
����������
�������

Citation: Zarrouk R.; Daoud W.B.;

Mahfoudhi S.; Abderrazak J.

Embedded PSO for Solving FJSP on

Embedded Environment (Industry

4.0 Era). Appl. Sci. 2022, 12, 2829.

https://doi.org/10.3390/

app12062829

Academic Editor: Giancarlo Mauri

Received: 17 December 2021

Accepted: 25 February 2022

Published: 9 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Embedded PSO for Solving FJSP on Embedded Environment
(Industry 4.0 Era)
Rim Zarrouk 1,∗, Wided Ben Daoud 2, Sami Mahfoudhi 3 and Abderrazak Jemai 4

1 NOCCS Laboratory, National Engineering School, Sousse University, Sousse 4054, Tunisia
2 NTS’Com Research Unit, Sfax University, Sfax 3070, Tunisia; wided.bendaoud@isitc.u-sousse.tn
3 Department of Management Information Systems and Production Management, College of Business

and Economics, Qassim University, Buraydah 52571, Saudi Arabia; s.mahfoudhi@qu.edu.sa
4 SERCOM Labaratory, Tunisia Polytechnic School, INSAT, Carthage University, Tunis 1080, Tunisia;

abderrazek.jemai@insat.ucar.tn
* Correspondence: rim.zarrouk@isgs.u-sousse.tn

Abstract: Since of the advent of Industry 4.0, embedded systems have become an indispensable com-
ponent of our life. However, one of the most significant disadvantages of these gadgets is their high
power consumption. It was demonstrated that making efficient use of the device’s central processing
unit (CPU) enhances its energy efficiency. The use of the particle swarm optimization (PSO) over
an embedded environment achieves many resource problems. Difficulties of online implementation
arise primarily from the unavoidable lengthy simulation time to evaluate a candidate solution. In this
paper, an embedded two-level PSO (E2L-PSO) for intelligent real-time simulation is introduced. This
algorithm is proposed to be executed online and adapted to embedded applications. An automatic
adaptation of the asynchronous embedded two-level PSO algorithm to CPU is completed. The Flexi-
ble Job Shop Scheduling Problem (FJSP) is selected to solve, due to its importance in the Industry 4.0
era. An analysis of the run-time performance on handling E2L-PSO over an STM32F407VG-Discovery
card and a Raspberry Pi B+ card is conducted. By the experimental study, such optimization decreases
the CPU time consumption by 10% to 70%, according to the CPU reduction needed (soft, medium, or
hard reduction).

Keywords: particle swarm optimization; embedded environments; real-time system; flexible job
shop scheduling problem; STM32F407VG-Discovery; raspberry Pi B+

1. Introduction

Industry 4.0 refers to the fourth industrial revolution that is currently taking place in
manufacturing companies. We can explain the fourth revolution (Industry 4.0) as being
the implementation of new technologies and techniques (sensor, cloud, analysis of big
data, etc.) in order to obtain better communication between the different objects and/or
resources (people, machines, products, customers, etc.) that have a link with production
for the purpose of connecting in real time to all of its resources. Figure 1 presents some
Industry 4.0 pillars.

Industry 4.0 refers to a new way of organizing manufacturing processes, with the
goal of establishing so-called “smart factories”. Capable of increased production agility
and resource allocation efficiency, these “smart factories” are setting the path for a new
industrial revolution. The Internet of Things (IoT) and cyber–physical systems (CPS) are its
technological foundations.

The goal of this study is to improve the performance of the particle swarm optimization
(PSO) in an embedded context for addressing the Flexible Job Shop Scheduling Problem
(FJSP) in smart factories. FJSP is a variant of the standard job shop scheduling problem in
which each operation can be performed on many machines, each of which can perform
multiple operations. The scheduling problem entails assigning processes to machines and

Appl. Sci. 2022, 12, 2829. https://doi.org/10.3390/app12062829 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app12062829
https://doi.org/10.3390/app12062829
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app12062829
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app12062829?type=check_update&version=2

Appl. Sci. 2022, 12, 2829 2 of 22

ordering their start times while minimizing a specific objective function, such as the total
machining time or the maximal completion time of all operations. A FJSP model can be used
to model a wide range of real-world challenges. The FJSP is NP-hard in the strong sense [1].
Many studies have been conducted in an attempt to solve the FJSP. For example, in [2],
the authors propose an integrated and enhanced method of a dispatching algorithm based
on fuzzy AHP (FAHP) and TOPSIS. In [3], the authors present a dispatching algorithm to
solve a real-world case of the flexible job-shop scheduling problem with transfer batches
and the objective of minimizing the average tardiness of production orders.

Figure 1. Industry 4.0.

Papers in [4,5] contain extensive research studies on the application of precise and
metaheuristic techniques for solving the FJSP. Many metaheuristics are used to solve this
problem. For example, in [6], an algorithm based on the principles of genetic algorithm
(GA) with dynamic two-dimensional chromosomes is proposed. In [7], the authors propose
a GA approach that utilizes a multi-chromosome to solve the FJSP. In a semiconductor
production setting, the authors in [8] analyze stochastic flexible job-shop scheduling with
limited spare resources and machine-dependent setup time, using a learning-based grey
wolf optimizer. In [9], the authors use a batch-oblivious approach to solve a multiobjective
complex job-shop scheduling problems. Again, in [10], a multi-objective GA is used for
FJSP. Despite the fact that any metaheuristics can theoretically be applied to the FJSP,
PSO is substantially easier to install and control because of its fewer parameters. PSO
uses a population of particles that move around in the search space, according to simple
mathematical formulae expressing the particle’s position and velocity to find good, if not
optimal, solutions to a problem. Each particle has a subset of particles with which it can
communicate; this subset is known as swarm topology, and it can be a completely linked
topology, a ring topology, a Von Neumann topology, and so on. A particle’s movements
are guided by its best-known position in the search space, as well as by the best-known
positions of its neighbors.

Particle Swarm Optimization was originally presented as an optimization technique
for static environments; however, many real-world issues are dynamic, meaning that the
environment and global optimal characteristics might change over time. In this paper,
we fixed the research to the dynamic environments case (i.e., embedded environment or
cyber–physical systems). We adapt recent techniques which successfully address several
major problems of PSO and exhibit significant performance over dynamic environments.
In this paper, a technique for faster real-time simulation is introduced.

The remainder of this paper is organized as follows: the work on using PSO as a
metaheuristic to address problems in embedded environments is reviewed in Section 2.
Section 3 fully outlines the scheduling problem and demonstrates how the FJSP can be

Appl. Sci. 2022, 12, 2829 3 of 22

solved using PSO. The PSO–FJSP variation that was employed is described in Section 4.
The embedded two-level PSO (E2L-PSO) algorithm is presented in Section 5. Section 6
discusses the simulation results. The paper comes to a close with Section 7.

2. Previous Works

The entire industrial sector has entered a phase of profound change with the integra-
tion of digital technologies integrated at the heart of industrial processes. A new generation
of factories was born as a result of the fourth industrial revolution. This enormous technical
advance, dubbed “Cyber Factory”, “Digital Factory”, “Integrated Industry”, “Innovative
Factory”, or “Industry 4.0”, offers an amazing field of innovation, progress, and growth.
Industry 4.0, defined by the merging of the virtual world of the delocalized internet and
the actual world of industrial installations, has emerged as the reference for industrial
production. In the field of embedded systems, we are currently experiencing a research
trend that involves a very close integration of computing systems and physical systems,
particularly with a focus on control. As a result of this tendency, a new device category
known as “cyber–physical systems” has emerged (CPS). CPSs are networked infrastruc-
tures that include communication, computing, control, and sensing. The goal of CPS is to
create a close link between controlled physical processes and controlling digital computing
systems [11]. An excellent introduction of CPS and CPS history may be found in [12].

2.1. Cyber–Physical System

A CPS could be as simple as one sensor, a corresponding algorithm, and appropriate
modalities for providing input to the physical process (for example employing an actuator).
This simple scenario might be represented by a smartwatch with a pulse sensor and
vibrating feedback. A CPS, on the other hand, may be represented by a very sophisticated
system, such as an aircraft [13], which may be utilized for applications requiring security
and safety-critical characteristics, or predictability in dynamic situations. Sensor-based
communication-enabled autonomous systems are the most common CPS applications.
Many wireless sensor networks, for example, monitor some aspect of the environment and
transmit the processed data to a central node. Smart grid [14], autonomous car systems,
medical monitoring, process control systems [15], and distributed robots are all examples
of CPS.

