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Abstract: Microfluidic screening tools, in vitro, evolve amid varied scientific disciplines. One emer-
gent technique, simultaneously assessing cell toxicity from a primary compound and ensuing cell-
generated metabolites (dual-toxicity screening), entails in-line systems having sequentially aligned
culture chambers. To explore dual-tox screens, we probe the dissemination of nutrients involv-
ing 1-way transport with upstream compound dosing, midstream cascading flows, and down-
stream cessation. Distribution of flow gives rise to broad concentration ranges of dosing com-
pound (0→ICcompound100) and wide-ranging concentration ranges of generated cell metabolites
(0→ICmetabolites100). Innately, single-pass unidirectional flow retains 1st pass informative traits across
the network, composed of nine interconnected culture wells, preserving both compound and cell-
secreted byproducts as data indicators in each adjacent culture chamber. