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Abstract: Photovoltaic panels can be affected by partial shading, which causes some shaded cells
to consume the energy generated by other cells of the panel. That is, shaded cells stop operating
in the first quadrant and start operating in the second quadrant, with negative voltage at their
terminals, causing power losses and other negative effects in the cells. The Bishop model is an
accurate representation of the cells behavior at the second quadrant, but estimating its parameters is
not a trivial task. Therefore, this paper presents a procedure to estimate the parameters of the Bishop
model by using the Chu–Beasley optimization technique. The effectiveness of this procedure was
evaluated using different accuracy measures such as RMSE and MAPE, obtaining values lower than
0.5%. In addition, the results of this study demonstrate that it is essential to estimate all the parameters
of the Bishop model, illustrate the variation in the parameters according to the cell technology and
show the strong influence of the shunt resistance into the behavior at the second quadrant.

Keywords: Bishop model; single-diode model; solar cell; optimization methods; I–V curve

1. Introduction

Photovoltaic (PV) cells are devices that convert solar irradiance into electricity. This
type of energy source has three main advantages: (1) it has an estimated lifespan of 25 years,
(2) it does not require short-term maintenance and (3) its raw material is renewable [1,2].
However, the energy production of a PV system depends on the weather conditions of
the place where the system is installed, which can quickly change. The behavior of the
PV cell under particular environmental conditions is often described by using the current–
voltage (I–V) curve, because it provides relevant information about the transformed energy
and it can be used to calculate the maximum power that can be delivered to a load [3].
The cell behavior for different irradiance and temperature conditions can be modeled using
an equivalent electrical circuit, which is designed to represent the electrical phenomena
associated with the energy transformation process [4–7].

The most commonly studied circuital models are the single-diode model (SDM) [8–11]
and the double-diode model (DDM) [12–15]. Both have been used to model commercial PV
cells, modules and panels made of monocrystalline silicon (mc-SI) or polycrystalline silicon
(pc-SI). However, when a PV panel is under partial shading, the shaded PV cells might not
generate energy; on the contrary, they might consume the energy produced by the other
cells of the panel. In this phenomenon, known as reverse bias, the cell exhibits a negative
voltage at its terminals; therefore, it operates in the second quadrant (negative voltage and
positive current). It is worth noting that neither SDM or DDM can accurately represent this
phenomenon at the cell level.
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The previous condition has been addressed by using the avalanche mechanism to
represent the reverse bias at the cell level. This is the case of the Bishop model [16,17],
which introduces a variation to the SDM that affects the shunt resistance current (Rsh) by
means of an ohmic term and a non-linear multiplication factor. Such a model, proposed
in [18], was implemented to analyze the ESTI database, which contains the I–V profiles
of mc-SI cells. In particular, the parameters proposed in [18] correspond to the average
value of the parameters obtained for each cell in the database; unfortunately, that study
does not include a detailed description of the procedure used to estimate the model
parameters. Other authors have used this Bishop model to analyze PV systems [19–21]
because it estimates the cell behavior under partial shading conditions at the cell level.
In general, the parameters suggested by Bishop are adopted when the second quadrant is
analyzed [18].

A simulation method was developed in [19] to diagnose PV systems, where the PV
current of the shaded region is calculated as a relationship between the current under
standard operating conditions, the irradiance value and the applied shadow. Although that
work does not emphasize the estimation of the parameters related to the first quadrant,
the parameters associated with the second quadrant are selected equal to the values re-
ported by Bishop in [18]. A more general approach was proposed in [21], where a method
for modeling PV arrays and modules was based on calculating the I–V relationship regard-
less of whether the arrays or modules have different electrical connections. The general
equations system was obtained by applying Kirchhoff’s laws and the damped Newton
method was used for calculating the system solution. The PV system in that work was
built in layers; the first one from cell to module and the second one from module to ar-
ray. Nevertheless, that study does not specify the method adopted to estimate the model
parameters. The Bishop model has also been used to develop tools (such as PVSIM) to
evaluate the performance of PV cells, modules, arrays and large-scale PV systems [20];
for example, PVSIM also includes elements such as bypass diodes and blocking diodes.
Concerning the model parameters, PVSIM incorporates information for different operating
points (irradiance and temperature) to interpolate the parameters values for a particular
temperature defined by the user. In addition, the user can define a set of parameters; thus,
cell-level information should be obtained to estimate those parameters. However, that
work does not describe the procedure adopted to find the parameters values incorporated
into the tool database.

The parameters of a PV cell can be estimated by different approaches, where the
most commonly adopted ones are analytical methods and stochastic techniques (such as
heuristics and metaheuristics) [22–26], which are often called optimization techniques.
Analytical methods are based on equations that relate the output current and voltage of
the system and, despite those approaches determine the parameters of a PV model, those
depend on variables under standard test conditions (STC). Thus, if those parameters are
not adequately defined, analytical methods are unable to reproduce the variations in PV
profiles due to changes in temperature and irradiance. Although these methods are simple,
the resulting models have low performance in the reproduction of different real operating
conditions [27–29].

The optimization techniques are classified in two important groups, the deterministic
and the stochastic ones. For the deterministic ones, there are solution methods, such as
Newton–Raphson [30], Gauss–Seidel [31] and other methods [32], which are related to
methods that require a convex, continuous and differentiable expression of an equation or
mathematical model; given this context, it is necessary to clarify that the convergence of an
algorithm can stay within a local minimum due to the complexity and non-linearity of the
Bishop model.