In [14], the energy consumption of smart grid WSN (wireless sensor network) is
investigated by utilizing the path operator calculus centrality based on the HSA-PSO
algorithm. However, centrality in determining the route is regarded as the most difficult
aspect of locating an essential node in the WSN. As a result, the path operator calculus
centrality (SPOCC) is utilized to solve routing centrality problems. The SPOCC uses the
harmony search algorithm (HSA) to determine the main routing path, and the Particle
Swarm Optimization (PSO) algorithm to estimate high centrality nodes, thereby ensuring
optimal routing with low energy consumption. The use of PSO extends the life of nodes by
utilizing their dynamic capability.

In [15], a distributed algorithm is designed to perform intelligent maintenance plan-
ning for identical simultaneous multi-component machines in a job-shop manufacturing
environment. The CPS-IIoT (cyber–physical systems industrial internet of things) paradigm
is intuitively compatible with the algorithm design. Over PSO, the created algorithm
is illustrated.

2.2. Embedded Particle Swarm Optimization

One of the most significant disadvantages of CPS devices is their high power con-
sumption. It has been proven that making optimal use of the device’s memory enhances
its energy efficiency. For the resolution of optimization problems in such systems, many
metaheuristics are used. In this field, Particle Swarm Optimization (PSO) has long been
attracting wide attention from researchers. Many embedded systems have used PSO,
such as the navigation of mobile sensors [16], virtual network embedded applications [17],

Appl. Sci. 2022, 12, 2829 4 of 22

multi-robot (swarm robot) applications [18,19], hardware software partitioning problem in
embedded system design [20], and dynamic virtual cellular manufacturing systems [21].

Ref. [22] presents the physically embedded PSO (pePSO) algorithm, which uses two
search techniques. The swarm robots first travel around the search space, taking measure-
ments as they approach their objectives. Second, the idea of trophallactic is converted
into an algorithm and used in the search. Trophallactic is the exchange of vomited partly
digested food between adults and larvae in social insect colonies. No robot-to-robot com-
munication is used in this method. Furthermore, the robots do not need to be aware of
those exact locations. Because the pePSO does not employ a primary agent to control the
motions and behaviors of the swarm robots, the volume of information exchange between
them is reduced. The authors give a complete overview of chaotic embedded metaheuristic
optimization algorithms in [23] and detail their evolution, as well as certain advances,
in addition to their integration with various methodologies and applications. Ref. [19]
presents a survey on multi-robot search inspired by swarm intelligence, which classifies and
discusses the theoretical advantages and downsides of previous investigations. The most
appealing strategies are then analyzed and contrasted by highlighting their most important
characteristics. Experiments were carried out to compare five state-of-the-art algorithms
(robotic Darwinian PSO (RDPSO), extended PSO (EPSO), physically embedded PSO, etc.)
for cooperative exploration tasks. The simulated experimental results show the superiority
of the RDPSO. In [24], the authors suggest a PSO variation that is integrated with the notion
of a micro-genetic algorithm (mGA), dubbed mGA embedded PSO, to conduct feature
selection for intelligent face emotion identification. To alleviate the premature conver-
gence problem of traditional PSO, it adds a non-replaceable memory, a small-population
secondary swarm, and a collaboration of local exploitation and global exploration search
mechanisms. On a complex and diverse MPSoC, the authors of [21] apply a PSO variation
to handle mapping and scheduling challenges. All previous studies had only used PSO for
the resolution of problems on complex and heterogeneous embedded systems.

In a recent study [25], the authors used a PSO and virtual force (VF) algorithm for solv-
ing wireless sensor network problems (optimization on the basis of providing perception
service and collecting location information). In [26], a chaos-embedded PSO (CEPSO) is
used to find the unknown parameters of polymer electrolyte membrane fuel cells (PEMFC)
in electric vehicles and unmanned aerial vehicle applications. The authors in [27] propose
a hybrid artificial neural network PSO (ANN-PSO) model in the behavior prediction of
channel connectors embedded. In the multimedia domain (image processing), PSO [28] is
used to optimize the scaling factors and the parameter of the improved discrete fractional
angular transform in watermark schemes. A chaos-embedded PSO (CEPS) [29] is intro-
duced, which can improve the interpolation precision and reduce the calculation time of
interpolation to realize the fast reconstruction of the target 3D image based on biomechani-
cal characteristics. In the medical imaging and deep learning domain, Ref. [30] provides
automation in brain tumor segmentation with an adaptive PSO with noise removal and
improved image quality.

As a result, we noticed that the current heterogeneous embedded systems are critical
for high-volume markets with stringent performance requirements, and metaheuristics are
frequently employed to tackle various optimization challenges in these settings. However,
it comes with a slew of issues that must be solved before it can be effectively used in
embedded systems. Because memory and CPU difficulties are the most prevalent problems
in these systems, standard strategies for solving them generally fail. This challenge was
explicitly characterized in this study as follows: given an application that must be run by
a circuit, the goal is to fit that program in memory in such a way that the computation
time necessary for execution is as short as possible. To overcome memory and CPU use
difficulties, we offer a PSO technique (embedded two-level PSO) that is flexible to the needs
of embedded systems.

Appl. Sci. 2022, 12, 2829 5 of 22

2.3. Discussion

Following these brief observations from the literature (presented in Table 1), we count
a multitude of studies working on the PSO to solve embedded problems. In fact, we note
that the related works have flaws.

• Most studies do not deal with the use of its algorithms in embedded systems.
• Even compared to the works which envisage the adaptive PSO, the authors speak

about the adaptability to a dynamic problem and not to a dynamic environment.
• The related work which uses the PSO to solve an optimization problem in an em-

bedded environment does not place importance on the behaviors of this algorithm.
Instead, they used it as a tool only, without taking into account the potential losses
of CPU and memory time that we can have. In fact, they do not provide a version of
PSO that is adaptable to the change of an on-board system in real time.

• Despite the importance of their contributions, none of these works address the general
framework with the five types of constraints which are considered here: (1) the
makespan (MS), (2) the machine load constraint (workload), (3) CPU time, (4) memory,
(5) and feasibility in real time.

In this paper, we work on only two criteria: the quality of the solutions (MS) and the
CPU time, in an environmental constraint (embedded environments). Both of these criteria
are ensured in real-time application.

Appl. Sci. 2022, 12, 2829 6 of 22

Table 1. Previous embedded particle swarm optimization (PSO) works.

Reference Publication Year Variant Field of Application Objective

[16] 2004 Basic PSO Mobile sensors Optimize the membership functions and rules of
the fuzzy logic controller

[17] 2017 Sixteen metaheuristics (GA, ACO, PSO. . .) Virtual network Evaluate the Virtual Network Embedding (VNE)
process

[18] 2008 Basic PSO Mobile robots Use PSO embedded into a robot swarm to find a
target, in the presence of obstacles

[19] 2014 Robotic Darwinian PSO (RDPSO) Mobile robots Multi-robot optimization search

[20] 2008 Basic PSO Embedded system design Hardware software partitioning resolution

[21] 2009 Basic PSO Production planning Solving an extended model of dynamic virtual
cellular manufacturing systems

[22] 2010 Physically-embedded PSO (pePSO) Mobile robots Multi-robot optimization search

[24] 2016 PSO and GA Facial expression recognition Conduct feature selection for Intelligent face
emotion identification

[25] 2021 PSO and virtual force (VF) algorithm Wireless sensor network Optimization on the basis of providing percep-
tion service and collecting location information

[26] 2021 Chaos-embedded PSO (CEPSO) Electric and aerial vehicle Used to find the unknown parameters of poly-
mer electrolyte membrane fuel cells (PEMFC).

[27] 2019 Hybrid PSO Artificial neural network Optimize behavior prediction of channel connectors

[28] 2019 Basic PSO Multimedia, image processing
Optimize the scaling factors and the parameter
of the improved discrete fractional angular trans-
form in watermark schemes.

[29] 2020 Chaos-embedded PSO (CEPS) Multimedia, image processing
Improve the interpolation precision and reduce
the calculation time of interpolation to realize
the fast reconstruction of the target 3D image.

