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Abstract: Bioactive compounds are often used as initial substances for many therapeutic agents. In 
recent years, both theoretical and practical innovations in hardware-assisted and fast-evolving ma-
chine learning (ML) have made it possible to identify desired bioactive compounds in chemical 
spaces, such as those in natural products (NPs). This review introduces how machine learning ap-
proaches can be used for the identification and evaluation of bioactive compounds. It also provides 
an overview of recent research trends in machine learning-based prediction and the evaluation of 
bioactive compounds by listing real-world examples along with various input data. In addition, 
several ML-based approaches to identify specific bioactive compounds for cardiovascular and met-
abolic diseases are described. Overall, these approaches are important for the discovery of novel 
bioactive compounds and provide new insights into the machine learning basis for various tradi-
tional applications of bioactive compound-related research. 

Keywords: bioactive compound; natural product; machine learning; bioinformatics;  
cheminformatics; chemical space; cardiovascular disease; metabolic disease 
 

1. Introduction 
Bioactive compounds are chemicals that exist in trace amounts in natural products 

(NPs) from plants and animals. They are used as components of health supplements or as 
early substances in drug development [1–3]. Bioactive compounds are considered to have 
suitable scaffolds that can interact with various proteins in living organisms through evo-
lutionary pressure. Therefore, they were frequently used as initial substances for a signif-
icant number of therapeutics [1,4–6]. For example, plants contain rapidly evolving, multi-
functional metabolic enzymes that appear to influence the production of structurally di-
verse chemicals such as secondary metabolites [7]. In addition, many approved drugs are 
structurally similar to bioactive compounds [8], providing a clue that finding bioactive 
compound analogs may be the right strategy for novel drug development. For example, 
a clinically approved anti-mitotic drug, eribulin (Halaven), is derived from the natural 
product halichondrin B [9]. In addition, a survey estimated that 28% of all currently ap-
proved drugs are either NPs or their derivatives [10]. In fact, a major source of oral drugs 
is derived from NPs [11]. Therefore, the discovery of novel bioactive compounds in NPs 
or their derivatives has routinely been a way to develop valuable therapeutic agents. 

Chemical space is defined as a virtual space, comprising all theoretically possible 
small organic molecules in excess of 1060 [12–14]. Previously, navigating the entire chem-
ical space was thought to be impractical due to mostly technical limitations. However, 
with the theoretical and practical innovation of machine learning (ML) fields such as deep 
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learning (DL), which is undergoing rapid development in support of hardware such as 
graphics processing units (GPUs) and tensor processing units (TPUs) in recent years, it 
has become possible to navigate a chemical subspace with desired properties. There are 
many successful case studies of the application of ML for various purposes. For example, 
recent studies identified many NP-like small molecules through the exploration of the 
chemical space of NPs [15–17]. In addition, ML models can accurately discriminate wild 
from farmed salmon based on gas chromatography with flame ionization detector (GC-
FID) fatty acid profiles [18]. Therefore, with the help of state-of-the-art machine learning 
techniques, a variety of tasks such as discovering novel bioactive compounds with desired 
properties by training data measured through various large-scale experiments have be-
come possible. 

Recently, many ML algorithms are being applied to drug discovery, including hit 
identification, lead optimization, and clinical development stages [19–21]. Their goal is to 
accelerate the discovery of drugs more quickly and efficiently. For example, the traditional 
hit identification process requires labor-intensive, massive high throughput screening 
(HTS) that consumes many resources. To overcome this process, ML- or DL-based drug-
target interaction (DTI) algorithms are used to identify small molecules that can bind to 
the desired target proteins using either sequence-based or 3D structure-based data [22–
25]. To evaluate the properties of a given compound, cheminformatics approaches, such 
as the quantitative structure–activity relationship (QSAR), a computational modeling 
method for predicting the relationship between structural properties and biological activ-
ities of chemical compounds, are used widely, along with the prediction of absorption, 
distribution, metabolism, excretion, and toxicity (ADMET) [26–28]. Collectively, these 
computational predictions are effective at reducing the time and cost required for drug 
development, and many appropriate applications can also be applied to NP-based drug 
or active molecule discovery, which is expected to accelerate such processes. 