On the other hand, the stochastic methodology is divided into two groups, heuristics
and metaheuristics. For the parametric estimation, the metaheuristics approach has been
more notable; it contains a randomness factor. In this case, aspects related to the procedure
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for the selection of candidate solutions, setting parameters and objective function impact
the reached solution; further, a statistical analysis is required to validate the results [25,33].

Optimization algorithms are also widely adopted to estimate the parameters that best
fit an I–V profile of a PV cell, module, or panel. Those methods can be used to minimize the
energy consumption and costs or maximize the profits, production, performance, or energy
efficiency. One of the most used techniques for parameter estimation of the SDM is the
genetic algorithm (GA). For example, in [34], a GA is used to analyze the behavior of
the estimated parameters as irradiation and temperature changes. Similarly, in [35], a
comparative analysis of the parameter estimation of the SDM is performed, evaluating
the results provided by the Newton–Raphson algorithm against optimization techniques
such as GA and particle swarm optimization (PSO). Besides, hybrid techniques which
use analytical formulations and numerical algorithms have been proposed to improve
computation time or accuracy. In [36], mathematical formulations to translate I–V curves
and a moth-flame algorithm are used to take into account the PV cell parameters sensitivity
to weather conditions on the SDM.

In short, optimization techniques can be applied in many PV applications as long
as the equation to be optimized can be expressed in terms of an objective function, i.e., a
mathematical model that can be used in an iterative process [25,37,38]. However, the use of
optimization techniques require trade-offs between accuracy, computation time and compu-
tational resources, which are defined by the method programming and objective function.
As it can be noticed in the literature review, optimization techniques have been widely used
for estimating the parameters of cells or modules mostly using the SDM or the DDM, which
do not represent the behavior of the cell in the second quadrant in a proper way. On the
other hand, the Bishop model improves the representation of the cell behavior at the second
quadrant, but eight parameters of an implicit model must be determined. However, to the
best of the authors’ knowledge, procedures for estimating its parameters are not reported
in the literature. Instead, most of the works concerning PV cell or array analysis based on
Bishop model adopt the parameters from other studies previously reported. Therefore,
the purpose of this paper is to propose a methodology to estimate the parameters of the
Bishop mathematical model to represent a PV cell in both the first and second quadrants.
Because the high number of parameters to be identified and the implicit and non-linear re-
lationship between output current and voltage of Bishop model, an optimization approach
based on a Chu–Beasley genetic algorithm was used. The estimation process is divided
into two stages; in the first stage, the curve in the first quadrant is modeled based on the
estimation of SDM parameters; then, using the first five calculated parameters, the Bishop
parameters are estimated to reproduce the I–V curve in both the first and second quadrants.
In the second stage, the behavior in the first and second quadrants is modeled entirely
by the Bishop model. Both estimation stages are validated based on the I–V curves of
two PV cells (that are constructed with different technologies) using the root mean square
error (RMSE).

The rest of the paper is organized as follows: Section 2 presents the Bishop model
using an equivalent circuit, describing the equation that relates the output current and
voltage of a PV cell and defining the set of parameters to be estimated. In addition, Section 2
also defines the objective function and the search ranges for the parameters. Then, Section 3
describes the GA method implemented in this work to perform the proposed parameter
estimation, which is based on the Bishop mathematical model. Section 4 presents the
experimental analysis and reports the results of the parameter estimation process of two
PV cells (one mc-SI and one pc-SI). Those results are analyzed with the average values and
standard deviation of the parameters, the objective function value, the computation time
and the evaluation of accuracy metrics, such as RMSE, MAPE and MBE. Moreover, that
section also provides a summary of the proposed methodology. Finally, the last section
discusses the most relevant findings of this study in the conclusions.
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2. Bishop PV Model

Figure 1 shows the circuital model of a PV cell proposed by Bishop [39]. It consists
of a current source, associated with the generation of photovoltaic current (Iph); a diode,
representing the energy level threshold so that photons can trigger a significant production
and circulation of electron–hole pairs across the PN junction; a series resistance (Rs),
representing losses due to contact resistance; and a shunt resistance (Rsh), representing
leakage currents along the cell edges.

Ish

M(Vd) 

Icell

 

RsRsh

Iph

+

 

Vcell

 

-

Id

+

 

Vd

 

-

Figure 1. The Bishop model of a photovoltaic cell.

To calculate the output current of the cell (Icell), a summation of currents is performed
as shown below in Equation (1).

Icell = Iph − Id − Ish (1)

The current–voltage relationship of the diode (Id, Vd) can be represented by the Shock-
ley equation as given in Equation (2), where Isat is the saturation current; η is the ideality
factor; k is the Boltzman constant; T is the cell temperature in kelvin degrees (K); and q is
the electron charge.

Id = Isat

(
e(qVd/ηkT) − 1

)
(2)

Finally, the current through the shunt resistance (Rsh) can be written as reported in
Equation (3), where a is the fraction of the ohmic current related to the breakdown of the
semiconductor; Vbr is the breakdown voltage; and m is the avalanche exponent.

Ish =
Vd
Rsh

{
1 + a ·

(
1 − Vd

Vbr

)−m
}

(3)

The voltage across the diode can be expressed as follows:

Vd = Vcell + Rs · Icell (4)

In conclusion, eight model parameters should be estimated to reproduce the behavior
of a PV cell using the Bishop model: Iph, Rs, Rsh, Io, η, a, Vbr and m. Moreover, the relation-
ship between the output current Icell and the voltage at the cell terminals Vcell is implicit
and non-linear; thus, it requires iterative techniques for its evaluation.

3. Mathematical Formulation of the Optimization Problem

The parameter estimation of the Bishop model was performed by means of a GA,
which is a metaheuristic optimization technique. The optimization process was based on
the objective function given in (5), which corresponds to the root mean square error (RMSE)
between the current measured in the experimental tests (Icellm ) and the estimated value
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(Icelle ). For this purpose, both data vectors should be taken from the same voltage vector
and have the same size (n).

min(O.F.) = min

√∑n
i=1(Icelle(i)− Icellm(i))2

n

 (5)

The constraints of the optimization problem correspond to the search ranges of the
parameters to be estimated, which are defined in Equations (6)–(13). Those search ranges
should be respected to ensure a correct estimation of the current using Equation (1).

ηmin ≤ η ≤ ηmax (6)

Rsmin ≤ Rs ≤ Rsmax (7)

Rshmin ≤ Rsh ≤ Rshmax (8)

Iomin ≤ Io ≤ Iomax (9)

Iphmin ≤ Iph ≤ Iphmax (10)

amin ≤ a ≤ amax (11)

mmin ≤ m ≤ mmax (12)

Vbrmin ≤ Vbr ≤ Vbrmax (13)

Regarding the parameters associated with the SDM (Iph, Rs, Rsh, Io and η), it is
possible to find defined ranges for different cell technologies in the literature. However,
the parameters’ ranges that affect the second quadrant behavior (a, Vbr and m) have not
been extensively studied; therefore, those ranges are described in Section 4.2.2.

3.1. Chu–Beasley Genetic Algorithm Applied to the Problem of Parameter Estimation

Equation (5) in Section 2 represents the problem addressed in this study and shows
that iterative methods should be applied to find a solution. This study proposes two
stages to solve said problem: (1) estimation of the SDM parameters and (2) estimation
of Bishop parameters that can be used to represent the cell-level PV profiles in the first
and second quadrants, where the GA is used to find the optimal parameter configuration.
The following subsection describes the five fundamental steps of the GA.

3.1.1. Generation of the Initial Population

The first step is defining the coding of the estimation problem. In this case, each
individual is represented as a row vector (Ind) and each position in the vector represents
each one of the parameters to be estimated.

Ind =
[
Param1 Param2 · · · Paramr

]
(14)

The initial population is a matrix (p × r), where p is the number of individuals in
the population and r is the number of parameters in the problem. The values of each
position in the matrix (15) can be randomly generated, but they should fall within the
search ranges defined in the set of constraints of the problem, as shown in the Equation (16),
where rand is a random number. Therefore, the population is a different set each time the
algorithm is executed. In this way, the neighborhood of the global minimum is reached
taking different paths for each solution; those solutions could be different, but all of them
exhibit an acceptable accuracy. In addition, the criterion of diversity should be satisfied,
i.e., all individuals in the population should be different.
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Pop(p × r) =


Ind1
Ind2

...
Indp

 (15)

Param1 = Parammin
1 + (Parammax

1 − Parammin
1 ) · rand (16)

The objective function of each individual of the initial population must be evaluated.
Then, the individual with the lowest objective function value (best solution found so far) is
selected as the incumbent, because the goal is to obtain the lowest RMSE value between
the estimated and the measured data.

O.F.(Pop) =


f (Icelle(Ind1), Icellm)
f (Icelle(Ind2), Icellm)

...
f
(

Icelle(Indp
)
, Icellm)

 (17)

3.1.2. Descendant Generation

In this iterative process, a child is produced in each generation as a result of three
steps: (1) selection of individuals from the initial population, known as parents; (2) recom-
bination of the information contained in the selected parents; (3) mutation of the combined
information of the parents. These three steps are explained in detail below.

• Selection:
Two parents are randomly selected from the initial population, where the two parents
should be different individuals. In this work, the function randperm(p, 2) from MAT-
LAB was used, which returns a vector with two unique integers selected randomly
from 1 to p. Figure 2 shows an example population with five parameters and six
individuals, where Individuals 2 and 6 have been randomly selected as parents.

Param1 Param2
Ind1

Ind2

Ind3

Ind4

Ind5

Ind6

Parent2

Parent1

Param3 Param4 Param5

Figure 2. Selection process in the genetic algorithm.

• Crossover:
At this step, information from both parents is combined to obtain descendants (off-
spring). For this purpose, a crossover point should be randomly selected in the vectors
of the individuals selected as parents. The function randi from MATLAB allows users
to generate a value, vector, or matrix with random integers uniformly distributed in
a predefined interval; thus, it was used in this work to obtain the crossover point.
In this case, since this work is intended for parameters with real values, the position
of each one of the parameters should be respected because their search ranges are
usually different. Figure 3 shows an example of recombination where Parameter 3
was selected as the crossover point.
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Parent2

Parent1

Crossover 
point Offspring1

Offspring2

Param1 Param2 Param3 Param4 Param5
Param1 Param2 Param3 Param4 Param5

Figure 3. Crossover process in the genetic algorithm.