[30] 2020 Adaptive PSO Medical imaging and deep learning Provide automation in brain tumor segmentation

Appl. Sci. 2022, 12, 2829 7 of 22

3. Flexible Job Shop Scheduling Problem

The FJSP is formally defined in this section, followed by its PSO particle representation.

3.1. Definition

A five-tuple (J, O, M, a, d) defines the FJSP, where

• J = {J1, J2, . . . , Jn} is a series of n distinct jobs with no precedence relationship between
them.

• O = {{O11, O12, . . .} ∪ {O21, O22, . . .} . . . ∪ {On1, On2, . . .}}, is the series of operations,
where Oji represents operation i, job j;

• M = {M1, M2, . . . , Mk} is a series of machines;
• a : O×M→ {0, 1}, a(Oji, Ml) = 1 if Oji can be processed by Ml ; and
• d : O×M→ N, d(Oji, Ml) defines the standing of Oji on Ml .

There are two types of FJSP instances: total and partial [31]. If any machine pro-
cesses any action, an FJSP instance is total (noted as FJSPT); otherwise, it is partial (noted
as FJSPP):

FJSP =

{
FJSPT , i f a(Oji, Ml) = 1; ∀i, j, l
FJSPP , otherwise

(1)

An FJSP instance’s flexibility degree (FD) is defined as

FD =

∑
j=1...|J|
i=1...|Jj |
l=1...|M|

a(Oji, Ml)

|M|.|O| (2)

where |Jj denotes the number of operations performed in job j. The makespan (MS) in
Equation (3), which measures the completion time of all jobs, the robustness measure (RM)
in Equation (4), which measures the schedule insensitivity to disruptions, the sum of delays
(SD) in Equation (5), and the work load (WL) of all machines in Equation (6) can all be set
as optimization criteria for the FJSP:

MS = max{C1, C2, . . . , Cn} (3)

RM = ST −MS (4)

SD =
n

∑
j=1

(Cj − Ej) (5)

WL =
k

∑
l=1

d(Oji, Ml) | Oji is affected to Ml (6)

where Cj is the completion time of job j, Ej is the minimum duration of job j, and ST is all
machines’ rest time (also called slack time).

Various assumptions for the FJSP might be made depending on the problem scenario.
The following are the most commonly held assumptions in this paper: all machines are
available at time zero, and all jobs are released; the machine setup time and transportation
time between operations are minor; and operations are not preemptive. For demonstration,
the FJSPT instance from Table 2 is utilized. This example consists of three jobs (J1, J2, J3)
with three, three and four operations, respectively, and four machines (M1, M2, M3, M4).
The duration of the operations on the various machines is given in the last four columns of
Table 2.

Appl. Sci. 2022, 12, 2829 8 of 22

Table 2. Flexible job shop scheduling problem (FJSPT) instance: 3 jobs, 10 operations and 4 machines.

Job Operation Processing Time

M1 M2 M3 M4

1 1 1 2 3 1
1 2 1 2 3 5
1 3 3 2 2 1
2 1 3 4 1 4
2 2 3 1 3 2
2 3 2 1 3 4
3 1 4 1 2 2
3 2 1 3 3 4
3 3 2 4 1 3
3 4 1 2 1 2

3.2. Particle Representation

The mapping between the particle positions and the FJSP solutions is referred to as
particle representation. In this study, we apply the vector-form coding method as described
in [32]:

A position vector of 2|O| integer elements in each particle p (O is the set of operations)
where the initial |O| items, denoted Xp,o, creates one operation scheduling order. The oper-
ation referred to by Xp,o[i] takes precedence over the operation referred to by Xp,o[i + 1].
The Xp,m elements in the second |O| element define an operations-to-machines mapping.
An example of Xp, o and Xp, m is shown in Figure 2a. According to Xp,o , the first opera-
tion of J3 is scheduled first, followed by the first and second operations of J2, the second
operation of J3, and so on.

Figure 2a shows an example of Xp,o and Xp,m. Xp,o states that the first operation of
J3 is the first to be scheduled, followed by the first and second operations of J2, then the
second operation of J3, etc. According to Xp,m, job J1’s operations are allocated to machines
M2-M3-M3, job J2’s operations are assigned to M4-M1-M4, and job J3’s operations are
assigned to M1-M2-M2-M2. The final time schedule is shown in Figure 2b.

(a) Position vector.

(b) The implicit schedule.

Figure 2. Vector form representation and the implicit schedule.

Xp,o(t + 1) and Xp,m(t + 1) are computed as follows (at time (t + 1)): According to Equa-
tion (7), two temporary vectors are computed, X̂p,o(t+ 1) and X̂p,m(t+ 1). Then Xp,o(t+ 1) is
set equal to Xp,o(t), which is sorted according to X̂p,o(t+ 1) in ascending order. The ascending
order of widehatXp, o(t + 1) is also followed when sorting widehatXp, m(t + 1). X̂p,m(t + 1)
is also followed when sorting X̂p,o(t + 1). If an element of Xp,m(t + 1) is out of range or
fractional, then the closest machine number is used to replace it.

Appl. Sci. 2022, 12, 2829 9 of 22

4. Used PSO-FJSP Variant

Despite the fact that any metaheuristics can theoretically be applied to the FJSP,
PSO is substantially easier to install and control because of its fewer parameters. PSO
uses a population of particles that move around in the search space according to simple
mathematical formulae expressing the particle’s position and velocity to find good, if not
optimal, solutions to a problem. Each particle has a subset of particles with which it can
communicate; this subset is known as swarm topology, and it can be a completely linked
topology, a ring topology, a Von Neumann topology, and so on. A particle’s best-known
position in the search space, as well as the best-known positions of its neighbors, directs
its movements. A particle p obtains a new position vector, Xp(t + 1), and a new velocity
vector, Vp(t + 1), at each instant, calculated as follows:

Vp(t + 1) = wVp(t) + c1R1(Xbestp(t)− Xp(t)) + c2R2(Xnbestp(t)− Xp(t)) (7)

Xp(t + 1) = Xp(t) + Vp(t + 1) (8)

where w is a parameter called the “inertia weight”; c1 and c2 are two parameters called
the “cognitive factor” (or self-recognition factor) and “social factor” (or social-component
factor), respectively; R1 and R2 are two square diagonal matrices in which the entries on
the main diagonal are random numbers in the interval [0, 1] The best location attained
by a particle p up to time t is called Xbestp(t). The neighborhood best, also known as
Xnbestp(t), is the best location that p’s neighbors have discovered. The second level utilizes
an adaptive inertia weight (Equation (9)), whereas the first level uses a time-varying inertia
weight (Equation (10)):

wp(t) =

{
wmin +

(wmax−wmin)(pBest(t−1)−minBest(t))
avgBest(t)−minBest(t) , i f pBest 6 avgBest(t)

wmax , otherwise
(9)

w(t) = wmin + (wmax − wmin)
t
I1

(10)

c1(t) = 0.5 (wp(t) + 1)2 (11)

c2(t) = min(4, 2(wmin + 1))− 0.5 (wp(t) + 1)2 − 0.000001 (12)

where avgBest(t) (resp. minBest(t)) is the average (minimum) objective value at the current
iteration, wmax = 0.9 and wmin = 0.4.

The two-level PSO-FJSP attempts to shrink the search space even further and increase
the exploration capability. The two-level PSO-FJSP nestedly executes a PSO twice: the
top level investigates multiple operations-to-machines mappings, while the lower level
investigates various schedules for a given mapping. As a result, before moving on to
another mapping, numerous schedules of the same mapping are evaluated sequentially.

Particles are coded as follows: The location vector Xp,m of an upper-level particle p
of |O| elements models one operations-to-machines mapping. The indices of Xp,m and
the operations of the jobs have a one-to-one prefixed correspondence. A lower-level
particle has a position vector Xp,s of |O| elements, which models the order of operations
mapped to each machine. Between the indices of Xp,s and machines, there is a one-to-one
prefixed correspondence.

Let S1 and I1 (S2 and I2) represent the number of particles and iterations utilized in
level one (level two), respectively. The values assigned to S1 and I1 are determined by
the degree of flexibility of an FJSP instance. The smaller values of S1 and I1 are the lower
flexibility degree. The values allocated to S2 and I2 may be fixed or adaptive to the lower
bound value found. If the gap between the current best objective value and the lower
bound is large (small), then S2 and I2 are set high (low). The two-level PSO-FJSP flowchart
is shown in Figure 3.

