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Abstract: Visual perception is a critical task for autonomous driving. Understanding the driving
environment in real time can assist a vehicle in driving safely. In this study, we proposed a multi-task
learning framework for simultaneous traffic object detection, drivable area segmentation, and lane
line segmentation in an efficient way. Our network encoder extracts features from an input image
and three decoders at multilevel branches handle specific tasks. The decoders share the feature maps
with more similar tasks for joint semantic understanding. Multiple loss functions are automatically
weighted summed to learn multiple objectives simultaneously. We demonstrate the effectiveness of
this framework on a BerkeleyDeepDrive100K (BDD100K) dataset. In the experiment, the proposed
method outperforms the competing multi-task and single-task methods in terms of accuracy and
maintains a real-time inference at more than 37 frames per second.

Keywords: joint semantic understanding; multi-level branch network; drivable area segmentation;
lane line segmentation; traffic object detection; real-time inference; multi-task learning

1. Introduction

Driving perception is one of the most challenging tasks for intelligent driving systems
because of the high complexity of environments. With the advance of computer vision
techniques, visual perception gains a lot of attention in the field of intelligent vehicles.
Visual information is extracted from images taken by cameras to assist the decision of
the driving assistant system. One of the critical abilities for safe driving in real-world
applications is knowing the region where the vehicle can go without any type of danger.

In previous studies, visual perception tasks are handled separately. For example,
detection of traffic objects is done by object detection methods, such as Faster R-CNN [1]
and YOLO [2]. SCNN [3] and ENet-SAD [4] are used for lane line detection. Semantic seg-
mentation methods such as PSPNet [5] and SegNet [6] provide more detailed information
about the road. These studies achieved significant results in their respective fields. Despite
the excellence of these methods, these tasks are processed separately. However, in real
applications, processing of these tasks is simultaneously required in visual perception for
autonomous driving. Limited computational resources of embedded devices should be
considered.

Recent advances in deep learning-based multi-task learning approaches unified all
problems into a single recognition task, whereas traditional computer vision methods were
focused on specific techniques for detecting traffic objects independently. Furthermore,
different tasks in the images often have mutual information. For example, lane lines
must be located on the ground area of the image along with the drivable area. The
ground area where the traffic objects exist is an occupied space where the ego-vehicle
should not drive. Therefore, a unified structure that can process this comprehensive
information can have a better result while reducing the computational cost. The multi-
task learning approach with a shared representation can provide efficient learning and
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improved prediction accuracy [7]. Multinet [8] proposes an encoder–decoder structure that
is composed of one encoder and three decoders. The network performs well on detection,
classification, and segmentation tasks. However, they missed the lane detection task,
which is critical for intelligent driving assistance. Lane detection can guide the direction
of vehicles, whereas semantic segmentation provides more details. DTL-Net [9] learns a
network to solve joint detection of traffic objects, drivable areas, and lane lines in a single
architecture. The shared mutual information is well fused; however, it is not performed in
real time.

Most encoder–decoder architecture processes input images at the encoding stage to
generate a shared representation, then passes the output to the decoder as a shared repre-
sentation. Each decoder learns from shared representation for their specific tasks [8–10].
However, depending on the characteristics of each task, the required information may
differ. For instance, drivable area segmentation is a highly related task to the lane line
segmentation than traffic object detection. Drivable areas share the ground regions with
lines, but traffic objects do not. The traffic object partially takes a place on the ground,
whereas drivable areas and lane lines are fully placed on the ground. We design a multilevel
branch architecture for joint semantic understanding to share the layer weight with more
similar tasks. An example of three tasks for driving visual perception is shown in Figure 1.
The yellow bounding box indicates traffic objects, the red lines represent the lane lines, and
the green areas are the drivable areas.

Figure 1. An example of three tasks; traffic object detection, drivable area segmentation, and lane line
segmentation.

In this study, we propose an efficient end-to-end multi-task learning framework to
accelerate driving perception. The proposed framework consists of one shared encoder and
three decoders. Each decoder performs the following three tasks simultaneously: (1) traffic
object detection, i.e., detecting other vehicles on the road, (2) drivable area segmentation,
i.e., segmentation of road region where vehicles can drive, and (3) lane line segmentation,
i.e., segmentation of lane lines on the road. Our encoder generates a shared feature pyramid
network. The traffic object detection decoder branch diverges from consecutive shared
feature maps. The decoders of drivable area segmentation and lane line segmentation
have separate shared feature maps for elaborate representation, rather than sharing feature
maps for three tasks at the same layers. The joint semantic understanding of the image is
learned based on multilevel shared feature maps. The main contributions of our work can
be summarized as follows: (1) We design a unified multi-task learning framework that can
jointly handle three critical tasks for driving perception. (2) We propose a multi-level branch
structure to share the feature map with similar tasks. (3) The proposed method achieves
the superior performances on the BDD100K dataset compared to competing multi-task and
single-task models.