• Mutation:
At this step, variations are introduced in the offspring while preserving information
inherited from their parents. Initially, it is decided whether or not both offspring will
be mutated based on a randomized number that can take the values 0 or 1. If the value
is 0, no mutation is performed; but, if it is 1, mutation takes place. If the decision is to
mutate the offspring, the parameter to be mutated is randomly selected and replaced
by a random value within its search range. Figure 4 shows this process.

Random
selection

Offspring1

Param1 Param2 Param3 Param4 Param5

Mutated  
Offspring1

Random 
value

Figure 4. Mutation process in the genetic algorithm.

3.1.3. Offspring Selection

The descendant that continues the process is also randomly selected. Once it is selected,
its objective function is evaluated.

3.1.4. Parent Update

The algorithm checks that the selected child is not part of the initial population
(diversity criterion). If this condition is met, this descendant replaces the worst parent in
the initial population. In addition, the algorithm checks whether this new individual has
the best objective function in the entire population; if so, it replaces the incumbent.

3.1.5. Evaluation of the Stopping Criteria

This process has two stopping criteria: (1) maximum number of iterations to be
evaluated in the estimation process (itermax) and (2) maximum number of consecutive
iterations in which the incumbent is not improved (iternmax).

Finally, Algorithm 1 shows the pseudocode implementation of the GA used for the
parameter estimation of the Bishop model. In addition, the flowchart of the proposed
parameter estimation method is presented in Figure 5.
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Algorithm 1: Pseudocode proposed for the genetic algorithm.
Data: Define the search ranges of the parameters
Data: Randomly initialize parameters
iter=1;
Generate initial population;
Evaluate the objective function;
Select the incumbent;
while iter = 2 : itertmax do

Select parents from the initial population;
Create children by recombining parents at one point;
if Mutate==1 then

Select parameter to mutate in each child;
Select a random value of the parameter in its range;

else
Do not mutate children

end
Randomly select the child of the generation;
Evaluate the selected child’s O.F.;
Update the incumbent;
if Was any stopping criteria met? then

Finish the estimation process;
Print results;
Break;

else
Continue;

end
end

O.F.child  
< 

 incumbent
incumbent = O.F.child

Generate intial population 
Evaluate FO=min(RMSE) 

Select incumbent

Mutation: 
Select parameter and

value randomly

Evaluate O.F. of child selected

Start

Load I-V data 
Load search ranges

Selection:  
2 parents randomly

Crossover:  
Select crossover point randomly

Mutate?

No mutation

Yes No

Random selection
of child

Yes

Stop criteria 
reached?

No

No

Print results

End

Tune parameters using PSO: 
p, itermax,iternmax

Figure 5. Flowchart: PV estimation parameters using GA.
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4. Results
4.1. Experimental Stage

The ERDM-SOLAR 10/12 panel was selected to validate the parameter estimation
processes. Table 1 reports the most important data sheet parameters.

Table 1. Datasheet parameters for ERDM-SOLAR 10/12 panel.

Parameters Values

Vmp 0.48 V
Imp 0.55
Voc 0.59 V
Isc 0.58 A

Pmax 0.26 W

Additionally, to analyze the variation of the parameters of each panel technology, two
panels of the same reference (one mc-SI and one pc-SI) were used. In each case, a cell with
50% shaded area was selected to experimentally obtain its I–V curve in both the first and
second quadrants. The procedure to obtain the curve at cell level is described as follows:

• The bypass diode included in the junction box of the PV panel was removed.
• Two I–V curves had to be obtained from the PV panel terminals; both were named

with the corresponding location of the cell in the PV panel (see Figure 6a). The first one,
NSB5 curve, was taken without shading. The second curve was obtained by covering
a percentage of the cell area, in this case corresponding to 50% (SB5); Figure 6b
shows those curves. Both curves should be taken under similar irradiation and
temperature conditions.

• Figure 7a presents a 36-cell serial array, where a single cell is shaded. The behavior
corresponding to the shaded cell is the blue curve, while the red curve represents the
I–V curve of the remaining 35 cells. Given its series connection, the output current
was the same through all cells, but the output voltage was the sum of the voltages
of the 35 cells without shading and the voltage of the shaded cell for the other curve.
In this way, the I–V curve of the shaded cell was reconstructed through the difference
between the two I–V curves obtained, i.e., with and without shading. Later, it was
necessary to scale the voltage of the curve without shading VB5 to match the 35 cells
without shading of the other curve (the one with a single shaded cell), as follows:
V35

B5 = VB5 · (35)
36 .

• It was necessary to create a current vector with the highest value between the minimum
currents of both curves as a minimum limit. The lowest value was chosen among the
maximum currents of both curves as the upper limit. The current vector interpolated
both curves (shaded I–V curve and unshaded scaled) to allow their subtraction to
be performed, thus obtaining the current for the shaded cell. An example of this
procedure is shown in Figure 7b, where the result of the experimental I–V curve of the
shaded B5 cell is shown.