Appl. Sci. 2022, 12, 2829 10 of 22

Figure 3. Flowchart of the two-level particle swarm optimizatiom—flexible job shop scheduling
problem (PSO-FJSP).

5. Proposed Technique: Embedded Two-Level PSO-FJSP

Our solution is an automatic adaptation of the asynchronous two-level PSO algorithm
to CPU needs by other tasks that run in parallel (embedded two-level PSO E2L-PSO).

Several variants can be envisaged, such as the suspension of certain threads or the
reduction in the number of particles. The efficiency and reliability of the method always
lie in the choice of particles to suspend. It is, therefore, necessary to designate the parti-
cles that return a fitness that is furthest away from the Xnbest (global best) because the
particles, which have the best solution, are probably closer to the global optimum. In this
paper, we are inspired by the migration method of dividing the swarm into subsets. We
divided the swarm into a “leaders sub-swarm”, a “worsts sub-swarm” and two “followers
sub-swarms”.

The migration process is as follows:

• “Leaders sub-swarm” began with only one particle that has the best MS in the initial-
ization phase. “XL” is the maximum number of particles.

• “Worsts sub-swarm” began with only one particle: the particle that has the worst MS
in the initialization phase. “XW” is the maximum number of particles.

• Particles that have the best solutions are migrated from the “followers sub-swarm” to
the “leaders sub-swarm”. If the number of particles in this subset is equal to “XL” then
one of these particles must randomly migrate to a “follower sub-swarm” to empty the
space for the new particle.

• Particles that have the worst solutions are migrated from the “followers sub-swarm”
to the “worsts sub-swarm”. If the number of particles in this subset is equal to “XW”
then one of these particles must randomly migrate to a “followers sub-swarm” to
empty the space for the new particle.

In this paper, we chose to work with a swarm size reducing based solution. This
solution allows us to release both the CPU time and the memory. Indeed, we remove
particles from the “worsts sub-swarm”. Algorithm 1 presents the steps of the adaptive

Appl. Sci. 2022, 12, 2829 11 of 22

E2L-PSO, where “need” is an external variable contains the request to free memory or the
CPU need. In this approach, the minimum number of particles in the swarm is defined at
the start of the program. The last particle in every phase is the latest executed particle in
the last iteration. The flowchart of the E2L-PSO is given in Figure 4.

Figure 4. Flowchart of the embedded two-level PSO (E2L-PSO).

Two process are used in this algorithm: one for the stopping particle and one for
waking up the particle. In the stopping process, if the number of active particles (pactive)
is more than the number of particles to be stopped (pinactive), and if the size of “worsts
sub-swarm” is more than pinactive, then we should randomly put pinactive particles in the
“worsts sub-swarm” in the inactive mode. Alternatively, we should put (“worsts sub-swarm”
size− 1) particles in the inactive mode and a randomly put (pinactive− size“worsts−sub−swarm′′)
particles from the “followers sub-swarm” in the inactive mode. This process is represented
in Algorithm 2.

In the wake up process, if the number of particles in the inactive mode is more than
zero, so we should put 50% of Totalinactive particles in an active mode by initializing accord-
ing to the global best (Xnbest) coordinates and put 50% in an active mode by randomly
initializing. We should add it to the “followers sub-swarm”. This process is presented in
Algorithm 3.

To resume, we can say that, compared to the two-level PSO presented in [32], our new
proposed approach “E2L-PSO” adds four new processes:

• After swarm initialization, we divide the swarm into a sub-swarm: “leaders sub-
swarm”, “followers sub-swarm” and “worsts sub-swarm”. So our population work
under swarms.

• After each iteration, a migration method is added. Particles are migrated from the
“followers sub-swarms” to the “leaders sub-swarm” and from the “followers sub-
swarms” to the “worsts sub-swarm”.

• A “stopping process” is added for swarm size reducing to response to the request to
free memory or the CPU need (presented in Algorithm 2.

• A “wake-up process” is used if there is no need (presented in Algorithm 3).

Appl. Sci. 2022, 12, 2829 12 of 22

Algorithm 1 Adaptive E2L-PSO steps

Swarm initialization
Divide the swarm into a sub-swarm: “leaders sub-swarm”, “followers sub-swarm” and
“worsts sub-swarm”.
Totalinactive = 0.
for each iteration do

for each swarm do
for each particle do

Mapping phase (1)
if (LB < Xnbest) then

Scheduling phase (2)
Xbest and Xnbest update

else
if (!stop-criteria) then

go to (1)
end if

end if
end for

end for
Migrate particles that have best solutions from the “followers sub-swarm” to the
“leaders sub-swarm”
Migrate particles that have worst solutions from the “followers sub-swarm” to the
“worsts sub-swarm”.
if (need! = 0) then

Calculate the number of particles to be stopped (pinactive)
Totalinactive = Totalinactive + pinactive.
Stop process (pinactive)

else
if the number of particles in the inactive mode ! = 0 then

Wake up process (Totalinactive)
end if

end if
end for

Algorithm 2 Stopping process

if (pactive > pinactive) then
if (pinactive < size“worstssub−swarm′′) then

Put pinactive particles in the “worsts sub-swarm” randomly in inactive mode.
else

Put (“worsts sub-swarm” size − 1) particles in inactive mode
Randomly put (pinactive − size“worsts−sub−swarm′′) particles from the “followers sub-
swarm” in inactive mode.

end if
end if

Algorithm 3 Wake up process

Put 50% of Totalinactive particles in an active mode by initializing according to the Xnbest
coordinates, adding it to the “followers sub-swarm”.
Put 50% of Totalinactive particles in an active mode by randomly initializing, adding it to
the “followers sub-swarm”.

6. E2L-PSO—Experimental Results

Experiments were performed on micro-controller (STM32F407VGT6) and a ARM-
based mono-processor nano-computer (Raspberry Pi B+):

Appl. Sci. 2022, 12, 2829 13 of 22

• STM32F407VGT6 has a 32-bit ARM Cortex-M4F core, 1 MB Flash, 192 KB RAM.
• Raspberry Pi B+ has a Broadcom BCM2837 SoC with a 1.2 GHz 64-bit quad-core ARM

Cortex-A53 processor and 1 GB of RAM.

6.1. Experiment Design

The following PSO versions were designed and tested in this study:

• Standard PSO (is developed for comparison purposes only).
• The one-level PSO (is utilized for comparison purposes only).
• The two-level PSO without use of lower bound (is utilized for comparison purposes only).
• Embedded two-level PSO (E2L-PSO).

Five sets of experiments are defined:

• Experiment #1 Basic PSO vs. one-level PSO [32] vs. E2L-PSO without reduction in
STM32 F407VGT6 and Raspberry Pi B+. Two comparison criteria are used: makespan
as defined by Equation (3) and the used CPU time.

• Experiment #2 Adaptive E2L-PSO on Raspberry Pi B+.
Three scenarios take place:

– Scenario 1: “Hard reduction” 60% reduction in CPU usage.
– Scenario 2: “Medium reduction” 40% reduction in CPU usage.
– Scenario 3: “Soft reduction” 20% reduction in CPU usage.

Under each scenario, we have three possible cases:

– The reduction request has arrived after only 20% of the iterations are completed
(Request_Period = 20%).

– The reduction request has arrived after 50% of the iterations are completed
(Request_Period = 50%).

– The reduction request has arrived after 90% of the iterations are completed
(Request_Period = 90%).

• Experiment #3 Adaptive E2L-PSO stability analyses. The statistical significance of the
difference in performance between E2L-PSO without CPU reduction and adaptive
E2L-PSO with medium reduction is determined using Mann–Whitney tests.

• Experiment #4 Adaptive E2L-PSO robustness analyses. We use the definition presented
in Equation (4), where the robustness is defined as the difference of the slack time (ST)
and the makespan.

• Experiment #5 Comparison with previous metaheuristics. These simulations pit the
E2L-PSO against 11 different metaheuristics, 5 of which are PSO based and 6 of which
are from other categories (GA, TS, etc.). All comparisons are made using the same
global conditions as the prior study (iteration number, swarm size, etc.).

Each simulation is performed a total of 30 times to better measure the stability with
the Mann–Whitney method.

