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Abstract: Urban infrastructure (UI), subject to ever-increasing stresses from artificial activities of
human beings and natural disasters due to climate change, assumes a key role in modern cities for
maintaining their functional operations. Therefore, understanding UI resilience turns essential. Based
on the Pressure-State-Response (PSR) model, this paper built a comprehensive evaluation index
system for urban infrastructure resilience evaluation. Four municipalities, including Beijing, Tianjin,
Shanghai, and Chongqing in China, were selected for the case study, given their specific significance
in terms of geographical location and urban infrastructure scale. Temporal differences of UI resilience
in those four cities during 2002–2018 were explored. The results showed that: (1) The various stages
of PSR relative importance for the urban infrastructure resilience development in the four cities
were different. The infrastructure status, primarily resource environmental benefit, had the most
significant effect on urban infrastructure resilience, accounting for 38.73%. (2) While Shanghai ranked
first, the levels of urban infrastructure resilience in four cities were generally poor in 2002–2018 with
continuously low resilience. (3) Significant differences were found in the resilience levels associated
with the three stages of pressure, state and response failing to form a positive development cycle,
with the poorest pressure resilience. This paper puts forward some recommendations for providing
scientific support for urban resilient infrastructure development in four municipalities in China.

Keywords: urban infrastructure; resilience; pressure-state-response; Chinese Municipalities;
temporal differences

1. Introduction

With the rapid growth of industrialization and urbanization, Chinese cities have grad-
ually become the leading carriers for significant populations to settle. As the population
increases, the city size has been expanding quickly. In China, the urban population quintu-
pled from 170 million in 1978 to more than 850 million in 2020. Meanwhile, the urbanization
rate has nearly quadrupled during that period, from 18% in 1978 to over 60% in 2020, and
is expected to reach 75% or even 80% by 2035 [1]. In urbanization, the Chinese government
has maintained the growth rate of economic investment in UI development has been main-
tained at around 20% by Chinese government. The scale of UI has increased substantially,
establishing relatively complete urban infrastructure systems in cities. However, “urban
diseases” have been increasingly emerging, especially in metropolis [2], such as traffic
congestion, urban pollution, and poor disaster resilience, indicating that infrastructures’
carrying capacity lags far behind urban development speed. In the traditional sense, UI is
the general name of engineering infrastructure and social infrastructure, and it is necessary
for urban operation and development. Engineering infrastructure is generally divided into
six systems (transportation, water and drainage, communication, energy source supply,
urban environment, and disaster prevention) according to the “Standard for Basic Termi-
nology of Urban Planning” (GB/T50280-98). These six engineering infrastructures serve
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people but also serve other infrastructures, and jointly constitute an open, complex and
dynamic system. In this case, this paper defined UI as the engineering infrastructure. As
an essential material foundation for the functional operation and healthy development of
a city, UI plays a vital role in satisfying the living conditions of citizens, enhancing total
carrying capacity, and improving urban operational efficiency. Once the infrastructure
system fails to withstand adverse shocks, it will bring domino hazards to the public [3].
For instance, in 2013, an explosion occurred in Qingdao city of China due to an oil pipeline
rupture, resulting in 62 deaths and severe economic losses, about 118,425,000 dollars. Due
to multi-round heavy rains in 2020, most cities in southern China, such as Shanghai and
Chongqing, suffered from flood disasters causing economic losses of up to 975,664,100 dol-
lars. Obviously, improving urban infrastructure resilience to disasters is a prerequisite for
ensuring the normal operations of cities. In recent years, international organizations and
some developed countries have begun to use the concept of resilience widely and actively
promote resilient infrastructure to improve urban resilience to disasters [4].

Resilience originating from physics described a material’s ability to absorb deformation
force when deformed by an external force. Later, Holling, an ecologist, applied the concept
of resilience to Systems Ecology for the first time, defining it as a measurement of system
persistence and ability to absorb changes and disturbances at a system level [5]. Since
the 1990s, as the research on resilience had gradually expanded from ecology to other
disciplines, the concept of resilience had also been enriched. The multidisciplinary Centre
for Earthquake Engineering (MCEER) defined resilience as the system’s ability to reduce
the possibility of the shocks, absorb vibration and quickly recover afterwards [6]. From
the system and information engineering, resilience refers to the ability to withstand severe
damage within acceptable degradation parameters, and recover within a reasonable time [7].
The definition of resilience has not been unified. In contrast, three resilience characteristics
(i.e., resistance, absorption, and recovery) proposed by Davidson-Hunt [8] were universally
approved, laying a foundation for evaluating resilience systems.

As the application of resilience continued to extend to many fields, a series of con-
cepts had been proposed successively, such as ecological resilience [9,10], engineering
resilience [11,12], urban resilience [13–15] and infrastructure resilience [16,17]. The subsys-
tems of UI play various roles in the emergency phase, resettlement phase, recovery phase,
and reconstruction phase in the risk and are dependent on each other to varying degrees,
constituting the overall resilience of urban infrastructure. Most scholars interpreted urban
infrastructure resilience from resilience’s three characteristics (i.e., resistance, absorption,
and recovery) such as Omer, M et al. [18], Jackson, S et al. [19], Bruneau, M et al. [20]. RB
Huston [21] referred to urban infrastructure resilience as the joint ability to resist (prevent
and endure) any possible harm, absorb initial damage and resume routine operations. In
other words, the effectiveness of resilient urban infrastructure could be determined by its
ability to predict, absorb, adapt and quickly recover from potentially destructive events [22].
Among them, absorptive capacity was the system’s ability to bear damage without signifi-
cantly deviating from the normal operating performance [23]; adaptability was the system’s
ability to adapt to shocks under normal operating conditions; recoverability referred to the
system’s ability to recover quickly from potentially destructive events at low cost. In this
paper, urban infrastructure resilience was interpreted as the ability to withstand disasters,
absorb losses, and return to normal conditions when disasters occur.