The experimental I–V data required in this process were obtained performing a pro-
grammed voltage sweep on an electronic load using the experimental setup shown in
Figure 8, where an oscilloscope (right photo) recorded the current and voltage of the cell
(left photo) and small PV modules were short-circuited (center photo) to estimate the irradi-
ance value. Thus, the experimental I–V curves of both mc-SI and pc-SI cells were generated
under real operating conditions, with an irradiance of 1008 W/m2 and a temperature of
320.65 K; Figure 9 shows the experimental I–V curves. The R&S RTE1204 oscilloscope
used in the experiments had an accuracy for DC measurements of ±1.5% [40]; hence, this
precision must be propagated to the estimated values. Moreover, the short-circuit current
was measured in another panel with the same characteristics to guarantee that the curves
were obtained for similar irradiation. In this way, if the current did not change considerably,
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it can be assumed that the irradiation did not change either. This was also ensured by
taking at least three curves for each experiment and, if there were differences among the
three curves, the data were discarded and the experiment was performed again.

A   B   C  D
1
2
3
4
5
6
7
8
9

(a)

0 5 10 15 20
Panel Current [A]
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P
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 V

ol
ta

ge
 [

V
]

NS
B5

S
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(b)

Figure 6. Case study example: (a) nomenclature of cells and location of B5; (b) PV I–V curves with
B5 shaded and without shading.
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Figure 7. Graphical analysis for shading phenomena (a) from simulation and (b) from experimen-
tal analysis.

Figure 8. Equipment used to obtain experimental I–V curves: ERDM-SOLAR 10/12 panel, reference
panels and R&S RTE1204 oscilloscope.
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Figure 9. Experimental I–V curves of mc-SI and pc-SI cells.

4.2. Estimation Stages
4.2.1. Estimation of the SDM Parameters

In the first stage of the parameter estimation, the five parameters defining the behavior
of the curve in the first quadrant (Iph, Rs, Rsh, Io and η) were calculated. Thus, the ranges in
Table 2 were selected as search ranges; those values were taken from the literature [41–49].
The photovoltaic current (Iph) was adjusted to a range of ±5% of the short-circuit current
of the test (Isc), this based on the fact that Isc is caused by the generation and collection of
light-generated carriers; therefore, Isc and Iph are very close values.

Table 2. Ranges for the estimation of parameters in the first quadrant.

Limits n Rs Rsh Io Iph

Min 0.05 1 × 10−5 5 1 × 10−10 95% × Isc
Max 2 2 100 1 × 10−7 105% × Isc

The genetic algorithm was adjusted to obtain the best possible solution in terms of the
objective function. This was achieved by implementing another optimization algorithm
to obtain the GA parameters that best fit the minimization of the problem. In this case,
we used the PSO algorithm proposed in [50,51] to tune the following values: population
size p (individuals or particles), with a search range of 2–100; number of iterations itermax
(maximum iterations allowed in the GA), with a search range of 1–10,000; and number
of non-improvement iterations iternmax (this determines the point at which the algorithm
stops performing convergence or minimizing the objective function), with a search range
of 1–10,000. The results obtained from this tuning process were p = 11, itermax = 8761
and iternmax = 4061.

As part of the estimation process, the technique was evaluated 100 times per cell
to observe metrics such as mean value and standard deviation for each estimated SDM
parameter, which are reported in Table 3. The accuracy of the data was evaluated using the
RMSE, since that metric was adopted as the objective function, obtaining small standard
deviations for both cells, as reported in Table 4. The MAPE metric also showed a small
error but with a higher standard deviation, especially for Cell 2, while the MBE metric
exhibited very small values with high standard deviations. In any case, the three metrics
had small values, which ensured a high accuracy on the I–V curves reproduction.
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Table 3. Ranges of parameters estimated for the SDM model (mean ± standard deviation).

Parameter Cell 1 (mc-SI) Cell 2 (pc-SI)

Iph(A) 0.43 ± 0.16% 0.32 ± 0.2%
Isat(A) 9 × 10−8 ± 23.3% 9 × 10−8 ± 23.3%

n 1.1 ± 2.7% 1.2 ± 2.9%
Rs(Ω) 0.12 ± 3.3% 0.08 ± 4.7%
Rsh(Ω) 15 ± 2% 485 ± 14%

O.F. 0.003 ± 7% 0.008 ± 1.6%
Time (s) 4.81 × 103 ± 199.4% 1.34 × 103 ± 78%

Table 4. Accuracy measures for estimation with the SDM model (mean ± standard deviation).

Accuracy Measures Cell 1 (mc-SI) Cell 2 (pc-SI)

RMSE 0.003 ± 6.6% 0.008 ± 1.6%
MAPE 0.014 ± 7.1% 0.001 ± 70%
MBE −1.5 × 10−5 ± 266% −2.8 × 10−6 ± 1571%

Analyzing the Cell 1 (mc-SI) parameters in Table 3, the highest relative deviations
was found in Isat, with 23.3%. Concerning Cell 2 (pc-SI), the highest relative deviations
were found in parameters Isat and Rsh, with 23.3% and 14%, respectively. Instead, the other
parameters, for both cells, exhibited variations under 5%. The mean RMSE of Cell 1,
evaluated as the objective function, was lower than the value obtained for Cell 2; however,
the relative deviations for Cell 2 were lower than in the case of Cell 1.