In this review, we avoid discussing in-depth characteristics of machine learning tech-
niques and the discovery and/or development of novel bioactive compounds, but rather 
offer an overview of recent research trends toward the machine learning-driven predic-
tion and evaluation of bioactive compounds based on actual cases. 

2. Cheminformatics, Bioinformatics, and Databases for Machine Learning 
Cheminformatics is a research field that achieves desired goals by utilizing various 

information on chemicals, including 2D and 3D structures of chemical species. In general, 
the structural information of chemicals can be standardized and converted to machine-
readable formats such as a simplified molecular-input line-entry system (SMILES) [29]. 
SMILES strings can be stored electronically into a database and then utilized through a 
variety of computational algorithms to identify, evaluate, and predict properties of chem-
icals. For example, the PubChem database [30] currently contains more than 100 million 
unique chemical structures extracted from contributed PubChem substance records 
(https://pubchemdocs.ncbi.nlm.nih.gov/statistics (accessed on 10 December 2021)). There 
are other databases for chemical collections such as ChEMBL 
(https://www.ebi.ac.uk/chembl/ (accessed on 10 December 2021)) [31] and ZINC15 
(https://zinc15.docking.org/ (accessed on 10 December 2021)) [32]. Therefore, integrating 
cheminformatics methods and databases into existing drug discovery procedures has be-
come indispensable for successful drug development. Accordingly, it is not at all surpris-
ing that many initial hits (a hit is defined as a molecule that shows the desired type of 
activity in an experimental screening assay) and further optimization for lead compounds 
can be performed via computational methods, such as computer-aided drug design 
(CADD) approaches. There are many successful applications of CADD in the develop-
ment of currently available commercial drugs. For example, zanamivir (Relenza), a neu-
raminidase inhibitor that is used as a prophylaxis to treat the symptoms of influenza, was 
approved by the United States Food and Drug Administration (FDA) in 1999 [33] and is 
one of the most successful outcomes of CADD. 
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The identification of new bioactive compounds for a given target protein requires not 
only chemical information, but also detailed molecular information about the target pro-
tein, such as amino acid sequence, domain, and three-dimensional structural information. 
Fortunately, this kind of information has been accumulated experimentally and compu-
tationally over several decades [34]. Conceptually, genome (DNA sequences), RNA se-
quences, protein sequences, and chemical structure information that is fundamentally 
similar between individuals within the same species can be defined as static information. 
On the other hand, molecular information that can be dynamically changed between in-
dividuals and/or conditions, such as DNA sequence variants (DNA mutations), gene ex-
pressions, and protein amounts, can be defined as dynamic information (Figure 1). Rapid 
innovation in high-throughput screening methods and large-scale expansion into virtu-
ally all molecular and clinical domains has dramatically expanded the scale of this molec-
ular data over the past decade [35]. Therefore, bioinformatics has emerged to analyze this 
vast amount of molecular data.  