This paper is organized as follows: Section 2 reviews the studies related to our work.
In Section 3, we describe the details of the proposed framework. The experimental results
are presented in Section 4. Finally, we conclude the study in Section 5.
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2. Related Work

This section introduces the research on each of the three tasks and multi-task learning.
Among many significant studies, we focus on deep learning-based methods.

2.1. Traffic Object Detection

Detecting traffic objects is a fundamental task in the field of vehicular vision. Recently,
deep learning-based algorithms showed promising results in the object detection tasks.
There are two main approaches: region proposal-based and one-step methods. The object
detection in the region proposal-based method is performed in two steps. First, the region
proposals are generated. Then, features from the regions are used to regress the location
and classify the category. Faster-RCNN [1] is the most representative method. Despite
the significant advances of R-CNN [11] and Fast-RCNN [12], there are still slow runtime
problems from Selective Search [13]. The region proposal network (RPN) generates a
region proposal inside the neural network. This improves the detection speed and accuracy
significantly. In one-step methods, category classification and localization problems are
handled as a single regression problem. Single Shot MultiBox Detector (SSD) [14] and
YOLO [2] are representative one-step object detection approaches. They use a single
forward pass for the recognition of objects, which is a simple yet effective approach. SSD
showed outstanding performance and speed by utilizing various feature maps of the
middle layer and replacing the fully connected layer with convolution operation. The
improved versions based on YOLO architecture, such as YOLOv4 [15] and YOLOv5 [16],
based on CSPDarknet [17] with spatial pyramid pooling [18], and YOLOX [19], which is
an anchor-free version of YOLO, are continuously published. We also model the driving
environments by exploiting SCPDarknet architecture for fast and accurate inference.

2.2. Drivable Area Segmentation

The great success of deep learning appears in the field of semantic segmentation. A
fully convolutional network (FCN) [20] attempts to perform semantic segmentation using
deep learning, which is trainable end-to-end. They used a 1 × 1 convolution and upsam-
pling for segmentation. PSPNet [5] extracts various scaled features using a pyramid scene
parsing network. Although significant accuracy is achieved in the deep learning-based
segmentation task, inference time is still a remaining problem. Asgarian et al. [21] proposed
to select special rows in the image to solve the problem of computational cost and speed.
A novel decoder network, which is proposed in SegNet [6], upsamples low resolution
encoder feature maps to a full input resolution feature map. A small number of trainable
parameters provide good performances with competitive inference time. ErfNet [22] com-
putes more efficiently than SegNet while providing better performance by exploiting the
one-dimensional (1D) kernel and skip connections.

2.3. Lane Line Segmentation

Lane line segmentation is a basic topic for driving perception. Extensive attempts
have been made to divide drivable lanes on the road. Pan et al. [3] proposed a spatial
convolutional neural network (SCNN) for traffic scene understanding. Slice-by-slice con-
volutions effectively preserve the continuity of long thin line structure. Neven et al. [23]
proposed a fast lane detection algorithm by applying a learned perspective transformation.
ENet-SAD [4] used an attention distillation approach to learn itself. The low-level feature
maps are learned from a high-level feature map. Rich contextual information for further
representation is encoded from a reasonable level of attention map. Expanded self atten-
tion (ESA) [24] designed for segmentation based lane detection in occluded and low-light
images. The ESA module predicts the confidence of the lane by extracting global contextual
information. The proposed framework can infer elaborate lane lines and drivable area
using a separate shared representation simultaneously.
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2.4. Multi-Task Learning

