both cases, the disturbance errors con-
verged rapidly to a value close to zero, indicating the capability of the disturbance
observer with regard to external disturbances.

(3) With constant and time-varying disturbances, the USV completed the trajectory track-
ing task within 10 s, and the errors in velocity and position were very close to zero.
The robustness of the system was improved by incorporating a disturbance observer
to estimate environmental disturbances and compensating for external disturbances
in the controller.
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