The control parameters of E2L-PSO are summarized in Table 3.

Appl. Sci. 2022, 12, 2829 14 of 22

Table 3. PSO parameters.

Hard (60% CPU)

Request_Period Beginning (20%) Middle (50%) End (90%)

c1 1.49618 for level 1, Equation (11) for level 2 1.49618 1.49618
c2 1.49618 for level 1, Equation (12) for level 2 1.49618 1.49618
w Equation (10) for level 1, Equation (9) for level 2 0.6 0.6

Medium (40% CPU)

Request_Period Beginning (20%) Middle (50%) End (90%)

c1 1.49618 for level 1, Equation (11) for level 2 1.49618 for level 1, Equation (11) for level 2 1.49618
c2 1.49618 for level 1, Equation (12) for level 2 1.49618 for level 1, Equation (12) for level 2 1.49618
w (10) for level 1, Equation (9) for level 2 Equation (10) for level 1, Equation (9) for level 2 0.6

Soft (20% CPU)

Request_Period Beginning (20%) Middle (50%) End (90%)

c1 1.49618 for level 1, Equation (11) for level 2 1.49618 for level 1, Equation (11) for level 2 1.49618
c2 1.49618 for level 1, Equation (12) for level 2 1.49618 for level 1, Equation (12) for level 2 1.49618
w Equation (10) for level 1, Equation (9) for level 2 (10) for level 1, Equation (9) for level 2 0.6

The locations of particles are initialized as follows: using the localization strategy [31],
50 percent of the population is initialized to viable solutions (i.e., feasible schedules),
and 50 percent is initialized with random values. The performance of the algorithms is
assessed using 10 benchmarks [33]. The number of jobs, machines, and operations; the
flexibility degree (Equation (2)); and the lower bound on makespan [34] are all listed in
Table 4 for each benchmark.

Table 4. FJSP benchmarks.

Instance #Jobs #Machines #Operations FD Lower Bound on Makespan

MK01 10 6 55 0.34 36
MK02 10 6 58 0.68 26
MK03 15 8 150 0.37 204
MK04 15 8 90 0.23 48
MK05 15 4 106 0.42 168
MK06 10 15 150 0.32 33
MK07 20 5 100 0.56 133
MK08 20 10 225 0.14 523
MK09 20 10 240 0.25 299
MK10 20 15 240 0.19 165

6.2. Simulation Results
6.2.1. Experiment #1 (Basic PSO vs. One-Level PSO vs. E2L-PSO without Reduction on
STM32 F407VGT6 and Raspberry Pi B+)

The one-level PSO is presented in [32]. To better compare the different PSO variants,
first, we start working with the same parameters as in [32] (I1 = 64; I2 = 5; S1 = 50;
S2 = 5). In other words, the number of iterations (I, I1, I2) is set so that the total number of
solutions visited in each version is approximately 80,000. Results are presented in Table 5
for simulations in the STM32F407VGT6 and in Table 6 for simulations in Raspberry Pi B+.

Tables 5 and 6 show that the one-level PSO produces better results for MS but not for
CPU time when compared to the standard PSO. For all benchmarks, however, the E2L-PSO
without reduction delivers higher performance on the two criteria. Because the size of the
position vectors is reduced, the CPU time falls by 2 to 8 times.

In Tables 7 and 8, we decrease the number of visited solutions at 5000 points. We
find that E2L-PSO without reduction remains the best, as it provides better results on the
two criteria for all benchmarks. The CPU time decreases by 2 to 7 times.

Appl. Sci. 2022, 12, 2829 15 of 22

Table 5. Comparison 1 between the three developed PSO variants on STM32 F407VGT6.

Instance Basic PSO One-Level PSO [32] E2L-PSO without Reduction
I = 1454 S = 55 I = 1454 S = 55 I1 = 64 S2 = 50 I2 = 5 S2 = 5

MS CPU Time MS CPU Time MS CPU Time

4 × 5 12 68 11 30 11 21
8 × 8 20 201 16 197 14 50
10 × 10 12 433 10 313 7 52
MK01 44 378 40 815 39 101
MK02 33 410 29 738 27 140
MK03 204 3302 204 3111 204 432
MK04 70 799 62 1105 60 280
MK05 179 1520 173 1970 173 511
MK06 70 3317 64 3300 60 699
MK07 148 1778 144 2032 139 100
MK08 523 3007 523 6187 523 1118
MK09 341 5007 309 8525 307 1118
MK10 253 4613 205 7890 205 1460

Table 6. Comparison 2 between the three developed PSO variants on Raspberry Pi B+.

Instance Basic PSO One-Level PSO [32] E2L-PSO without Reduction
I = 1454 S = 55 I = 1454 S = 55 I1 = 64 S2 = 50 I2 = 5 S2 = 5

MS CPU Time MS CPU Time MS CPU Time

4 × 5 12 16.08 11 7.2 11 4.14
8 × 8 19 40.51 16 36.71 14 9.54
10 × 10 12 71.06 10 79.61 7 11.40
MK01 44 64.60 40 122.17 39 25.84
MK02 33 83.98 29 133.38 27 24.44
MK03 204 826.5 204 579.69 204 81.52
MK04 69 174 62 217.33 60 49.59
MK05 177 275.95 173 303.14 173 62.51
MK06 78 658.2 64 607.62 60 144.20
MK07 148 264.86 144 310.27 139 49.42
MK08 523 569.88 523 1107.04 523 196.27
MK09 341 891.18 309 1290.77 307 197.86
MK10 252 974.16 205 1300.75 205 258.07

Appl. Sci. 2022, 12, 2829 16 of 22

Table 7. Comparison 3 between the three developed PSO variants on STM32 F407VGT6.

Instance Basic PSO One-Level PSO [32] E2L-PSO without Reduction
I = 100 S = 50 I = 100 S = 50 I1 = 20 S2 = 10 I2 = 5 S2 = 5

MS CPU Time MS CPU Time MS CPU Time

4 × 5 12 4.25 12 1.87 11 1.30
8 × 8 22 12.56 18 12.31 16 3.12
10 × 10 12 27.06 12 19.56 9 3.25
MK01 44 23.68 42 50.93 39 6.31
MK02 33 2.06 30 48 29 8.75
MK03 204 206.37 204 194.34 204 27
MK04 72 49.93 64 69.06 62 17.5
MK05 179 95 174 123.12 173 31.93
MK06 70 207.31 64 203.25 62 43.68
MK07 151 110.80 144 127 139 12.56
MK08 523 188 523 386.68 523 62.50
MK09 341 312.99 309 520.81 309 69.87
MK10 254 288.31 205 490.12 205 91.25

Table 8. Comparison 4 between the three developed PSO variants on Raspberry Pi B+.

Instance Basic PSO One-Level PSO [32] E2L-PSO without Reduction
I = 100 S = 50 I = 100 S = 50 I1 = 20 S2 = 10 I2 = 5 S2 = 5

MS CPU Time MS CPU Time MS CPU Time

4 × 5 12 1.05 11 0.45 11 0.25
8 × 8 19 2.53 16 2.15 14 0.59
10 × 10 12 4.44 10 1.07 7 0.71
MK01 44 4.03 40 5.78 39 1.61
MK02 33 5.59 29 6.74 27 1.52
MK03 204 45.91 204 34.09 204 5.09
MK04 69 9.87 62 11.58 60 3.09
MK05 177 17.24 173 17.94 173 3.90
MK06 78 41.13 64 37.97 60 9.01
MK07 148 13.94 144 16.37 139 3.08
MK08 523 29.99 523 49.13 523 12.26
MK09 341 55.69 309 67.93 307 12.36
MK10 252 60.88 205 81.29 205 16.12

6.2.2. Experiment #2 (Adaptive E2L-PSO on Raspberry Pi B+)

To better visualize the results, we increase the number of visited points to 3,000,000
(I1 = 100 S2 = 200 I2 = 10 S2 = 10).

Table 9 presents the simulation results of the E2L-PSO without particle reduction on
Raspberry Pi B+ card. In this table, the number of visited solutions is fixed at 3,000,000 points
(we widen the search space) to better compare the quality of the results. This table is used
only for comparison reasons. In this table, we can see that our algorithm reaches the lower
bound values in three instances (bold values) compared to values presented in Table 4.
For the rest of the instances, E2L-PSO gives comparable results.