Multi-task learning methods aim at a better representation through shared information
from multiple objectives. Mask R-CNN [25] combines instance segmentation with object
detection by adding a branch for object mask prediction to Faster R-CNN [1]. MultiNet [8]
proposed a joint learning framework for simultaneous street classification, car detection,
and road segmentation tasks in autonomous driving. The model is designed as an encoder–
decoder architecture. Three decoders are learned for each task. DLT-Net [9] explores
methods to detect drivable areas, lane lines, and traffic objects. The three most critical tasks
for intelligent vehicles are handled independently in a unified network. Each task benefits
from others using context tensors. Fabio et al. [26] estimates free space inside each lane
by detecting navigable areas. Exploiting road type information facilitates the detection of
free space without accuracy decreasing. Lee [27] proposed an efficient multi-task learning
method for robust drivable area estimation with lane lines and scene classification. He uses
multi-task likelihood loss [7] to light backbone networks for fast and accurate estimation
of drivable areas. YOLOP [10] proposed a network to jointly handle three essential tasks
for driving perception efficiently. Their work can run in real time on an embedded system
while maintaining high performance.

In this paper, we propose a multi-task learning framework based on an encoder–
decoder scheme for driving perception. The drivable areas, lane lines, and traffic objects
are detected in real time.

3. Method

The proposed framework is composed of one encoder and three decoders. The network
uses an encoder for the shared representation generation and is divided into three decoders
from different layers according to their tasks; detection of traffic objects, segmentation of
drivable areas, and lane lines. The multi-task learning approach optimizes the network for
three objectives. The network is easily trained end-to-end. The overall architecture of the
proposed network is illustrated in Figure 2.

Drivable area segmentation

Lane line segmentationTraffic object detection

Input image

Figure 2. The overall architecture of the proposed network. The input image is fed into the encoder
part, then the three decoders share the representations for different tasks at each branch.

3.1. Encoder

The encoder layers of the network learns from three different tasks to extract rich
image features. We conduct our network based on the CSPDarknet [17], which successfully
preserves the advantage of feature reuse characteristic of DenseNet [28] but prevents
excessively duplicate gradient information. Real-time computation of network is conducted
by reducing the number of parameters and calculations through feature propagation and
reuse. In our encoder, we use a feature pyramid network [29] that fuses features at different
semantic levels with multiple pieces of semantic information in multiple scales and a spatial
pyramid pooling module [18] that generates and fuses different scale features, in order to
fuse features.
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3.2. Decoder

Three decoders are used in the proposed framework for the three tasks: traffic object
detection, drivable area segmentation, and lane line segmentation. Each decoder exploits
the shared layers from the encoder at each level according to their tasks.

3.2.1. Drivable Areas and Lane Line Segmentation

In the image of the driving environment, the drivable areas and lane lines share the
bottom region of the image of the road area, whereas the traffic objects are located a little
above. At the decoding stage, the first three feature maps fuse the features generated by
the backbone in multiple scales. After common layers that share the traffic object detection
decoder, the drivable area and lane line segmentation decoders share a separate feature
map to learn the elaborate representation of the bottom region of an image. We use the
same structure for the rest of the drivable area segmentation and lane line segmentation.
The size of the bottom layer in the feature pyramid network to the shared feature map
is (W/8, H/8, 256). Each segmentation branch is simply split. The final output feature
maps are generated after the upsampling of the drivable area segmentation and lane line
segmentation branches have the size of (W, H, 2), where the two-channel represents the
probability of each pixel in the input image. We used the nearest interpolation method
instead of deconvolution to reduce computational cost of the upsampling feature map.

3.2.2. Traffic Object Detection

As discussed in Section 2, the region proposal-based approach and one-step approach
have their own advantages. We use multi-scale detection based on an anchor for traffic
object detection to maintain computational efficiency. Similar to YOLOP [10], we use a
structure of the path aggregation network [30]. Feature pyramid and path aggregation
networks fuse multi-scale feature maps of semantics and positioning. To allow for predic-
tions at multiple scales, each grid cell can be assigned with multiple anchors. The detection
head predicts the scaling of the height and width, offset of position, and the corresponding
probability of each category.

3.3. Loss Function and Training

Prevalent deep learning-based multi-task learning methods combine multi-objective
losses. The losses for each task are calculated with weights and added as a final loss.
However, these weight hyperparameters significantly affect model performance and are
expensive to tune. Since there have been observations of a decrease in performances when
using the same weight for multi-task learning, we learn the weight of each loss function
through multi-task likelihood loss [7]. Loss Ltod is a weighted sum of following losses;
classification Lcl , object Lol , and bbox Lbbl for the traffic object detection as in Equation (1):

Ltod = α1Lcl + α2Lol + α3Lbbl , (1)

where α1, α2, and α3 are tuned for the balance of the detection loss. The focal loss [31] is
used on Lcl and Lol to focus on the hard samples while reducing well-classified samples.
For the Lbbl loss calculation, we used Distance-IoU [32], which can consider overlap ratio,
distance, scale similarity, and aspect ratio between ground truth and detection results.