The terms “cheminformatics” and “bioinformatics” are used interchangeably as the 
two fields deal primarily with computer-readable data from small chemical compounds, 
metabolites, RNAs, DNAs, and/or proteins. As mentioned above, cheminformatics mainly 
focuses on various chemical information, while bioinformatics primarily deals with DNA, 
RNA, and protein information. Many DNA and RNA nucleotides and/or protein data-
bases are publicly available, including the nucleotide database maintained by the National 
Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov/nucleotide/ 
(accessed on 10 December 2021)) [36], the UniProt database (https://www.uniprot.org/ (ac-
cessed on 10 December 2021)) [37], and the Protein Data Bank (PDB) database 
(https://www.rcsb.org/ (accessed on 10 December 2021)) [38]. In addition, there are several 
web-based ready-to-use databases related to bioactive compounds, which have been well 
described in a review [39]. These databases mostly contain sequence (string) information 
of given molecules, obtained from various molecular experiments. For example, DNA and 
RNA can be represented as sequences of A, G, C, and T (or U for RNA), while protein can 
be denoted as strings of twenty letters where a single letter indicates an amino acid. In 
contrast to this static molecular information, there are big databases that contain massive 
amounts of dynamic molecular information generated by high-throughput screening ap-
proaches, such as next-generation sequencing (NGS). Compared to the static molecular 
information mentioned above, NGS-based high-throughput screening systems have been 
generating molecular dynamic data, such as RNA (transcription or gene expression), 
DNA (single nucleotide variant, SNV; insertion and deletion, INDEL; copy number vari-
ation, CNV; structural variation, SV), and DNA or RNA binding proteins in various cells, 
tissues, and even at the single cell level. Currently, more than 10 petabytes of raw sequenc-
ing data (https://trace.ncbi.nlm.nih.gov/Traces/sra (accessed on 10 December 2021)) can 
be downloaded from the Sequence Read Archive (SRA) website. The majority of these 
data is from gene expression profiling experiments, such as RNA-seq. For example, 
changes in the expression level of approximately 60,000 genes (or 230,000 transcripts) in 
human cells, with drug treatment, can be measured with an RNA-seq approach. With 100 
samples, the total number of values would be 6,000,000 for genes (or 23,000,000 for tran-
scripts), and this information can be represented as a matrix (Figure 1). However, since 
most genes are not normally expressed, the number of values will typically be reduced to 
less than one-third of that number. Then, the mode of action (MOA) prediction of the 
given drug can be achieved by analyzing this dynamic information using various bioin-
formatic algorithms and/or databases. In general, a typical MOA prediction can be con-
ducted using gene ontology (GO) analysis and/or gene set enrichment analysis (GSEA). 
One of the most commonly used tools for interpreting transcriptome changes is the GSEA 
[40], which lists biological pathways that have been statistically significantly altered be-
tween different conditions. This knowledge-based information can be useful for narrow-
ing down features (genes) for training because, in general, the number of features is much 
larger than the number of samples when building an ML model with gene expression 
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profiling data. Another obstacle to applying machine learning technology to gene expres-
sion data is that individual gene expression data have been processed in different analysis 
pipelines, so unknown bias (noise) that is difficult to identify, such as batch effects, differ-
ent sequencing devices, and/or various experimental conditions, is inherent to the data. 
To minimize this bias and provide vast transcriptome resources in a user-friendly manner, 
a recent study constructed a transcriptome database called ARCHS4 (https://maayan-
lab.cloud/archs4/ (accessed on 10 December 2021)), comprising more than 200,000 human 
and mouse transcripts processed through a uniform analysis pipeline [41]. In the case of 
DNA variants in humans, gnomAD (https://gnomad.broadinstitute.org/ (accessed on 10 
December 2021)) provides an excellent and the largest source of DNA variant information 
identified in multiple populations via a wide variety of large-scale sequencing projects 
[42]. 

Overall, advances in cheminformatics, bioinformatics, and a variety of publicly ac-
cessible databases have emerged rapidly over the past decade, accelerating the process of 
interconnecting chemistry, biology, and drug development. This system will be used to 
expand our limited understanding of chemicals and ultimately build promising ML-based 
models that generate novel bioactive-like compounds, with high efficacy and low toxicity, 
against various diseases, including cardiovascular and metabolic diseases. 