Urban infrastructure development, an extremely complicated process, was challenged
by multiple dynamic factors, such as population growth, resource constraints, urbanization,
globalization, and climate change, failing to match with the local economic and environ-
mental developments in recent years [24]. With the continuous increase of potential internal
and external risks, city administrations had gradually converted from passive response
to active risk control. Existing researches on urban infrastructure resilience assessment
could be mainly divided into the following two categories. The first category measured
the resilience of a single infrastructure. Some scholars primarily focused on the length of
post-disaster recovery time to evaluate resilience. Cimellaro, GP et al. [25] constructed
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the resilience-time curves from disaster to recovery and pointed out that shortening the
recovery time was the key to improving infrastructure resilience. Scott Jackson [19] and
Bruneau, M [20] evaluated seismic resilience of communities and physical resilience of
infrastructure systems, respectively, based on the resilience-time curves. Infrastructure
resilience was determined by the recovery time and affected by other factors (i.e., element
recognition, vulnerability analysis, target-setting for resilience, decision-makers cognition,
resilience capacity). Francis, R [26] added two important evaluation factors: the possibility
of failure and consequences of failure in the system based on recovery time. However, it is
worth noting that the quantification of system resilience should also consider the recovery
cost, not just the recovery time [21]. Omer, m et al. [18] directly took the ratio of post-
disaster transmission value to pre-disaster transmission value of power grid as an index
to evaluate infrastructure resilience levels. On this basis, Radvanovsky [21] measured the
resilience in critical infrastructure systems on the premise of reducing the investment cost
of disaster prevention. Others evaluated the infrastructure resilience comprehensively by
constructing an indicator system, such as transportation [27,28], urban drainage system [29],
groundwater [24], energy system [30].

However, urban infrastructure resilience is a complex and comprehensive concept
whose evaluation process should be abided by the systematicity of infrastructure and
dynamics of responding to risks. Most scholars deemed the overall urban infrastructure
system the research subject for comprehensive evaluation. Constructing an index system
from three benefits of urban infrastructure [31] (i.e., economic benefits, social benefits,
environmental effects) or composition characteristics of urban Infrastructure infrastruc-
ture [32,33] assess its resilience levels. Besides, some scholars assessed resilience from
the perspective of the interaction between infrastructure and external environment, such
as infrastructure-environment [34], infrastructure-economy [35], infrastructure-economy-
society-environment [36]. It can be found that most indexes in existing evaluation systems
of urban infrastructure resilience commonly described the statefulness while ignoring other
stages, namely pressure and response. Therefore, these indexes system hardly reflected the
dynamic nature of urban infrastructure resilience. So, this paper introduced the adaptive
PSR framework into the evaluation of urban infrastructure resilience.

Pressure-State-Response (PSR) was a causal-oriented framework proposed by the
Organization for Economic Cooperation and Development (OECD) [37]. The PSR model
included three indicators (i.e., pressure, state, and response), as shown in Figure 1. Pressure
describes the threats and disturbances caused by the internal and external environment
to the UI, explaining why the system changed. State represented the state of the UI under
pressure. The response is the self-regulation of UI to adapt to changes and the preventive
measures taken by the government and residents [38]. It is not difficult to find that the
PSR model connects the causes, impacts, and response to environmental change. The
three indicator layers’ mutual restriction and effect derived a cycle development network,
which continuously adjusted the system to a balanced and stable state. Given its logic,
flexibility and comprehensive-ness, the PSR model was widely applied for ecological
security assessment [39–42], urban carrying capacity assessment [43,44], and resilience
assessment under various disaster risks [45]. UI resilience is dynamic and procedural, and
it will also experience the dynamic development process of pre-disaster, mid-disaster and
post-disaster states after being impact-ed or disturbed by external. Although most scholars
have focused on the dynamic and procedural of resilience, the existing infrastructure
resilience assessment process still paid too much attention to the state indicators of UI,
ignoring the resilience process and positive feedback process of disturbance and UI. The
logic structure of PSR, “cause-effect-response”, could make up for the deficiency of the
existing UI assessment system to further highlight the dynamic and procedural of resilience.
Therefore, the PSR model was introduced in this paper, and construct the UI resilience
evaluation system from the input of pressure, the change of UI state under pressure, the
autologous feedback of UI and human actions.
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Figure 1. PSR Model.

2. Materials and Methods
2.1. Studied Regions

Four municipalities in China were selected as research objects, namely Beijing, Tianjin,
Shanghai, and Chongqing. They are on a large scale and among the most developed cities
in China. They have dense populations and a higher demand for urban Infrastructure.
As the leaders of three economic circles (Bohai Economic Rim, the Yangtze River Delta
Economic Circle and Upper Yangtze River Economic Circle), these municipalities play an
increasingly important role in radiating to the surrounding areas and their infrastructure
resilience level directly affects the regional development. Therefore, it is necessary to
explore the UI resilience level of China by taking four municipalities as examples. Never-
theless, it was worth noting that these four cities may differ in their resilience due to their
different development processes and strategic arrangements. Therefore, it was assumed
that the resilience levels of different cities are various. This paper attempted to evaluate the
pressure, state, response, and infrastructure resilience levels of the four cities based on the
PSR framework. The data were from the China Urban Statistical Yearbook, China City Con-
struction Statistical Yearbook, China Environment Statistical Yearbook, and Environmental
Quality Bulletin in this study. Mean values of adjacent indicators replace missing data.

2.2. Determine the Weight of Each Indicator

There are two main methods to provide weights to indicators: subjective and objective.
The subjective approach [46] emphasized the subjective judgment and decision-makers
intention and assigned weights on subjective information of decision-makers, such as
expert investigation method, analytic hierarchy process (AHP). The results of the subjective
approach conform to the subjective wishes of decision-makers, ignoring the information
inherent in the data. However, there is no unified standard for the evaluation index system
of UI, so the weight calculated by the method of personal preference tends to errors. The
objective approach [47] calculated indicator weights on objective mathematical theories,
fully reflecting the information in the data. The weight information originating from the
indicator itself was determined by the roles of indicators in decision-making.