The best and worst solutions provided by the 100 estimations were also analyzed and
compared based on the value of the objective function provided by the GA. Table 5 presents
the sets of parameters that provide the best and worst performance for the SDM in each cell.
Moreover, Figures 10a and 11a show the comparison between the I–V curves estimated
with the best parameters and the experimental data for Cells 1 and 2, respectively. Those
figures show a satisfactory reproduction of the I–V curve’s first quadrant using the SDM
parameters obtained with the proposed GA, where the most significant differences are
presented in Iph and Rsh. In addition, Figures 10b and 11b show the convergence path of a
sample of 10 repetitions of the estimation algorithm. Both figures show that the algorithm
started with different initial values but arrived at similar objective function (O.F.) values,
which resulted in parameters with low deviations.

Table 5. Sets of parameters of the best and worst solutions for the SDM of each PV cell.

Parameter Cell 1 (mc-SI) Cell 2 (pc-SI)
Best Worst Best Worst

Iph(A) 0.43 0.42 0.32 0.33
Isat(A) 1 × 10−7 4 × 10−9 4 × 10−9 1 × 10−7

n 1.2 0.9 1.07 1.3
Rs(Ω) 0.12 0.15 0.1 0.08
Rsh(Ω) 15 15 92.1 67

O.F. 0.003 0.008 0.007 0.008
Time (s) 5 × 104 6 × 103 170.6 39.9
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Figure 10. Parameter estimation results for Cell 1 (mc-SI) using the SDM model: (a) comparison of
I–V curves using the best solution and (b) convergence results for a sample of 10 repetitions.
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Figure 11. Parameter estimation results for Cell 2 (pc-SI) using the SDM mode: (a) comparison of I–V
curves using the best solution and (b) convergence results for a sample of 10 repetitions.

In order to reproduce the I–V curve second quadrant, an exhaustive search in the liter-
ature was conducted to find Bishop model parameters used for PV cells, modules, or panels.
Such a literature review confirmed that second-quadrant studies are commonly performed
using parameters similar to those proposed in [18], with small variations; moreover, only
few studies have reported the procedure followed to obtain those parameters. Table 6 lists
some of the second-quadrant studies found in the literature, the values adopted for the
second-quadrant parameters, the technology of the cell under study and the source from
where the parameters were taken.



Appl. Sci. 2022, 12, 2927 14 of 22

Table 6. Values of the Bishop model parameters for the second quadrant.

Reference a Vbr m Cell Technology Parameters Source

[18] 2 × 10−3 −15 V 3.7 mc-SI ESTI data base
[52] 2 × 10−3 −20 V 3 Not indicated Not indicated
[14] 2 × 10−3 −15 V 6 Not indicated Not indicated
[21] 0.1 −14 V 2 Not indicated Not indicated
[19] 2 × 10−3 −21.29 V 3 Not indicated Not indicated
[53] 2 × 10−3 −21.29 V 3 Not indicated [19,52]
[17] 0.35 −15 V 3.8 mc-SI Not indicated
[54] 0.1 −20 V 3 Not indicated Not indicated
[55] 2 × 10−3 −15 V 3 Not indicated Not indicated
[16] 2 × 10−3 −15 V 3 Not indicated [14]
[56] 1 × 10−2 −14.4 V 3 Not indicated Not indicated
[57] 0.1 −10 V to −30 V 3.4 to 4 mc-SI and pc-SI Not indicated
[58] 0.1 −10 V 1.1 mc-SI Not indicated

The values most commonly adopted in the literature for the second-quadrant pa-
rameters, observed in Table 6, are: a = 2 × 10−3, m = 3 and Vbr = −28 V for Cell 1 and
Vbr = −26 V for Cell 2. Using those values to estimate the behavior of both experimental
cells (Cell 1 and Cell 2) led us to the results reported in Figure 12a,b, which shows a wrong
reproduction of the second-quadrant behavior of real PV cells under real operation condi-
tions. In fact, the RMSE of Cells 1 and 2 were 0.15 and 0.024, respectively, which are much
higher than the RMSE obtained in the first quadrant. Table 7 reports the RMSE, MAPE
and MBE metrics for those curve reproductions, where all the metrics grow consistently in
comparison with the values achieved in Table 4 for the parameter estimation of the SDM
model. Therefore, this test puts into evidence the need to also estimate the second-quadrant
parameters instead of adopting the values reported in [18] for any condition. The following
subsection addresses such a second estimation stage.
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Figure 12. Comparison of I–V curves using the Bishop model with the parameters of the SDM
estimation and (a) Cell 1 (mc-SI) a = 2 × 10−3, m = 3, Vbr = −28 V; (b) Cell 2 (pc-SI) a = 2 × 10−3,
m = 3, Vbr = −26 V.

Finally, Figure 12a,b shows that, although the Bishop model is used to represent the
behavior of PV cells, its fitting is not consistent in the second quadrant if the parameters are
not correct. In fact, as the negative voltage increases, the difference between the estimated
and experimental curves grows noticeable. The main reason of such an error increment is
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the fact that the estimation includes only information from the first quadrant to find the
parameters from the SDM.

Table 7. Accuracy measures for estimation with the SDM model and Bishop parameters
(mean ± standard deviation).

Accuracy Measures Cell 1 (mc-SI) Cell 2 (pc-SI)

RMSE 0.15 ± 1.3% 0.024 ± 8.3%
MAPE 0.15 ± 2% 0.02 ± 10%
MBE −8 × 10−2 ± 2.5% 9 × 10−3 ± 33.33%

4.2.2. Estimation of the Bishop Model Parameters

This second estimation stage was carried out for the two cells with different technolo-
gies previously described (Cell 1 and Cell 2) to observe variations in the second quadrant
parameters. In this case, in addition to the search ranges defined in Table 2, the ranges
of parameters a, Vbr and m were also defined. Those additional ranges were obtained by
analyzing the impact of each parameter on the I–V curve in the second quadrant. This
procedure was carried out using simulations, verifying the values of which allowed us
to reconstruct the I–V curve close to the experimental ranges obtained from the real cells.
Those new parameter ranges are detailed in Table 8.