 
Figure 1. Various molecular and phenotypic data can be integrated to build a machine learning 
model. DNA, RNA, and protein, as well as chemical information, can be represented as strings (top 
left). This kind of fundamental molecular information can be defined as static information (deter-
ministic), which shows little or no difference between individuals. On the other hand, phenotypic 
information (e.g., clinical data; bottom left) and high-throughput screening data (e.g., RNA-seq) 
produce dynamic information of molecules that can be integrated and represented as matrices (e.g., 
rows represent features and columns indicate samples, or vice versa) (middle). A collection of 
properly labelled matrices (top right) is used as input data to build a machine learning model for a 
particular purpose (bottom right). 
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3. Chemical Space Where Unidentified Bioactive Compounds Exist 
Chemical space, defined as the total descriptor space that encompasses all the small 

carbon-based molecules that could in principle be created [43], is a multi-dimensional 
space in which the area to explore varies depending on what characteristics of chemicals 
(e.g., molecular mass, lipophilicity, toxicity, drug-likeness, number of hydrogen donors 
and acceptors, fraction of rotatable bonds, and druggability) the coordinates are set. In 
order to reach out after a subspace (e.g., NP-like chemicals) in the chemical space, it is 
necessary to be able to calculate unique properties of a group of similar chemicals numer-
ically. For example, Chen et al. successfully defined a chemical space where NP-like chem-
icals are located and found that this space also contains chemicals highly relevant for drug 
discovery [44]. Fortunately, most properties of chemicals can numerically be calculated 
through various algorithms with metrics. For instance, the quantitative estimate of drug-
likeness (QED) metric [45] estimates the drug-likeness of chemicals, and the absorption, 
distribution, metabolism, elimination, and toxicity (ADMET) properties of given chemi-
cals can be calculated through various algorithms developed by computational and me-
dicinal chemistry fields [46–53]. These numeric values, if appropriately used, will be a 
guide to discover novel hits for a given target protein through exploring a desired NP-like 
chemical space. 

4. How a Machine Learns from Data and Creates a Model for a Task Using Machine 
Learning Algorithms 

Machine learning (ML) is a research area encompassing computational methods of 
learning relationships from data without specifying them. Deep learning (DL) is a subset 
of ML [54] and is used in almost all areas because of the recent rapid development of 
hardware. In general, these approaches utilize a large number of quality-assured samples 
with many features. There are two types of ML methods, depending on dependent varia-
bles (or labels). Supervised learning methods learn the relationships between input fea-
tures and the given labels of samples from a training dataset, whereas unsupervised learn-
ing algorithms infer patterns of input features without labels. We focus only on the super-
vised learning method in this review.  

To build a model that can accurately classify samples into classes (classification) or 
predict values for samples (regression), a dataset, which contains a large number of cor-
rectly labelled-samples with many features, should be divided into three sub-datasets, 
called training, validation, and test datasets. The training dataset is used for training to 
create an optimal model among the various models to be tested. Therefore, only the train-
ing dataset is used to train the models. In contrast, the validation set is a dataset used for 
testing multiple models with different hyper-parameters to find the optimal values for the 
best model. Through extensive training steps using training and validation datasets, the 
best model, which has been trained and validated, is selected. Then, the selected model’s 
classification (or regression) performance is evaluated using the test dataset. Therefore, 
the proper way to introduce a ML-based model is to explicitly describe all processes and 
parameters as much as possible [55]. Because the performance of a ML-based model is 
solely based on training, validation, and test datasets as well as ML algorithms with pa-
rameters (e.g., random initializations, data shuffling, dropout, etc.), it should be mandated 
to report all the information for the sake of transparency and reproducibility [56]. Details 
of machine learning have been well covered in recent reviews [57–59]. 

Numerous ML-based applications have been developed for a variety of purposes, 
including drug discovery. For example, Shin et al. introduced a transformer-based deep 
learning model named MT-DTI that can accurately predict binding affinities between 
drugs and a target protein [60] (Figure 2). Briefly, this model utilized PubChem’s approx-
imately 97 million compounds to train key knowledge such as the syntax and semantics 
of small molecules using their SMILES information. The trained molecular transformer 
(MT) information was transferred into a drug target interaction (DTI) model (so-called 
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transfer learning), and the final DTI model, called MT-DTI, was constructed using two 
DTI datasets, KIBA [61] and Davis [62]. These datasets contain experimentally validated 
interactions between kinases and kinase inhibitors. The MT-DTI model takes two input 
sequences, the SMILESs of chemicals and the amino acid sequences of a target protein, to 
predict their binding affinities, and it can therefore be used to identify potential target 
proteins of known bioactive compounds or vice versa.  