With information entropy as the core, the entropy method was an objective weighting
method to determine the index weights by considering the relationship between the degree
changes of indicators and information, and it is widely used in ecological resilience [48,49],
urban resilience [50], and risk assessment [51]. The smaller the entropy, the greater the
utilization information provided by this parameter. So, entropy could measure the relative
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importance of various factors. In fact, under the same evaluation index system, more
unstable indicators should be given higher weight to attract the government’s attention
to improve the resilience level of backward cities, consistent with the principle of entropy
weight method. The smaller the variation amplitude of the index, the less information
contained in the index, the smaller the effect on the comprehensive evaluation, and the
lower the weight value. Therefore, it was assumed that the weights of different indicators
are different, and the greater the dispersion degree, the greater the weight of indicators.
The entropy weight method was then applied to determine each index weight in this paper.

Step 1: establishing matrix X.
Assuming that the evaluation region is divided into n sub-regions, and m means the

number of evaluation indicators. So, the dataset (X) associated with the evaluation area is
expressed as follows:

X =


x11 x12 · · · x1m
x21 x22 · · · x2m

...
...

...
...

xn1 xn2 · · · xnm

, (1)

where, i = 1, 2, . . . , n and j = 1, 2, . . . , m, and xi j refers to the value of area i relative to
indicator j.

Step 2: normalize the raw data.
Since units of measurement of each index are various, it projects the original data to

the standardized dimensionless values in the interval [0, 1] by the maximum-minimum
method, shown in formula (2)–(3).

Where rij is the normalized value. The closer rij approaches 1, the higher the resilience,
while rij closer to 0 means lower resilience. Notably, this projection is based on the positive
or negative contribution of indicators to the overall resilience of UI. The positive indicators
generate positive contributions to enhance resilience, while negative indicators generate
negative contributions to inhibit resilience. The process is as follows:

For positive indicator:

r+ij = (xij − min
{

xj
}
)/(max

{
xj
}
− min

{
xj
}
), (2)

While, for negative indicator:

r−ij = (max
{

xj
}
− xij)/(max

{
xj
}
− min

{
xj
}
), (3)

where max
{

xj
}

and min
{

xj
}

indicate the maximum and minimum values of the index
among all evaluation objects, respectively.

Step 3: the entropy of each indicator (Hj) is calculated.

Hj = −
n

∑
i=1

(
rij/

n

∑
i=1

rij

)
ln

(
rij/

n

∑
i=1

rij

)
/ln(m), (4)

Step 4: the weight of evaluation indicators (ωj) is calculated. The smaller the entropy
value is, the greater ωj is, indicating that the index is more important.

ωj =
(
1 − Hj

)
/

(
n −

m

∑
j=1

Hj

)
, (5)

2.3. Three-Stage Resilience Level Assessment

The evaluation results of three stages (pressure, state and response) were respectively
calculated in this study on the PSR framework, shown in formula (5). The higher the
evaluation result of the stress index (Uprssure), being faced with minor infrastructure risk
and crisis; the higher the evaluation result of the state index (Ustate), the healthier the state;
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the higher the evaluation result of response index (Uresponse), the timelier the response; and
the healthier the infrastructure system.

Upressure/state/response =
m

∑
j=1

(ωj × rij), (6)

where, m indicates the number of indicators in each stage (i.e., pressure, state, response)
and rij is the normalized value in matrix X. The weighted model was the most common
method for evaluating the resilience levels on the PSR due to its simple operation. Specific
calculations are as follows:

R = WpUpressure + WSUstate + WRUresponse, (7)

Wi =
ki

∑
j=1

ωj, (8)

where k j is the number of assessment indicators in criterion j. Wi represents the weight
of the stage i (Wp for pressure, WS for state, and WR for response), and R is the urban
infrastructure resilience level based on PSR.

Though the weighted model has been extensively used in resilience assessment, it
is noteworthy that it tends to sum the evaluation results of each stage. No matter which
criterion layer the evaluation index was placed on, it barely affected the final comprehensive
resilience levels. Therefore, it fails to display the coordination degree of the three stages
since it cannot effectively reflect the causal logic of the PSR model, and the evaluation result
may mislead the judgment.

Post-disaster resilience was one of the core factors that give prominence to the concept
of disaster resilience of UI and the primary criterion for measuring resilience [26]. Previ-
ously, disaster preparedness planning focused on the prevention of destructive events. This
strategy may not be sufficient to resist destructive events, especially anti-normal destructive
events [52]. In practice, financial constraints make it impossible to strengthen the resilience
level of the infrastructure system at all stages to resist all types of destructive events. So,
When UI is under pressure, in the current state, the stronger the recovery, the higher the
resilience, as shown in Equation (9). Therefore, it is evident that the larger the R∗, the
higher the resilience of the urban Infrastructure. Meanwhile, based on Maurya et al. [38]
and Wei Yang et al. [53], the Upreesure/state/response and R∗ were divided into five stages by
the Non-equidistant division method in this study, as show in Table 1.

R∗ =
Ureponse

Upressure + Ustate
, (9)

Table 1. Classification of urban infrastructure resilience levels.