Table 8. Ranges for parameter estimation in the second quadrant.

Limits a Vbr m

Min 2 × 10−3 −50 V 2
Max 15 × 10−3 −20 V 6

The objective function was the same adopted in the previous stage, i.e., Equation (5); the
set of constraints indicated in Equations (6)–(13) also held, which are detailed in Tables 2 and 8.
As in the previous stage, the PSO algorithm was used to find the best set of parameters of
the GA, similar to the tuning process presented in Section 4.2.1. In this case, the results
were p = 14, itermax = 9709 and iternmax = 1261. Then, using those GA parameters,
the estimation of the Bishop model was repeated 100 times, obtaining the parameters’
mean and standard deviations reported in Table 9. Moreover, Table 10 presents the sets of
parameters providing the best and worst estimations obtained with the 100 repetitions.

In this estimation process, the highest relative deviations were found in the same
parameters: Isat, Vbr, m and a. For Cell 1, those maximum variations were 13.3%, 23.2%,
33.3% and 22.22%, respectively, while, for Cell 2, those were 24.4%, 17.5%, 24.5% and 32.5%,
respectively; the other parameters reported variations under 5%. The mean RMSE for Cell
1 (mc-SI), evaluated as the objective function, was lower than the value of Cell 2; however,
the deviations were higher in Cell 2 (pc-SI).

Table 11 reports the accuracy metrics evaluated for the complete Bishop model esti-
mation. Comparing the results presented in Tables 7 and 11 confirm the large accuracy
increment achieved with this second estimation stage, in comparison with the adoption
of classical Bishop parameters found in the literature. In fact, the RMSE, MAPE and MBE
values were reduced between one and two orders or magnitude.
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Table 9. Parameters estimated for the Bishop model (mean ± standard deviation).

Parameter Cell 1 (mc-SI) Cell 2 (pc-SI)

Iph(A) 0.4 ± 0.24% 0.32 ± 0.25%
Isat(A) 9 × 10−8 ± 13.3% 9 × 10−8 ± 24.4%

n 1.1 ± 1.1% 1.2 ± 2.5%
Rs(Ω) 0.13 ± 2.3% 0.08 ± 5.6%
Rsh(Ω) 51.6 ± 3.9% 182.9 ± 3.1%
Vbr(V) −18.4 ± 23.2% −37 ± 17.5%

m 4.5 ± 33.3% 5.3 ± 24.5%
a 0.02 ± 22.2% 0.02 ± 32.5%

O.F. 0.004 ± 4.5% 0.007 ± 2.8%
Time (s) 408.9 ± 81.9% 528.1 ± 109.1%

Table 10. Best and worst parameter solutions for the Bishop model of each PV cell.

Parameter Cell 1 (mc-SI) Cell 2 (pc-SI)
Best Worst Best Worst

Iph(A) 0.41 0.42 0.32 0.32
Isat(A) 9 × 10−8 9 × 10−8 2 × 10−9 9 × 10−8

n 1.1 1.2 1 1.3
Rs(Ω) 0.13 0.14 0.1 0.09
Rsh(Ω) 52.5 53.6 155.4 179.9
Vbr(V) −28.1 −18.3 −25.9 −40.9

m 7.5 4.5 4.4 6.1
a 0.029 0.028 0.005 0.024

O.F. 0.004 0.005 0.006 0.008
Time (s) 632.6 162.6 580.8 56.8

Table 11. Accuracy measures for estimation with the Bishop parameters (mean ± standard deviation).

Accuracy Measures Cell 1 (mc-SI) Cell 2 (pc-SI)

RMSE 0.004 ± 3.9% 0.007 ± 2.9%
MAPE 0.018 ± 25.9% 0.004 ± 222.5%
MBE −7.3 × 10−5 ± 185.4% −6.4 × 10−5 ± 196.18%

Finally, Figures 13a and 14a compare the estimated I–V curves of Cell 1 and Cell 2 with
the experimental data, respectively. Those comparison put into evidence the satisfactory
performance of the Bishop model, at the second quadrant, with the parameters estimated
using the proposed GA. Thus, this approach provides a much more accurate solution
than that obtained using the Bishop parameters reported in [18] for those real PV cells.
Moreover, Figures 13b and 14b report a representative sample of the convergence path for
the estimation of Cells 1 and 2 parameters, respectively. In both figures, we can observe
the consistent decrement of the O.F. as the number of iterations increases, which, after
7000 iterations, forces all solution paths to reach a similar value to the O.F., thus providing
a similar accuracy in the second-quadrant reproduction.
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Figure 13. Parameter estimation results for Cell 1 (mc-SI) using the Bishop model: (a) comparison of
I–V curves using the best solution and (b) convergence results for a sample of 10 repetitions.
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Figure 14. Parameter estimation results for Cell 2 (pc-SI) using the Bishop model: (a) comparison of
I–V curves using the best solution and (b) convergence results for a sample of 10 repetitions.