Nuclear magnetic resonance (NMR) spectroscopic data can also be used to build ML-
based classification models. Martínez-Treviño et al. [63] built a model that can predict NP 
classes of chemicals using an ML-based approach with one-dimensional 13C NMR spec-
troscopic data (Figure 2). In this study, the proposed approach does not rely on a typical 
peak matching task that requires available well-annotated NMR spectroscopic databases 
of chemicals, but they constructed a ML model that can predict the presence or absence of 
a particular NP family from the 13C NMR spectra. To this end, they trained the model with 
continuous variables of NP spectra in the NAPROC-13 database [64], which contains (13)C 
spectral information of more than 18,000 unique NP structures and found that a XGBoost-
based classifier accurately predicted a given NP into eight NP families (sesquiterpenoid, 
diterpenoid, triterpenoid, lignan, steroid, chroman, flavonoid, and alkaloid). 

String information, such as DNA nucleotides and/or protein amino acid sequences, 
can be used to build a ML model for a particular purpose. Walker et al. [65] developed a 
machine learning bioinformatics method for predicting a natural product’s antibiotic ac-
tivity directly from the sequence of its biosynthetic gene cluster. In this study, they assem-
bled a training dataset from the MiBIG (Minimum Information about Biosynthetic Gene 
Custer) database, comprising sequences of biosynthetic gene clusters (BGCs). They assem-
bled a dataset of known BGCs paired with the activity of their products by representing 
the BGCs as vectors based on the number of times various gene annotations appeared in 
the cluster. Then, binary classification models for antibacterial, anti-Gram-positive, anti-
Gram-negative, antifungal/antitumor/cytotoxic, antitumor/cytotoxic, and antifungal ac-
tivities were constructed using this information as the training data set. The proposed 
binary classifiers can achieve up to 80% accuracy. Another study also built a ML model 
with the BGC information. Hannigan et al. [66] present a deep learning strategy (Deep-
BGC) that offers reduced false positive rates in BGC identification and an improved ability 
to extrapolate and identify novel BGC classes, compared to existing machine-learning 
tools. DeepBGC is a deep learning approach that uses a Bidirectional Long Short-Term 
Memory (BiLSTM) RNN [67] and a word-embedding skip-gram neural network 
(pfam2vec) such as word2vec [68]. The input consists of amino acid sequences of protein 
family (Pfam) domains [69] represented by vectors, and the output is a sequence of values 
between 0 and 1, representing the prediction score of whether a given domain is part of a 
BGC. This implementation improved the accuracy of BGC detection in genome sequences 
and the ability to identify BGCs capable of encoding natural products with novel biologi-
cal activities. 

The identification of novel NP-like chemicals with desired properties is of great in-
terest in drug discovery. Grisoni et al. [70] present a machine-learning workflow for the 
identification of NP mimetics with the desired polypharmacology. More than 3.3 million 
commercially available compounds were computationally screened to identify chemicals 
similar to (−)-galantamine, a natural product-based drug approved by the US Food and 
Drug Administration (FDA) for the treatment of cognitive decline in mild to moderate 
Alzheimer’s disease (AD) [71]. To this end, weighted holistic atom localization and entity 
shape (WHALES) descriptors [72], which represent the partial charge distribution and 
three-dimensional shape of compounds, were used to identify initial compounds similar 
to (−)-galantamine. Then, the compounds most similar to (−)-galantamine were further 
evaluated using the SOM-based prediction of drug equivalence relationships (SPiDER) 
[73] and target inference generator (TIGER) [74] applications, which predict target pro-
teins of a given compound. Because (−)-galantamine reversibly inhibits acetylcholinester-
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ase (AChE), the purpose of this process was to identify AChE inhibitors. Finally, this com-
putational pipeline identified eight compounds with bioactivity on at least one of the mac-
romolecular targets of (−)-galantamine, showing different polypharmacological proper-
ties. 