Category [0, 0.3) [0.3, 0.5] [0.5, 0.7) [0.7, 0.8) [0.8, 1]

Upressure Serious High Moderate Slight Minor
Ustate Damaged Fragile Moderately healthy Healthy Very healthy

Uresponse No response Slight response Moderate response Somewhat positive Strong response
R∗ No resilience low resilience Medium resilience Higher resilience Highest resilience

3. Urban Infrastructure Resilience Evaluation Index

Constructing a scientific and reasonable evaluation index system was the fundamental
premise for evaluating the urban infrastructure system. Based on the PSR model, a compre-
hensive evaluation index system of urban Infrastructure was established, combined with
the complexity, dynamics and openness of the infrastructure system.
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3.1. Index Selection of Pressure Layer

We mainly considered the pressure layers from natural pressure and artificial pressure.
Natural pressure included earthquakes, floods and other natural disasters. Many natural
disasters occur in cities, such as earthquake-induced geological hazards, extreme meteoro-
logical disasters, drought and flood, lightning disasters, environmental disasters, etc. For UI,
four major natural disasters had the most severe impacts on UI and frequently occurred in
cities, i.e., earthquakes, floods, fires, and wars. Given data availability, the equivalent magni-
tude of near-source earthquakes for city and torrential rain days were selected as indicators.
Secondly, global warming and frequent extreme weather events posed severe challenges to
urban infrastructure; therefore, the extremely hot weather and days above strong gale were
added into the element layer of natural pressure. It was worth pointing out that the data of
“equivalent magnitude of near-source earthquakes for city and annual rainfalls” were mainly
adopted from the classification results of Xu Wei et al. [54]. Human pressure represented the
human activities’ interference on urban infrastructure, including social progress, economic
development, demographic conditions, etc. Therefore, human pressure was constituted by
five indicators, including population density, urbanization rate, the total amount of urban
sewage, etc. The pressure resilience demonstrated the burden of urban infrastructure caused
by natural and human factors. The greater the pressure resilience, the greater the pressure load
the urban infrastructure bearded, and the weaker the ability to cope with internal and external
disturbances, and vice versa. Therefore, all indicators in the stress stage were negative.

3.2. Index Selection of State Layer

The investment, construction and operation of infrastructure had durable impacts on
urban social and economic development and environmental resources [55]. Therefore, the
state of UI was evaluated from three perspectives: society, economy, and environmental
resource. First of all, the social benefits of urban infrastructure demonstrated the active role of
infrastructure in promoting urban social progress. Urban infrastructure primarily was in the
form of public facilities with main functional services for urban residents, continuously con-
tributing to meeting modern life’s ever-increasing demands. Functional urban infrastructure
positively impacted people’s living standards and social progress [56]. Hence, per capita area
of paved roads, the number of public vehicles per 10,000 persons, water coverage rate, and gas
coverage rate were selected to characterize the urban infrastructure’s social benefits. Besides,
infrastructure would have lasting impacts on urban economic development after completion.
In the economic state, urban infrastructure not only should reflect its long-term economic
benefits but the ability to reduce accident losses after completion. The disaster mitigation
capabilities of urban infrastructure characterize by two indicators of “losses converted into
cash by traffic accidents and fires”. Furthermore, the density of drainpipe in the built-up
area and the length of the highway were used to characterize the long-term effectiveness
of infrastructure. Finally, the environmental effects in urban infrastructure could alleviate
pressure on the ecological environment and supply the local resources environment by daily
savings. Indicators were selected to characterize the environmental benefits of infrastructure
from the circumstances of resource consumption and possession of urban residents, such as
urban green space per capita, water resources per capita, etc.

3.3. Index Selection of Response Layer

Response, a positive effect process, included effective measures and countermeasures
taken by system subjects in the occurrence and development stages of disturbance, includ-
ing the ability to recover from disasters and reflective learning in disaster experience [57].
When disturbed by internal and external forces, urban infrastructure would recover from
the disturbance with its own capabilities. Besides, the government and urban residents
took measures to restore its original state to ensure the normal operation of infrastructure
and draw lessons from the disturbance. Therefore, total wastewater discharged, harmless
treatment rate of domestic waste, the new civil defence area, the ratio of urban infrastruc-
ture maintenance and construction funds over the gross domestic product (GDP), and the
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number of hospital beds per capita were selected to measure its recovery capacity. The
learning ability was divided into three parts: the supportability of existing innovation
ability to infrastructure construction, government funding for improving innovation and
learning, and urban residents’ ability to acquire and learn information in response to disas-
ters. On the whole, the response resilience characterized the ability of urban infrastructure
to respond to disaster impacts. The larger the response resilience, the stronger the ability to
cope with disaster shocks, implying the losses caused by disasters to urban infrastructure
was usually reduced to the minimum. As for the newly added civil air defence engineering
area, it was estimated by “annual completed area of building” as the base, according to
the Proportion of equipment in relevant documents issued by local governments, such as
Calculation Rules of Civil Air Defence Area Index Combined with Construction Project in Beijing.

Given the PSR framework’s causal logic and the six major systems of urban infrastructure,
the indicators system used in resilience assessment of urban infrastructure was composed of
nine pressure indicators, twelve state indicators and nine response indicators, shown in Table 2.

Table 2. The indicators system used in resilience assessment of urban Infrastructure on PSR model.

Function Layer Criterion Layer Factor Layer Descriptions Properties

Pressure

Natural pressure

Torrential rain days Number of days of rainfall above
50mm for 24 h Negative

Extremely hot days Days with maximum temperature
above 35 ◦C Negative

The equivalent magnitude of near-source
earthquakes for city Risk of earthquake disaster Negative

Days above strong gale Days with wind speed between
17.2 m/s and 20.7 m/s Negative

Human pressure

Population density The degree of population
aggregation in limited land Negative

Urbanization rate The degree of population
aggregation to cities Negative

Total wastewater discharge Adverse effects of human activities
on resources and the

environmental system

Negative
Industrial sulfur dioxide (SO2) emissions Negative
Industrial dust emission Negative

State

Social benefit

Per capita area of paved roads Quality of life of urban residents Positive
The number of public vehicles per
10,000 persons

The level of public transport
available to urban residents Positive

Water coverage rate Living standard of urban residents Positive
Gas coverage rate Positive

Economic benefit

Losses converted into cash by fires Reduce disaster(accident) losses Negative
Losses converted into cash by traffic
accidents Negative