Appl. Sci. 2022, 12, 2829 17 of 22

Table 9. E2L-PSO without central processing unit (CPU) reduction needed (number of visited points
is 3,000,000) on Raspberry Pi B+.

MS CPU

MK01 39 50.28
MK02 26 144.1
MK03 204 167.4
MK04 60 91.25
MK05 170 125.02
MK06 62 252.35
MK07 139 94.15
MK08 523 372.21
MK09 307 387.36
MK10 205 451.08

The results in Tables 10–12 are determined under this assumption: reduction needed
requests of 90%, 40% and 20%, respectively, occur every 20 s after the first request_Period.
These tables present the simulation results of the E2L-PSO with hard, medium and soft
particle reduction on the Raspberry Pi B+ card.

Table 10. E2L-PSO hard CPU reduction needed (60%) on Raspberry Pi B+.

Beginning 20% Middle (50%) End (90%)

MS CPU MS CPU MS CPU

MK01 40 20.06 40 35.2 39 50.28
MK02 28 37.66 28 80.05 26 129.60
MK03 204 98.23 204 118.3 204 150.30
MK04 62 67.60 60 78.12 60 82.07
MK05 172 70.33 172 97.6 170 114.31
MK06 64 110.18 64 186.17 62 225.01
MK07 140 42.87 140 70.86 139 80.15
MK08 523 205.63 523 279.44 523 334.8
MK09 309 199.15 307 283.65 307 346.26
MK10 205 220.44 205 332.45 205 410.99

Table 11. E2L-PSO medium CPU reduction needed (40%).

Beginning 20% Middle (50%) End (90%)

MS CPU MS CPU MS CPU

MK01 39 37.71 39 48.10 39 46.19
MK02 28 62.90 27 99.17 26 139.50
MK03 204 111.60 204 133.80 204 158.02
MK04 60 72.03 60 81.52 60 88.17
MK05 172 90.60 171 100.87 170 120.03
MK06 64 140.17 62 191.98 62 238.40
MK07 140 63.34 140 81.55 139 87.81
MK08 523 241.70 523 299.02 523 353.11
MK09 309 264.98 307 318.47 307 361.74
MK10 205 282.53 205 374.67 205 439.60

Appl. Sci. 2022, 12, 2829 18 of 22

Table 12. E2L-PSO soft CPU reduction needed (20%).

Beginning 20% Middle (50%) End (90%)

MS CPU MS CPU MS CPU

MK01 39 40.50 39 44.33 39 48.70
MK02 26 73.15 26 130.66 26 142.55
MK03 204 93.82 204 148.02 204 161.21
MK04 60 81.77 60 86.12 60 90.01
MK05 170 100.03 170 111.64 170 123.33
MK06 62 188.4 62 207.01 62 249.46
MK07 139 70.48 139 84.21 139 91.63
MK08 523 260.70 523 300.65 523 368.01
MK09 307 282.24 307 344.89 307 381.37
MK10 205 310.70 205 399.57 205 446.99

From Table 10, we note that compared to the results in Table 9:

• Case 1: E2L-PSO gives acceptable results for MS with 26% to 70% of CPU time gain.
• Case 2: E2L-PSO gives acceptable results for MS and best MS for 50% of benchmarks.

E2L-PSO gives 15% to 44% of CPU time gain.
• Case 3: E2L-PSO gives the best results for MS in all benchmarks, with 10% of CPU

time gain.

From Table 11, we note the following in comparison to the results in Table 9:

• Case 1: E2L-PSO gives acceptable results for MS and best MS for 60% of benchmarks.
A 21% to 66% of CPU time gain is obtained.

• Case 2: E2L-PSO gives acceptable results for MS and best MS for 80% of benchmarks.
An 11% to 30% of CPU time gain is obtained.

• Case 3: E2L-PSO gives best results for MS in all benchmarks, with 4% to 5% of CPU
time gain.

From Table 12, we note that, compared to the results in Table 9:

• Case 1: E2L-PSO gives the best MS for 100% of benchmarks. A 10% to 49% of CPU
time gain is obtained.

• Case 2: E2L-PSO gives the best MS for 100% of benchmarks with 6% to 9% of CPU
time gain.

• Case 3: E2L-PSO gives the best results for MS in all benchmarks, with a poor CPU
time gain (1%).

To conclude, we can say that the E2L-PSO give the best MS results with reduction in
CPU time according to the flexibility of the problems, the CPU reduction needed and the
request period.

6.2.3. Experiment #3 (Stability Analysis of Adaptive E2L-PSO)

The results of the two-tailed Mann–Whitney tests, comparing the outcomes of the
second example (Table 11: Adaptive E2L-PSO with medium reduction and E2L-PSO
without CPU reduction needed), are shown in Table 13.

The symbols U and p are the calculation of statistics, where U is the minimum value
between the decisions variables of two groups and p is a non-parametric measure of the
overlap between two distributions; it can take values between 0 and 1. We chose to work
with a significance level = 0.05 and a number of samples (run) = 10, then the critical value of
U at p < 0.05 is 23. To understand the results obtained, note that when the U-value increases
(p increases), the difference between the two variants increases (i.e., high U-value = high
similarity): U = 0 implies no similarity and U = 50 implies total similarity.

Appl. Sci. 2022, 12, 2829 19 of 22

Table 13. Results of two-tailed Mann–Whitney tests.

Beginning 20% Middle (50%) End (90%)

U p U p U p

MK01 30 0.1415 40 0.4175 50 0.9681
MK02 0 0.0001 0 0.0001 50 0.9681
MK03 50 0.9681 50 0.9681 50 0.9681
MK04 10 0.0027 35 0.2713 50 0.9681
MK05 0 0.0001 0 0.0001 50 0.9681
MK06 0 0.0001 25 0.0643 50 0.9681
MK07 0 0.0001 0 0.0001 50 0.9681
MK08 50 0.9681 50 0.9681 50 0.9681
MK09 0 0.0001 25 0.0643 50 0.9681
MK10 50 0.9681 50 0.9681 50 0.9681

In the first case (Request_Period = 20%), the results show that there are total differ-
ences between the two variants on five benchmarks (U = 0 and p < 0.05), significant
differences in MK04 (U = 10 < 23 and p = 0.0027 < 0.05), significant similarities in MK01
(U = 30 > 23 and p = 0.1415 > 0.05) and total similarities on four benchmarks.

In the second case (Request_Period = 50%), the results show that there are total
differences between the two variants on three benchmarks (U = 0 and p < 0.0001),
significant similarity on four benchmarks (U > 23 and p > 0.05) and a total similarity on
three benchmarks.

In the third case (Request_Period = 90%), the results show that there are no differences
(total similarities) between the two variants on all benchmarks (U = 50 and p = 0.9681).

6.2.4. Experiment #4 Robustness Analyses of Adaptive E2L-PSO

The results of the robustness measure comparing the outcomes of the second example
(Table 11: adaptive E2L-PSO with medium reduction and E2L-PSO without CPU reduction
needed) are shown in Table 14.

Table 14. Robustness analyses of E2L-PSO with medium CPU reduction needed (40%) on Raspberry
Pi B+.

Beginning 20% Middle (50%) End (90%)

MS RM MS RM MS RM

MK01 39 0 39 0 39 0
MK02 28 10 27 6 26 5
MK03 204 0 204 0 204 0
MK04 60 1 60 1 60 1
MK05 172 12 171 11 170 10
MK06 64 6 62 4 62 4
MK07 140 14 140 14 139 11
MK08 523 0 523 0 523 0
MK09 309 24 307 21 307 21
MK10 205 0 205 0 205 0

• If RM < 0: risk of machine failure.
• If RM = 0: slack time of all machines equal to completion time. So, we can say that is

acceptable robustness.
• If RM > 0: better robustness but there is a loss of time (conflicting with our objectives).

To resume, we can say that, in all the three scenarios and in the vast majority of cases,
we have adequate robustness with improved makespan and shorter CPU times.