Inferences about the origin of NPs provide insight into our understanding of the 
physicochemical properties of NPs. Pereira [75] developed a machine learning-based clas-
sification model to classify NPs into three classes: marine natural products (MNPs), ter-
restrial natural products (TNPs), and NPs that appear in both the terrestrial and marine 
environments. Briefly, molecular structures were retrieved from the Reaxys® database 
(Elsevier Information Systems GmbH; https://www.reaxys.com (accessed on 10 December 
2021)) and were filtered appropriately. A total of 22,398 NPs were defined, which com-
prised 10,790 MNPs, 10,857 TNPs, and 761 as both. The data set was randomly divided 
into a training set of 15,676 NPs and a test set of 6722 NPs. Then, classification models 
were constructed using random forest, support vector machine, and multilayer percep-
tron networks with an overall predictive accuracy of 81% for the test set. Although all 
these examples only represent limited use cases of machine learning algorithms, these ex-
amples show how machine learning techniques can be utilized for NP-related research. 

 
Figure 2. Machine learning-based models have been developed for different purposes. Various in-
put data were used as independent variables (X, left panel) to predict dependent variables (Y, right 
panel). Five different examples are shown. The first example shows a model (called MT-DTI) that 
can predict the binding affinity (Y, the equilibrium dissociation constant known as KD) between a 
given protein and ligand (small chemical compound). Strings of protein (amino acids) and ligand 
(SMILES) information (X) are used as input. The second model takes NMR data (X) as input and 
classifies them into known NP classes (Y). The third model analyzes genomic sequences called bio-
synthetic gene clusters (X) and predicts the likelihood that a natural product will have activity (Y) 
from those gene clusters. The fourth model takes a SMILE of a chemical of interest (X, e.g., natural 
product) and identifies similar small chemicals (Y) with desired multi-target profiles on disease-
related targets. The last model detects biosynthetic gene clusters (Y) using a deep learning model 
called DeepBGC. Bacterial genome sequences are used as input (X). 
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5. Machine Learning Application of NP or NP-Like Chemical Compounds Discovery 
for Cardiovascular and Metabolic Diseases 

Machine learning approaches may identify active molecules derived from NPs to im-
prove human health in numerous areas of interest through methodologies described in 
previous sections. From a metabolic disease perspective, there are many attempts to dis-
cover NP mimetics that target specific proteins. For example, PPARγ is a master regulator 
protein of metabolism which is identified to be involved in metabolic diseases such as 
chronic inflammation, obesity, and diabetes when its function is lost or dysregulated 
[76,77]. Rupp et al. identified several active compound structures toward PPARγ that are 
related to cinnamic acid and truxillic acid through non-linear Bayesian regression with 
Guassian processes and virtual screening [78]. Another study suggests caffeine as an anti-
diabetic NP through an iterative stochastic elimination (ISE) model built on in-house data 
and confirmation with wet experiments [79]. Recently, a deep learning based model using 
latent knowledge, molecule to target interactions, and compound property as heteroge-
neous input features predicted several NPs or NP-derivatives for various cardiovascular 
diseases (CVD): ergosterol and arginine for heart failure; reserpine, norepinephrine, octo-
pamine, and digitoxin for hypertension; resveratrol for myocardial infarction; and aspirin 
and agmatine for stroke [80].  

In an extensive perspective of metabolic syndrome and CVD, inflammation is a bio-
logical process that is critical in the first line of defense of the host immune system, and 
dysregulatory inflammatory responses can lead to cardiovascular and metabolic diseases 
[81,82]. A recent study [83] identified capsaicin, hypaphorine, and moupinamide among 
NPs as anti-inflammatory drug candidates using the ISE model, and the results were fur-
ther supported by the literature. Another study employed linear discriminant analysis to 
identify two NP derivatives, alizarin-3-methylimino-N,N-diacetic acid and (+)-dibenzyl-
L-tartrate, as anti-inflammatory agents [84]. Chagas-Paula et al. demonstrated the appli-
cation of a decision tree model and a back propagation multilayer perceptron model to 
identify new natural products with cyclooxygenase-1 and 5-lipoxygenase dual inhibition 
activity from Asteraceae species extracts [85].  