Density of drainpipe density in the
built-up area Long-term effectiveness of

Infrastructure
Positive

Length of highway Positive

Resource
environmental benefit

Urban green space per capita Resource possession of urban
residents

Positive
Water resources per capita Positive
Power consumption per capita Resource consumption of urban

residents
Negative

Gas consumption per capita Negative

Response

Recovery and
adaptability

Sewage treatment rate Ability to respond to the pressure
of resources environment

Positive
Innocuous treatment rate of living garbage Positive
Newly added civil air defence
engineering area

Government’s ability to guarantee
society Positive

The proportion of urban infrastructure
maintenance and construction funds to GDP Post-disaster emergency rescue Positive

Hospital beds per 10,000 population positive

Learning ability

Mobile phone coverage rate Ability of urban residents to
acquire and learn information

Positive
Internet coverage rate Positive
The ratio of intramural expenditure on
research and development (R&D) and GDP

Government investment in
innovation and learning ability Positive

R&D personnel
Supportability of existing

innovation ability to infrastructure
construction

Positive
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4. Discussion
4.1. Analysis of Indicator Weights

The entropy weight method was used to determine each indicator weight in the UI
resilience evaluation system, as shown in Figure 2a. According to the results of our weight
analysis, the proportion of the state layer was the largest at 38.73%, and the response layer
and pressure layer accounted for 31.36% and 29.91%, respectively. These results showed
that the objective risk caused by the pressure from external was inevitable; meanwhile, the
keys to enhancing infrastructure resilience were to improve the stiffness under pressure,
recovery and adaptability in the system. In the pressure layer, it can be seen that the
potential risk caused by human pressure (with a weight of 17.82%) was far beyond the
stimulation of the natural environment (12.09%). Under human pressure, the fan-shaped
area angle corresponding to total sewage discharge and urbanization rate is significantly
larger than other indicators, demonstrating that both are more dangerous factors from
human activities to UI. Therefore, the impact of chronic stress caused by human activities
on infrastructure should be paid full attention. In the natural environment, once the disaster
caused by the earthquake occurs, the destruction to UI is also severe, embodied by the
relative importance of the urban near-source earthquake with 6.83%.

Figure 2. Weight proportions of function layer and criterion layer in the evaluation system. (a) Weight
of pressure layer index; (b) Weight of state layer index; (c) Weight of response layer index.

At the state stage, the weight of the resource environmental (14.52%) and economic
benefits (13.98%) far exceeded the social benefits (10.23%) in infrastructures, shown in
Figure 2b. It suggested that strengthening UI’s economic and resource environmental bene-
fits is the best approach to improve resilience at the state stage. in resource environmental
benefits of UI, water resources per capita was the most significant, accounting for 7.23%.
Meanwhile, the length of highway and density of drainpipe density in the built-up area
were obtained with the central angle in the economic benefits (shown in Figure 2b), with
weights of 5.83% and 5.69%, respectively. However, the social benefits of infrastructure
only accounted for 10.23%. Among them, the per capita area of paved roads and the
number of public vehicles per 10,000 persons were prominent, with the weights adding up
to 7.79%, while the relative importance of other indicators was low. It was primarily since
water supply, and gas coverage has almost achieved complete coverage in most cities, well



Appl. Sci. 2022, 12, 2819 10 of 19

verified by the original data, that is, water supply coverage and gas coverage have reached
100%. Therefore, it mainly starts with im-proving the road environment to enhance social
benefits in UI, such as the per capita area of paved roads, the number of public vehicles per
10,000 persons.

As for the response layer, recovery adaptability accounted for about 17.05%, with
maximum impact on infrastructure’s ability to resist risks. Located in the same function
layer, the learning ability accounted for only 14.31%, indicating it was more vital to improve
infrastructure’s disaster adaptability than the ability of disaster relief artificially. From a sin-
gle indicator, the top weights of indicators were newly added civil air defence engineering
area with 5.57%, indicating that disaster avoidance was the essential factor for improving
urban infrastructure’s ability to respond to risks. Moreover, the ratio of intramural expen-
diture on R&D and GDP weighted with 4.39%, and R&D personnel weighted with 3.69%.
It indicated that government investment in innovation and the existing innovation is also a
critical factor in improving response-ability.

4.2. Changes in the Evaluation Results of Three Stages in Urban Infrastructure
4.2.1. Pressure

During the survey period, the average assessment result of stress was the highest
in Shanghai (0.476), followed by Tianjin (0.475), Chongqing (0.458) and Beijing (0.443),
indicating that the four regions were under high pressure, as shown in Table A2. In
Figure 3, the pressure resilience of infrastructure in Beijing constantly fluctuated around
0.450 at the lowest level, indicating internal and external disturbances were relatively
active in Beijing with the highest risk coefficient. Beijing, a city located in the seismic
belt in geological structure, had relatively high potential risks in the natural environment.
Meanwhile, human interference was the most intensive, characterized by the urbanization
rate and total wastewater discharge at the forefront of the research cities.

Figure 3. Trends in pressure resilience from 2002 to 2018.

Regarding Shanghai, the development levels of pressure resilience were the most
unstable during the study period, divided into two stages. From 2002 to 2013, pressure
resilience dropped from moderate pressure to high pressure in Shanghai, primarily due
to the superimposed consequences of an increased probability of extremely hot days
and the excessively rapid human agglomeration. With the continuous adjustment of the
industrial structure and the rapid development of industries such as finance and real estate,
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not only has it attracted a large number of high-end talents for employment, but it has
also provided a vast market for some manual workers. Urban population density had
doubled in 17 years, causing a surge in disturbances to Shanghai’s infrastructure. After
2013, its pressure resilience rebounded to moderate pressure. This was mainly attributed
to Shanghai’s strict control of population size in recent years, realizing the population
changed from a net inflow to a net outflow. As a result, the interference of human activities
in cities had gradually weakened, primarily environmental resources, characterized by a
reduction of more than 45% in total wastewater, industrial SO2 emissions and industrial
dust emissions compared with 2013.