Appl. Sci. 2022, 12, 2829 20 of 22

6.2.5. Experiment #5 (Previous Metaheuristics Are Compared)

Since we have not found any previous work running metaheuristic algorithms to
solve FJSP on Raspberry Pi B+ or STM32 cards, we compare our results (E2L-PSO without
reduction) with previous works executed in another environment (PCs). Experiments are
conducted with 50 particles and 100 iterations (5000 visited points). Table 15 presents the
comparison against PSO-based metaheuristics: PSO [35], artificial bee colony (ABC) [36],
quantum annealing based optimization (QAO) [37], genetic algorithm (GA) [38], human
learning optimization algorithm and PSO (HLO-PSO) [39] and hybrid brain storm opti-
mization algorithm and late acceptance hill climbing (hybrid PSO) [40] (— denotes the
data’s unavailability). A bold value indicates that the E2L-PSO result is either optimal or
the best. For all benchmarks, we note that the E2L-PSO performed on the Raspberry Pi B+
delivers the best makespan, except in two cases (MK02 and MK05), although the result is
always close to the best of the alternatives.

Table 15. Comparison of the E2L-PSO against other works (non PSO-based and PSO-based metaheuristics).

[35] [36] [37] [38] [39] [40] Our Our
PSO ABC QAO GA HLO-PSO Hybrid PSO E2L-PSO E2L-PSO

Machine Intel Core i7; Intel Core i3 n-a Intel Core i5; n-a Intel Core i3; Raspberry Pi B+ STM32F407VGT6
16 GB RAM 8 GB RAM 4 GB RAM 1 GB RAM 192 KB

Particles 20 - - - 100 50 50 50
Iterations 50 - - - 500 200 100 100

4 × 5 11 11 - 11 11 - 11 11
8 × 8 14 14 - 14 14 - 14 16
10 × 10 - 11 - 11 7 - 7 9
MK01 40 40 41 40 40 40 39 39
MK02 29 27 27 27 28 26 27 29
MK03 204 204 204 204 204 204 204 204
MK04 66 60 67 60 63 - 60 62
MK05 175 172 176 172 175 173 173 173
MK06 77 63 62 69 71 61 60 62
MK07 145 140 144 144 144 141 139 139
MK08 523 523 523 523 523 523 523 523
MK09 320 307 314 320 326 307 307 309
MK10 239 214 214 254 238 204 205 205

7. Practical and Managerial Uses of E2L-PSO

Based on the findings obtained after testing on Raspberry Pi B+ and STM32 boards,
we can conclude that our technique is preferable for handling optimization difficulties in
embedded settings. The following are some examples of practical and managerial applications:

• Home staff scheduling is an example of a healthcare optimization problem.
• The difficulty of pattern recognition and image processing.
• Applications for detecting medical diseases.
• Problems with electrical power transmission optimization.
• Heterogeneous wireless sensor network routing and clustering.

All cyber–physical systems can support our technique E2L-PSO, which can be used to
solve any NP-hard optimization issue.

8. Conclusions

In this work, we introduce an embedded adaptive two-level PSO (E2L-PSO) method
for the FJSP that is based on the two level PSO algorithm [32]. The E2L-PSO approach
was developed to be the standard variant dedicated to the dynamic environment. The
experiments were conducted using our E2L-PSO algorithm on Raspberry Pi B+ and
STM32F407VGT6. The results obtained show the efficiency of our metaheuristic method
in adapting to the changes of the environment as well as to the CPU needs of the execu-
tion equipment.

Experiments run using our E2L-PSO algorithm on benchmark problems returned
better results than those previously obtained by other metaheuristics in a much smaller
amount of CPU time. The high quality of the solutions (MS) is due to the efficient explo-

Appl. Sci. 2022, 12, 2829 21 of 22

ration of the solution space. The low CPU time is due to the use of the adaptive process
(iteration reduction). The low machine load (workload) is assured by the appearance of
the two-level notion. This is one of the goals achieved with the two-level PSO. All these
criteria are ensured in real-time application.

In future work, we aim to include the memory reduction and the rescheduling method,
developed for the breakdown cases, which should be included with E2L-PSO on an embed-
ded system. We aim to apply this in the fields of sensor networks and IoT. To expand the
capability of E2L-PSO, we should use additional machine learning approaches.

Author Contributions: Conceptualization, Methodology and Validation: R.Z., W.B.D. and S.M.;
software, writing—original draft preparation, review and editing, R.Z. and S.M.; Supervision, A.J.;
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Deanship of Scientific Research, Qassim University.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Michael, G.R.; David, J.S.; Ravi, S. The complexity of flowshop and jobshop scheduling. Math. Oper. Res. 1976, 1, 117–129.
2. OrtÍz-Barrios, M.; Petrillo, A.; De Felice, F.; Jaramillo-Rueda, N.; Jimenez-Delgado, G.; Borrero-Lopez, L. A Dispatching-Fuzzy

AHP-TOPSIS Model for Scheduling Flexible Job-Shop Systems in Industry 4.0 Context. Appl. Sci. 2021, 11, 5107. [CrossRef]
3. Calleja, G.; Rafael, P. A dispatching algorithm for flexible job-shop scheduling with transfer batches: An industrial application.

Prod. Plan. Control. 2014, 25, 93–109. [CrossRef]
4. Chaudhry, I.A.; Khan, A.A. A research survey: Review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 2016, 23,

551–591. [CrossRef]
5. Krasimira, G.; Leoneed, K.; Vassil, G. A survey of solving approaches for multiple objective flexible job shop scheduling problems.

Cybern. Inf. Technol. 2015, 15, 3–22.
6. Sangaiah, A.K.; Mohsen, Y.S.; Mehdi, S.; Seyed, M.B.; Hosseinabadi, A.; Ji, W. A new meta-heuristic algorithm for solving the

flexible dynamic job-shop problem with parallel machines. Symmetry 2019, 11, 165. [CrossRef]
7. Park, J.-S.; Ng, H.Y.; Chua, T.-J.; Ng, Y.-T. Unified genetic algorithm approach for solving flexible job-shop scheduling problem.

Appl. Sci. 2021, 11, 6454. [CrossRef]
8. Lin, C.R.; Zheng, C.C.; Meng, C.Z. Learning-Based Grey Wolf Optimizer for Stochastic Flexible Job Shop Scheduling. IEEE Trans.

Autom. Sci. Eng. 2022, 1–13. [CrossRef]
9. Tamssaouet, K.; Dauzere-Peres, S.; Knopp, S.; Bitar, A.; Yugma, C. Multiobjective optimization for complex flexible job-shop

scheduling problems. Eur. J. Oper. Res. 2022, 296, 87–100. [CrossRef]
10. Nayak, S.; Sood, A.K.; Pandey, A. Integrated Approach for Flexible Job Shop Scheduling Using Multi-objective Genetic Algorithm.

In Advances in Mechanical and Materials Technology; Springer: Singapore, 2022; pp. 387–395.
11. Xianghui, C.; Lu, L.; Wenlong, S.; Aurobinda, L.; Jin, T.; Yu, C. Real-time misbehavior detection and mitigation in cyber-physical

systems over WLANs. IEEE Trans. Ind. Inform. 2015, 13, 186–197.
12. Kyoung-Dae, K.; Panganamala, K.R. Cyber–physical systems: A perspective at the centennial. Proc. IEEE 2012, 100, 1287–1308.

[CrossRef]
13. Patricia, D.; Edward, L.A.; Sangiovanni, V.A. Modeling cyber–physical systems. Proc. IEEE 2011, 100, 13–28.
14. Hemalatha, R.; Prakash, R.; Sivapragash, C. Analysis on energy consumption in smart grid WSN using path operator calculus

centrality based HSA-PSO algorithm. Soft Comput. J. 2019, 24, 1–13. [CrossRef]
15. Kartikeya, U.; Miroojin, B.; Vibhor, P.; Kumar, L.B. Distributed maintenance planning in manufacturing industries. Comput. Ind.

Eng. 2017, 108, 1–14.
16. Venayagamoorthy, G.K.; Sheetal, D. Navigation of mobile sensors using PSO and embedded PSO in a fuzzy logic controller.

In Proceedings of the IEEE Industry Applications Conference, 39th IAS Annual Meeting, Seattle, WA, USA, 3–7 October 2004;
Volume 2, pp. 1200–1206.

17. Javier, R.L.; Christian, A.F.; Gregorio, T.P.; Rashid, M.; Joan, S.F. Enhancing metaheuristic-based online embedding in network
virtualization environments. IEEE Trans. Netw. Serv. Manag. 2017, 15, 200–216.