Although case studies for specific usage, covering predictions for wet experiments of 
ML methods to predict bioactive NPs, are scarce, the studies discussed above demonstrate 
the potential power and opportunities of ML methods in this field, supported by either 
literature or experimental evidence. 

6. Conclusions 
Although ML-based approaches typically achieve high performance for classification 

or regression tasks, there are still some limitations to be widely applied in NP-related re-
search. First, the number of natural product-related data in which bioactivity or a target 
have been experimentally verified is insufficient to build an ML model. Second, while ML-
based models generally outperform conventional approaches for many tasks, the reason 
why the model makes such a decision cannot be interpreted directly (so called “black 
box”). Third, an ML model is a mathematical function whose tunable parameters (values 
may change during training) and hyperparameters (not updated during training) must be 
set appropriately, but these values are iteratively tested during training to achieve the best 
performance, which is a time-consuming operation. Nevertheless, recent advances in ma-
chine learning have made a breakthrough in resolving these issues. For example, scientific 
interest in the field of explainable artificial intelligence (XAI) is emerging to explain and 
interpret ML models [86], while automated machine learning (AutoML) seeks to automate 
the entire pipeline of ML model building: automatically select, compose, and parametrize 
ML models [87]. Therefore, machine learning-based bioactive compound research will 
benefit from these state-of-the-art ML technologies. To this end, it is most important for 
researchers who conduct bioactive compound-related research to track newly developed 
ML applications and collaborate with experts in the field. 
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7. Future Perspective 
As discussed in previous sections, ML technology can establish strategically faster 

studies and new opportunities to develop bioactive NPs. Despite the usefulness of ML 
methods, there are a few more topics that need to be considered for practical application. 

NPs are mostly generally recognized as safe (GRAS, https://www.fda.gov/food/food-
ingredients-packaging/generally-recognized-safe-gras (accessed on 10 December 2021)) 
and food-grade substances and used as ingredients for a variety of health supplements, 
functional food products, and cosmetic products. GRAS-listed NPs (i.e., berberine, can-
thaxanthin, eugenol, L-Glutamine, or limonene) can be directly applied to such products 
without any complex legal regulation, and this accessibility is a strength of NPs. In con-
trast, a downside of NPs is that their therapeutic efficacy is often low and limited com-
pared to synthetic compounds. For example, phytoalexin coumarin is a plant-derived NP 
to defend plants from microbial infection and is studied as a bioactive NP for numerous 
disease indications [88]. However, coumarin itself needs to be better improved, or so-
called optimized, as a derivative to achieve better effectiveness against bacterial infection, 
hypertension, or inflammation [88,89]. Therefore, the weight between using NPs of nature 
by themselves or further developing NP derivatives must be considered prior to using 
ML models.  

To process the lead optimization task more efficiently, many machine learning ap-
proaches have been studied recently: (i) atom modification reinforcement learning models 
that add or delete atoms or bonds [90,91], (ii) generative reinforcement learning which 
generates similar but modified structure [92], (iii) generative machine learning with con-
trolled chemical properties that also generates similar modified structure with preserved 
predictive properties [93], and (iv) a 3D structure-based ligand design model that uses a 
3D crystal structure of protein and ligand to generate novel molecules [94]. These appli-
cations demonstrated the possibility of lead optimization or de novo small molecule-fo-
cused machine learning methods. Their goals are to apply listed models to drug discovery, 
but the basis of these models is not limited to de novo synthesis or the lead optimization 
of new chemical entities. By adopting such methods, NPs can serve as “seed” or “starting” 
molecules and NP derivatives as resulting modified products with preserved chemical 
structure similarity. 
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