4.3. Summary of the Proposed Procedure

Figure 15 outlines the proposed methodology for estimating the parameters of a
photovoltaic cell, considering the behavior in the first and second quadrant, which has
two stages: experimental stage and parameter estimation of the model. The following
subsections briefly summarize each stage.

4.3.1. Experimental Analysis

This was performed by analyzing the panel I–V data without shading, then exposing
a single cell of the panel to partial shading; for this work, we defined a 50% of the cell area.
Subsequently, the I–V data must be mathematically manipulated to obtain the I–V curve
for the shaded cell. This stage is explained in detail in Section 4.1.
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Figure 15. Summary of the proposed methodology.

4.3.2. PV Parameter Estimation

The estimation of Bishop’s model parameters requires, in addition to the curves of the
experimental stage, the definition of the search ranges for each parameter, which depends
on the cell’s technology. In this work, a range is proposed for the technologies used in the
tests in Tables 2 and 8 (mc-SI and pc-SI); however, the search ranges must be investigated
for different technologies.

Then, an optimization technique was used to solve the PV parameter estimation
problem. This work focused on the GA presented in Section 3.1, which required to define
the algorithm parameters, such as number of maximum iterations itermax, number of
maximum non-improvement iternmax and population size p. This process was performed
by using a PSO algorithm to find itermax, iternmax and p, thus ensuring a correct behavior
of the genetic algorithm; the estimation process is summarized in the flowchart of Figure 5.
This estimation process was coded in MATLAB, without using any genetic or optimization
toolboxes, which enabled us to optimize the performance of both GA and PSO. Finally,
the function that relates the cell voltage and current is an implicit expression; thus, it was
solved using the Newton–Raphson method.

The validation of the estimation process was performed by running several repetitions
of the parameters estimation. Then, that information was used to calculate accuracy metrics
associated to each parameter, the evaluation of the objective function, the execution time
and some error measurements, such as those presented in Tables 9–11. In this work, RMSE,
MAPE and MBE were used to confirm the estimation accuracy.

5. Discussion and Conclusions

Comparing the results of the two stages of the parameter estimation, it was established
that the estimation of the complete set of parameters of the Bishop model achieved a better
performance than that obtained by estimating only the five SDM parameters and using the
second-quadrant parameters reported in [18].

A comparison of the parameter estimation results (Stages 1 and 2) shows that the
parameters for the first quadrant were similar for both Cell 1 and Cell 2. The most significant
difference in the estimation stages was Rsh, which affected the second quadrant behavior
in the Bishop model. For that parameter, Cell 1 exhibited differences of 36.6(Ω) between
SDM and the Bishop model from its mean values (see Tables 3 and 10) and 28.5(Ω) from
the best results (see Tables 5 and 9). For Cell 2, those values were 302.1(Ω) and 90.8(Ω),
respectively. This analysis shows that I–V experimental curves, which include the first and
second quadrant, are necessary for estimating the parameters of the Bishop model.

This study found differences in the behavior of the I–V curve of mc-SI and pc-SI cells
at important points, such as the short-circuit current Isc and the maximum power point
(Vmpp, Impp). Those variations are reflected in the estimation of the parameters of the Bishop
model, as shown in Table 9. Such differences are noticeable not only in the first quadrant,
but also in the second quadrant, since the three parameters defining that behavior (a, m
and Vbr) show considerable variations depending on the type of cell technology. Therefore,
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not only parameters but also search ranges should be defined according to the technology
of the cells under analysis.

It is important to emphasize that the parameters of the first quadrant also affected
both the result of estimating the parameters of the second quadrant and the reproduction of
I–V curve in that quadrant; therefore, using values taken from the literature can introduce
significant errors in the estimation of the I–V curve. Thus, the solution presented in this
paper is a tool to improve the analysis of the cell when it is exposed to partial shading,
enabling an accurate representation using the Bishop model. In this way, tools oriented
to quantifying shading losses and studies of degradation caused by hot-spots and aging,
among other issues, can be developed by using the proposed methodology; this providing
a suitable compromise between accuracy and complexity.

Finally, future studies should be focused on evaluating the performance of other
optimization techniques for estimating the parameters of photovoltaic cells, for both the
first and second quadrant, using the Bishop model. Moreover, performing experiments
on a large number of commercial PV cells with different technologies (thin-film, bi-facial
and PERC, among others) could be useful for the scientific community, since accurate
parameters for both the first and second quadrant could be provided. On the other hand, it
is important to evaluate the performance of the proposed approach by considering dynamic
operating conditions in terms of temperature and irradiance.
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Abbreviations
The following abbreviations are used in this manuscript:

PV photovoltaic
mc-SI monocrystalline silicon
pc-SI polycrystalline silicon
SDM single-diode model
DDM double-diode model

PVSIM
software program utilized by SunPower to predict
the amount of energy a solar power system

GA genetic algorithm
PSO particle swarm optimization
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RMSE root mean square error
MAPE mean absolute percentage error
MBE mean bias error
Icell current of the cell
Iph photoinduced current
Id saturation current of the diode
Ish shunt resistance current
Vd voltage across the diode
Rsh shunt resistance
Rs series resistance
η ideality factor
k Boltzman constant
q electron charge
T cell temperature
Vbr breakdown voltage
m avalanche exponent

a
fraction of the ohmic current related to
the breakdown of the semiconductor
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