18. Hereford, J.; Michael, S. Multi-robot search using a physically-embedded particle swarm optimization. Int. J. Comput. Intell. Res.
2008, 4, 197–209. [CrossRef]

19. Micael, S.C.; Patricia, V.A.; Rui, R.P.; Nuno, F.M.F. Benchmark of swarm robotics distributed techniques in a search task. Robot.
Auton. Syst. 2014, 62, 200–213.

http://doi.org/10.3390/app11115107
http://dx.doi.org/10.1080/09537287.2013.782846
http://dx.doi.org/10.1111/itor.12199
http://dx.doi.org/10.3390/sym11020165
http://dx.doi.org/10.3390/app11146454
http://dx.doi.org/10.1109/TASE.2021.3129439
http://dx.doi.org/10.1016/j.ejor.2021.03.069
http://dx.doi.org/10.1109/JPROC.2012.2189792
http://dx.doi.org/10.1007/s00500-019-04580-5
http://dx.doi.org/10.5019/j.ijcir.2008.138

Appl. Sci. 2022, 12, 2829 22 of 22

20. Alakananda, B.; Amit, K.; Swagatam, D.; Crina, G.; Ajith, A. Hardware software partitioning problem in embedded system
design using particle swarm optimization algorithm. In Proceedings of the IEEE Intertional Conference on Complex, Intelligent
and Software Intensive Systems, Washington, DC, USA, 4–7 March 2008; pp. 171–176.

21. Rezazadeh, H.; Ghazanfari, M.; Sadjadi, S.J.; Mir, B.; Aryanezhad, A.; Makui, A. Linear programming embedded particle swarm
optimization for solving an extended model of dynamic virtual cellular manufacturing systems. J. Appl. Res. Technol. 2009, 7,
83–108. [CrossRef]

22. Hereford, J.M.; Siebold, M.A. Bio-inspired search strategies for robot swarms. In Swarm Robotics from Biology to Robotics;
IntechOpen: London, UK, 2010.

23. Sheikholeslami, R.; Kaveh, A. A survey of chaos embedded meta-heuristic algorithm. Int. J. Optim. Civ. Eng. 2013, 3, 617–633.
24. Kamlesh, M.; Li, Z.; Siew, N.C.; Chee Peng, L.; Ben, F. A micro-GA embedded PSO feature selection approach to intelligent facial

emotion recognition. IEEE Trans. Cybern. 2016, 47, 1496–1509.
25. Qi, X.; Li, Z.; Chen, C.; Liu, L. A wireless sensor node deployment scheme based on embedded virtual force resampling particle

swarm optimization algorithm. Appl. Intell. 2021, 1–22. [CrossRef]
26. Özdemir, M.T. Optimal parameter estimation of polymer electrolyte membrane fuel cells model with chaos embedded particle

swarm optimization. Int. J. Hydrog. Energy 2021, 46, 16465–16480. [CrossRef]
27. Shariati, M.; Mafipour, M.S.; Mehrabi, P.; Alireza, B.; Yousef, Z.; Musab, N.A.S.; Hoang, N.; Jie, D.; Xuan, S.; Shek, P.-N. Application

of a hybrid artificial neural network-particle swarm optimization (ANN-PSO) model in behavior prediction of channel shear
connectors embedded in normal and high-strength concrete. Appl. Sci. 2019, 9, 5534. [CrossRef]

28. Zhou, N.R.; Luo, A.W.; Zou, W.P. Secure and robust watermark scheme based on multiple transforms and particle swarm
optimization algorithm. Multimed. Tools Appl. 2019, 78, 2507–2523. [CrossRef]

29. Qu, C. Virtual reconstruction of random moving image capturing points based on chaos embedded particle swarm optimization
algorithm. Microprocess. Micro-Syst. 2020, 75, 103069. [CrossRef]

30. Vijh, S.; Sharma, S.; Gaurav, P. Brain tumor segmentation using OTSU embedded adaptive particle swarm optimization method
and convolutional neural network. In Data Visualization and Knowledge Engineering; Springer: Berlin/Heidelberg, Germany, 2020;
Volume 32, pp. 171–194.

31. Kacem, I.; Hammadi, S.; Borne, P. Approach by localization and multiobjective evolutionary optimization for flexible job-shop
scheduling problems. IEEE Trans. Syst. Man Cybern. Part (Appl. Rev.) 2002, 32, 1–13. [CrossRef]

32. Zarrouk, R.; Bennour, I.E.; Jemai, A. A two-level particle swarm optimization algorithm for the flexible job shop scheduling
problem. Swarm Intell. 2019, 13, 145–168. [CrossRef]

33. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. J. 1993, 41, 157–183. [CrossRef]
34. Dennis, B.; Josef, G.M. Test Instances for the Flexible Job Shop Scheduling Problem with Work Centers; Research Report RR-12-01-01;

Institut für Betriebliche Logistik und Organisation Arbeitspapier: Hamburg, Germany, 2012.
35. Ding, H.; Xingsheng, G. Improved particle swarm optimization algorithm based novel encoding and decoding schemes for

flexible job shop scheduling problem. Comput. Ind. Eng. 2020, 121, 104951. [CrossRef]
36. Caldeira, H.R.; Gnanavelbabu, A.; Solomon, J.J. Solving the Flexible Job Shop Scheduling Problem Using a Hybrid Artificial Bee

Colony Algorithm. In Trends in Manufacturing and Engineering; Springer: Berlin/Heidelberg, Germany, 2021; pp. 833–843.
37. Denkena, B.; Schinkel, F.; Pirnay, J.; Wilmsmeier, S. Quantum algorithms for process parallel flexible job shop scheduling. CIRP J.

Manuf. Sci. Technol. 2021, 33, 100–114. [CrossRef]
38. Chen, R.; Yang, B.; Li, S.; Wang, S. A self-learning genetic algorithm based on reinforcement learning for flexible job-shop

scheduling problem. Comput. Ind. Eng. 2020, 149, 106778. [CrossRef]
39. Ding, H.; Gu, X. Hybrid of human learning optimization algorithm and particle swarm optimization algorithm with scheduling

strategies for the flexible job-shop scheduling problem. Neurocomputing 2020, 414, 313–332. [CrossRef]
40. Alzaqebah, M.; Jawarneh, S.; Alwohaibi, M.; Alsmadi, M.K.; Almarashdeh, I.; Mohammad, R.M.A. Hybrid Brain Storm

Optimization algorithm and Late Acceptance Hill Climbing to solve the Flexible Job-Shop Scheduling Problem. J. King Saud-
Univ.-Comput. Inf. Sci. 2020, in press. [CrossRef]

http://dx.doi.org/10.22201/icat.16656423.2009.7.01.513
http://dx.doi.org/10.1007/s10489-021-02745-0
http://dx.doi.org/10.1016/j.ijhydene.2020.12.203
http://dx.doi.org/10.3390/app9245534
http://dx.doi.org/10.1007/s11042-018-6322-9
http://dx.doi.org/10.1016/j.micpro.2020.103069
http://dx.doi.org/10.1109/TSMCC.2002.1009117
http://dx.doi.org/10.1007/s11721-019-00167-w
http://dx.doi.org/10.1007/BF02023073
http://dx.doi.org/10.1016/j.cor.2020.104951
http://dx.doi.org/10.1016/j.cirpj.2021.03.006
http://dx.doi.org/10.1016/j.cie.2020.106778
http://dx.doi.org/10.1016/j.neucom.2020.07.004
http://dx.doi.org/10.1016/j.jksuci.2020.09.004

	Introduction
	Previous Works
	 Cyber–Physical System
	Embedded Particle Swarm Optimization
	Discussion

	Flexible Job Shop Scheduling Problem
	Definition
	Particle Representation

	Used PSO-FJSP Variant
	Proposed Technique: Embedded Two-Level PSO-FJSP
	E2L-PSO—Experimental Results
	Experiment Design
	Simulation Results
	Experiment #1 (Basic PSO vs. One-Level PSO vs. E2L-PSO without Reduction on STM32 F407VGT6 and Raspberry Pi B+)
	Experiment #2 (Adaptive E2L-PSO on Raspberry Pi B+)
	Experiment #3 (Stability Analysis of Adaptive E2L-PSO)
	Experiment #4 Robustness Analyses of Adaptive E2L-PSO
	Experiment #5 (Previous Metaheuristics Are Compared)

	Practical and Managerial Uses of E2L-PSO
	Conclusions
	References