Regarding the magnitude of change, Tianjin’s pressure resilience varied the most from
0.507 to 0.421, deteriorating to high pressure from moderate pressure. This was mainly
because concentrated high energy-consuming and high-pollution industries, such as steel
and petrochemical, incredibly pressured infrastructure capacity to absorb pollutants. In
the past 17 years, its total industrial production value showed a soared trend, while the
level of urban pressure resilience was limited by the massive discharge of pollutants. The
specific characteristics were: the total wastewater discharged and industrial SO2 emissions
increased by 2.3 times and 24.70% compared with 2002, respectively. For Chongqing, the
development of pressure resilience was primarily limited by the massive emissions of air
pollutants and climate conditions of annual high-temperature and rainstorms determined
by terrain conditions. So, the pressure resilience fluctuated in the High-Pressure stage
throughout the 17 years and showed an apparent downward trend at the end.

4.2.2. States

In Figure 4, only Chongqing had relatively high levels of state resilience development,
with an apparent upward trend and leading ahead, while the others fluctuated steadily
around 0.500. In other words, the overall state of infrastructure in China’s municipalities all
showed moderate health. Over the years, Chongqing was strived to build a comprehensive
transportation hub in southwest China. Its transportation infrastructure had been continu-
ously improved, manifesting that the number of public vehicles per 10,000 persons doubled
in 2018 compared with the initial stage of the study. Besides, urban green space per capita
also had increased at a rate of 0.14 square meters per year in 17 years. Thus, the evaluation
results in Chongqing leapt from 0.518 in 2002 to 0.648 in 2018, with an obvious upward
trend, shown in Table A3. Nevertheless, it was worth noting that there is still a significant
gap in Chongqing compared with other municipalities, embodied by the inadequate public
transport facilities and the incomplete coverage of water and gas. Incredibly, the number of
public vehicles per 10,000 persons was far below the average level of municipalities.

There was no significant difference in state resilience development among the remain-
ing cities, as they were all at a moderate health state. The state resilience of infrastructure in
Beijing and Shanghai was relatively vulnerable, only about 0.520, at a low level. As political
and economic centres in China, Beijing and Shanghai had attracted a large population
inflow. Over the past 17 years, the permanent population gross increased by 46.43% on
average compared to 2000, well above the pace of infrastructure construction and improve-
ment. As a result, the per capita indicators of infrastructure in these two cities had been in
a low state, even a negative growth phenomenon, such as per capita area of paved roads.
Secondly, the loss effect spread more widely after the disaster due to mass building density
and more high-rise buildings in Beijing and Shanghai, especially in Shanghai. Compared
with the initial stage, the losses converted into cash by fires in 2018 almost quadrupled,
severely restricting the improvement of state resilience in Shanghai and increasing the
possibility of its deterioration to the fragile state. Per capita area of paved roads and density
of drainage pipe network in the built-up area in Tianjin were the highest among the four
municipalities. Meanwhile, its ability to resist fire was also prominent, which was the
main reason why it was superior to Beijing and Shanghai in state resilience. However, it
was constrained by massive energy consumption, manifesting per capita consumption far
exceeding the 66% average of the four municipalities above 66%.
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Figure 4. Trends in state resilience from 2002 to 2018.

4.2.3. Responses

Compared to the previous two stages, the response resilience of infrastructure in four
cities varied within relatively noticeable differences, shown in Figure 5 and Table A4. On
average, Chongqing had the highest response resilience score at 0.506, the only city in
the moderate response stage. High-level civil air defence engineering construction and
considerable investment in urban infrastructure maintenance have played a positive or
vital role in the recovery and adaptability of urban infrastructure in Chongqing. Chongqing
has continuously strengthened pollution control and construction of water environment
in recent years, establishing the environmental monitoring and governance system [58].
Therefore, the sewage treatment rate doubled during this period, and the innocuous
treatment rate of living garbage increased at an annual growth rate of 0.18%, both reaching
leading national levels in 2018. Furthermore, medical service capabilities were also steadily
improving, which manifested that the hospital beds per 10,000 population doubled in
17 years. As a result, response resilience in Chongqing shifted into the moderate response
from the slight response.

The development level of infrastructure response in Beijing was in the range of
[0.418, 0.459], ranking the latest among the four cities. Beijing’s water environment pol-
lution was relatively severe [59]. In recent years, the continuous upgrading of sewage
treatment plants and strengthening comprehensive treatment of the water environment
has dramatically improved the sewage treatment capacity while still insufficient to absorb
pollution. Moreover, the newly added civil air defence engineering area was also far lower
than that of other cities, constraining the resilience and adaptability of its infrastructure to
some extent.

As for Shanghai, it decreased from 0.503 (Moderate response) in 2002 to 0.478 (Slight
response) in 2018, primarily attributed to a gradual decrease in its investment in the
operation and maintenance of urban infrastructure, with ended up only three-fifths of the
average of all research cities. However, Tianjin had relatively stable development trends in
response resilience, with an average response resilience of 0.452. It was found that in the
case of low infrastructure resilience and adaptability, most of the indicators that characterize
learning ability are far inferior to other cities, such as hospital beds per 10,000 population,
mobile phone coverage rate, leading to Tianjin with only a slight response at the end of the
research period.
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Figure 5. Trends in response resilience from 2002 to 2018.

4.3. Comprehensive Resilience Level of Urban Infrastructure

Based on the PSR model for UI resilience of four municipalities in China, we found
that all cities were continuously at low resilience from 2002 to 2018, even showing a slight
downward trend. The result indicated that the overall resilience levels of municipalities’
infrastructure in China were generally poor, very likely even not resilient. In Table A5,
Shanghai ranked first with average infrastructure resilience scores of 0.489, followed by
Chongqing (0.477), Tianjin (0.452) and Beijing (0.424), all classified as low resilience.