For the drivable area segmentation, Ldas as in Equation (2), cross-entropy with logits
Lde is used to train the model. Ldas is learned to minimize the classification error of drivable
area segmentation:

Ldas = e−ψdas Lde + ψdas, (2)

Llls = e−ψlls Lle + ψlls, (3)

Liou = e−ψiou Lie + ψiou, (4)
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The cross entropy with logit is also used to calculate the losses of lane line segmentation,
denoted as Lle and Lie. Loss of lane line segmentation Llls as in Equation (3) is used to
find classification errors of lane line segmentation. The loss function can learn a relative
weighting automatically from the data. The exponential in loss functions results in smaller
intraclass distances and larger inter-class distances from the high penalty on hard samples.
We additionally used the IoU loss Liou of the lane line as in Equation (4) for the efficiency
of sparse categories of lane lines. Finally, the total loss of the three tasks in our network is
defined as in Equation (5):

Ltotal = Ltod + Ldas + Llls + Liou. (5)

During training, three tasks are learned from one image at the same time. The model
learns the weight to minimize a final loss. The loss for joint training is calculated as the
weighted sum of all losses for traffic object detection, drivable area segmentation, and lane
line segmentation.

4. Experiments
4.1. Dataset and Experimental Setting

We validated the effectiveness of the proposed method by comparing it with the state-
of-the-art method on the BDD100K dataset [33]. The BDD100K dataset has been published
for autonomous driving research. It includes various annotations for drivable areas, object
detection, attributes, road types, and lane markings. Some specific properties for frame
such as weather, scene, and time of day. Types of weather conditions are rainy, snowy,
clear, overcast, partly cloudy, foggy, and undefined. The time of day includes daytime,
night, dawn/dusk, and undefined. The diversity of environment and weather improve the
robustness of our network when training on this dataset. The BDD100K dataset consists of
1280 × 720 images. A total of 100 K images are divided into three splits; 70 K for training
split, 10 K for validation split, and 20 K for test split. We evaluated our method following
official standards in the literature [9,10,26,27,33].

We trained the network using the training split of the BDD100K dataset. At the
training stage, we used the Adam optimizer with the learning rate of 1 × 10−4. Cosine
annealing with warm-up is applied to adjust the learning rate [34]. At the training stage,
the initial values of ψ of loss functions start at zero. To increase the variability of images and
handle geometric distortions, we used data augmentation and transformation techniques
such as translation, shearing, flipping, and random rotation. We resized the input images
from 1280 × 720 × 3 to 640 × 480 × 3. All modules were implemented using the PyTorch
framework [35] and all experiments were run on NVIDIA TITAN RTX.

4.2. Experimental Result Analysis

We showed the effectiveness of the proposed framework by comparing the perfor-
mances with the most representative multi-task networks and single-task networks for
intelligent vehicles. DTL-Net [9], YOLOP [10], MultiNet [8], FDAE [27], and VisLab [26] are
multi-task learning based networks. IBN_PSA/P [36], Faster R-CNN [1], YOLOv5s [16],
Asgarian et al. [21], PSPNet [5], ENet [37], ENet-SAD [4], and SCNN [3] are single-task
based networks. In particular, DTL-Net and MultiNet are the most representative multi-
task learning methods that handle driving perception tasks. We used the following metrics
for the evaluation and quantitative comparison with competing methods; Recall(%) and
mAP50(%) for the traffic object detection; mIoU(%) for the drivable area segmentation;
accuracy(%) and IoU(%) for the lane line segmentation. We also compared the processing
speed using frames per second (fps).

Compared to competing methods (Table 1), the proposed network shows the state-of-
the-art drivable area segmentation performance. The proposed method achieved 92.68%
of mIoU, which is higher than all competing methods. More importantly, the proposed
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methods can be executed in real time with 37 fps. This is a significant advantage for driving
assistance application that is safety-critical and has limited resources.

Table 1. Drivable area segmentation results on the BDD100K dataset.