Generally speaking, the development trend in Shanghai could be divided into two
stages, with 2010 as the boundary, shown in Figure 6. It shifted from low resilience (0.486)
in 2002 to medium resilience (0.516) in 2010 while steadily declining until 2018, ultimately
to low resilience (0.465). The improvement of the score at the previous stage may appear to
have benefited from the descent range of pressure resilience (−0.06) and state resilience
(−0.03) more significant than response resilience (−0.02), closely related to the economic
restructuring and efficient industrial waste abatement in Shanghai. While from 2010 to
2018, the resilience of pressure and state had been improved to some extent, the response
resilience of infrastructure showed a downward trend, thus dragging down Shanghai into
low resilience stage. Meanwhile, the resilience development of the other cities was at low
resilience with little change.

Regarding Chongqing, the level of infrastructure resilience fluctuated between 0.461
and 0.492. This was mainly due to extremely hot days that occurred more frequently caused
by special geographic conditions, resulting in unsatisfactory pressure resilience. Moreover,
the state resilience of infrastructure was generally increasing. However, it respectively
experienced two large drops in 2010 and 2015, indicating that the anti-interference ability
of the infrastructure system was relatively unstable. As a result, Chongqing had always
been at low resilience, hardly changing over 17 years.

While the infrastructure resilience in Beijing and Tianjin remained at a below-average
level throughout the study period. With the rapid development of the economy, Tianjin, a
traditional heavy industry city, severely deteriorated the ecological environment, bringing
about the continuous decline of its pressure resilience in the past 17 years. Besides, huge
resource consumption, especially power consumption per capita and gas consumption
per capita, had become a major problem, restricting the continuous development of en-
vironmental resource benefits of infrastructure. The negative effect produced by the two
stages of pressure and state far exceeded the positive effect of the response, leading to a
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downward trend in Tianjin’s infrastructure resilience level. As revealed in Figure 6, Beijing
was the worst in terms of infrastructure resilience. As the population soared, potential pres-
sure within the system had been increasingly emerging, well above the upper limit of the
existing infrastructure capacity. As a result, the social and environmental resource benefits
of infrastructure in Beijing had been negatively increased; simultaneously, the system’s
learning ability failed to promote timely or even decreased slightly, creating a vicious cycle.
In short, Beijing consistently scored the lowest on infrastructure resilience levels, resulting
from the uncoordinated development of the three-stage, manifesting increased pressure,
deterioration of the state and lag of response capacity.

Figure 6. The trends of urban infrastructure resilience levels from 2002 to 2018. (a) Beijing; (b) Tianjin;
(c) Shanghai; (d) Chongqing.

5. Conclusions

Pressure-State-Response (PSR) was introduced in this paper; its cause-effect-response
logical structure was used to construct a UI resilience assessment system, reflecting dynamic
and process characteristics. Moreover, the resilience level of infrastructure in four munic-
ipalities in China from 2002 to 2018 is measured and analyzed to explore the long-term
temporal changes of UI resilience.

The state layer had the most significant impact on the resilience level of UI with the
proportion of 38.73%, especially the state of environmental resources. The benefit of per
capita water resources was the most obvious, while it was determined by local nature,
leading it challenging to improve state resilience. Subsequently, the weight accounted for a
large number of lengths of highway with 5.83%, density of drainpipe density in the built-up
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area with 5.69%. Thus, it is necessary to strengthen the construction of public transport
facilities to improve the urban traffic environment and enhance the density of drainage
networks to ensure the drainage capacity in the city. In the response stage, attention should
be paid to the construction of civil air defence to ensure the emergency capacity of urban
infrastructure. Compared with the other stag-es, the pressure layer was relatively less
important, while seismic fortification should be paid the most attention because of the
considerable weight, accounting for 6.83%. We should strengthen seismic review and
strictly control the construction workman-ship so that the engineering infrastructure could
meet the precautionary seismic intensity stipulated by the countries.

Overall, the levels of UI resilience were poor in these four municipalities, continuously
at the low level throughout the study period. However, there were still some differences
among the four cities. Based on this, we put forward corresponding measures to improve
the resilience in different cities. Although Shanghai ranked the highest, its large population
base has led to negative growth in per capita infrastructure ownership. Meanwhile, the
expansion of the fire loss effect caused by excessive population density resulted in state
resilience in Shanghai being the lowest in the four municipalities. So, for Shanghai, it
should minimize the disturbance of human activities on UI as possible and gradually shift
to the development of urban agglomerations by eliminating the central effect of cities.
The comprehensive resilience of Chongqing was followed by Shanghai, mainly due to
severe air pollution in its pressure resilience and the water supply and gas in the state layer
without full coverage. Given its unique geographical conditions, Chongqing should pay
more attention to controlling the emission of air pollutants and continuously improving
the infrastructure of people’s livelihood, to shorten the gap with other municipalities.
The comprehensive resilience in Tianjin ranking was backward, due to its poor response
capacity, such as insufficient hospital beds, and limited disaster acquisition channels. In the
process of UI construction and development, Tianjin should prioritize strengthening urban
emergency response capacity. Beijing had the lowest comprehensive resilience. The reason
was that the potential risks of the natural environment were relatively prominent, resulting
in low-pressure resilience, especially in low response capacity. Reflected in the fact that
the sewage treatment capacity cannot keep up with the speed of urban development, and
the new civil air defence area is far lower than that of other municipalities. Therefore,
compared with other municipalities, it was most urgent for Beijing to improve its infra-
structure adaptation and recovery capacity.

There were large differences in resilience development levels among the three stages
of pressure, state, and response, manifested by a large improvement in state resilience,
decreased pressure resilience, while the response resilience remained unchanged in the
fluctuation. In other words, the uncoordinated development level of three stages in four
cities was also a major reason for low resilience, especially in stages of pressure and state.
The change of a certain pressure factor or state factor would affect the overall structure of
the urban infrastructure system, thus forming a new state-response relationship: a new
cycle. Therefore, in constructing resilient infrastructure, full attention should be paid to the
coupling and circular relationship among various elements to achieve dynamic evaluation
and management. In the three stages, improving the overall resilience of UI from the
response capacity is most critical and effective. Overall, cities should pay attention to
emergency capacity building, strengthen the technical support of emergency management,
and accelerate the application of emerging technologies in urban emergency management,
such as accelerating the application of emerging technologies such as big data, cloud
computing and artificial intelligence.
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Appendix A

Table A1. Weights of indicator in the urban Infrastructure evaluation system.

Function Layer Criterion Layer Factor Layer Weights (%)

Pressure

Natural pressure

Torrential rain days 1.27
Extremely hot days 2.30

The equivalent magnitude of near-source earthquakes for city 6.83
Days above strong gale 1.69

Human pressure

Population density 2.42
Urbanization rate 4.61

Total wastewater discharge 5.20
Industrial SO2 emissions 3.37
Industrial dust emission 2.21

Sate

Social benefits

Per capita area of paved roads 4.46
The number of public vehicles per 10,000 persons 3.32

Water coverage rate 1.18
Gas coverage rate 1.26

Economic benefits

Losses converted into cash by fires 1.45
Losses converted into cash by traffic accidents 1.01

Density of drainpipe density in the built-up area 5.69
Length of highway 5.83

Environmental resource
benefits

Urban green space per capita 3.02
Water resources per capita 7.23

Power consumption per capita 1.58
Gas consumption per capita 2.69

Response

Recovery and adaptability

Sewage treatment rate 2.42
Innocuous treatment rate of living garbage 2.70

Newly added civil air defence engineering area 5.57
The proportion of urban infrastructure maintenance and

construction funds to GDP 3.58

Hospital beds per 10,000 population 2.79

Learning ability

Mobile phone coverage rate 2.61
Internet coverage rate 3.63

The ratio of intramural expenditure on R&D and GDP 3.69
R&D personnel 4.39

Table A2. Scores in pressure resiliencelevels from 2002 to 2018.

Category Beijing Tianjin Shanghai Chongqing

2002 0.448 0.507 0.513 0.469
2003 0.448 0.501 0.504 0.468
2004 0.444 0.497 0.506 0.467
2005 0.455 0.489 0.458 0.467
2006 0.448 0.482 0.458 0.462
2007 0.449 0.479 0.466 0.465
2008 0.451 0.481 0.466 0.464
2009 0.445 0.477 0.462 0.456
2010 0.443 0.466 0.450 0.454
2011 0.442 0.470 0.460 0.440
2012 0.440 0.467 0.454 0.445
2013 0.440 0.468 0.449 0.440
2014 0.437 0.473 0.468 0.473
2015 0.439 0.478 0.473 0.465
2016 0.442 0.473 0.474 0.456
2017 0.436 0.438 0.517 0.445
2018 0.431 0.421 0.512 0.444
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Table A3. Scores in state resilience levels from 2002 to 2018.

Category Beijing Tianjin Shanghai Chongqing

2002 0.530 0.540 0.522 0.518
2003 0.546 0.539 0.532 0.537
2004 0.537 0.546 0.543 0.544
2005 0.523 0.554 0.526 0.553
2006 0.534 0.567 0.529 0.576
2007 0.524 0.557 0.509 0.618
2008 0.532 0.566 0.504 0.613
2009 0.527 0.566 0.512 0.601
2010 0.519 0.560 0.495 0.598
2011 0.533 0.575 0.522 0.623
2012 0.548 0.577 0.527 0.622
2013 0.554 0.579 0.525 0.623
2014 0.552 0.566 0.538 0.644
2015 0.556 0.566 0.525 0.631
2016 0.558 0.569 0.536 0.649
2017 0.541 0.573 0.537 0.658
2018 0.527 0.551 0.516 0.648

Table A4. Scores in response resilience levels from 2002 to 2018.

Category Beijing Tianjin Shanghai Chongqing

2002 0.459 0.479 0.503 0.470
2003 0.445 0.484 0.498 0.482
2004 0.428 0.484 0.499 0.493
2005 0.425 0.486 0.504 0.494
2006 0.428 0.471 0.500 0.492
2007 0.434 0.470 0.497 0.502
2008 0.436 0.471 0.492 0.506
2009 0.434 0.473 0.487 0.511
2010 0.425 0.472 0.488 0.512
2011 0.421 0.464 0.474 0.518
2012 0.418 0.463 0.479 0.521
2013 0.425 0.458 0.473 0.523
2014 0.420 0.460 0.481 0.520
2015 0.418 0.457 0.483 0.526
2016 0.425 0.456 0.484 0.521
2017 0.433 0.455 0.481 0.508
2018 0.431 0.454 0.478 0.505

Table A5. Urban infrastructure resilience levels from 2002 to 2018.

Category Beijing Tianjin Shanghai Chongqing

2002 0.469 0.458 0.486 0.477
2003 0.447 0.465 0.480 0.480
2004 0.436 0.464 0.476 0.487
2005 0.435 0.466 0.512 0.485
2006 0.435 0.449 0.507 0.474
2007 0.446 0.453 0.510 0.463
2008 0.444 0.450 0.508 0.470
2009 0.447 0.453 0.500 0.483
2010 0.442 0.460 0.516 0.487
2011 0.432 0.444 0.483 0.487
2012 0.422 0.444 0.488 0.488
2013 0.428 0.438 0.485 0.492
2014 0.424 0.443 0.479 0.465
2015 0.420 0.438 0.484 0.480
2016 0.425 0.438 0.479 0.472
2017 0.443 0.450 0.457 0.461
2018 0.449 0.468 0.465 0.463
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