Method mIoU (%) Speed (fps)

MultiNet [8] 71.60 8.6
DLT-Net [9] 72.10 9.3

IBN_PSA/P [36] 86.18 3.81
Asgarian et al. [21] 83.50 322

PSPNet [5] 89.60 11.1
VisLabs [26] 83.35 23.8
FDAE [27] 84.56 93.8

YOLOP [10] 91.50 41
Ours 92.68 37

Figure 3 shows the results of the proposed drivable area segmentation. We can see
that the drivable areas are sufficiently well segmented in various environments. It can be
observed that the opposite lane, lane line, and other vehicles are successfully excluded
from the drivable area, while the free space on the road is segmented as the drivable area.

Figure 3. Examples of the drivable area segmentation results.

Table 2 compares our lane line segmentation result with other state-of-the-art ap-
proaches. The proposed method also yields the highest performance in the lane line
segmentation task with 72.13% and 26.92% of accuracy and IoU score, respectively. The
superior performances in drivable area segmentation and lane line segmentation show that
the shared layer at the second branch in our proposed network effectively represents the
common area where the road is placed. Compared to FDAE, the proposed method shows
lower fps but achieves 8.12% higher mIoU in the drivable area, and 8.67% higher accuracy
in the lane line segmentation task, while maintaining real-time execution. This is because
the FDAE mainly focused on fast inference through global context understanding with
simple scene classification using a light backbone network, whereas the proposed network
enables the more elaborate prediction of the driving environment incorporating with traffic
object detection. In addition, traffic object detection is a very necessary task to avoid a
collision. Considering that the intelligent vehicle is a very safety-critical application, a
comprehensive understanding of road areas enables the model to achieve better driving
perception.
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Table 2. Lane line segmentation results on the BDD100K dataset.

Method Accuracy (%) IoU (%)

ENet [37] 34.12 14.64
ENet-SAD [4] 36.56 16.02

SCNN [3] 35.79 15.84
FDAE [27] 63.46 21.57

YOLOP [10] 70.50 26.20
Ours 72.13 26.92

Figure 4 shows the qualitative results of lane line segmentation. The green marks
represent the lane lines on the road. From the first image (left top) of Figures 3 and 4, the
wide space is well separated by distinct regions where the lane lines are placed. Here, note
that, following the ground truth of the BDD100K dataset, the left bottom image of Figure 4
also shows that the crosswalk is well segmented as lane lines.

Figure 4. Examples of the lane line segmentation results.

Table 3 lists the traffic object detection performances on the BDD100K dataset. We
only consider the vehicle detection, the same as previous research [8–10]. Our model
outperformed MultiNet, DLT-Net, and Faster R-CNN in terms of Recall and mAP as the
detection performance. However, YOLOP is slightly better than the proposed method
in terms of the traffic object detection task because of its concise structure. We assumed
that the reason for the decrease is the shared layer at the second branch for drivable area
segmentation and lane line segmentation, which affects the optimization of the traffic object
detection task. Nevertheless, the practical usage in a real-time application is very high,
considering that the proposed method shows superior performance at the drivable area
segmentation and lane line segmentation while very close to the state-of-the-art in traffic
object detection.

Table 3. Traffic object detection results on the BDD100K dataset.

Method Recall (%) mAP50 (%) Speed (fps)

MultiNet [8] 81.30 60.20 8.6
DLT-Net [9] 89.40 68.40 9.3

Faster R-CNN [1] 77.20 55.60 5.3
YOLOv5s [16] 86.80 77.20 82
YOLOP [10] 89.20 76.50 41

Ours 89.08 76.16 37

5. Conclusions

In this study, we present an efficient multi-task learning framework that is trainable
end-to-end for driving perception. Our study suggests a multi-level branch network
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to share the layer weight with more similar tasks. The unified architecture consists of
an encoder and three decoders. The encoder encodes the input image to proper visual
representation. The three decoders then decode multilevel branches to predict the optimal
results for each task. The result shows that sharing the layer weight with more similar
tasks is effective for the semantic understanding of the image. We design a joint training
procedure to efficiently combine multiple losses. The loss function automatically learns
optimal relative weight for each task during the training procedure. Compared to not only
the multi-task learning methods but also single-task methods, the proposed framework
showed promising results. Experimental results show the effectiveness of the proposed
model that achieves excellent performance on a BDD100K dataset. The proposed network
can perform in real time at 37 fps. However, the lower execution cost is better for the actual
vehicle that has limited resources. In addition, considering the safety-critical characteristics
of the vehicle, higher performances are required for future practical application.
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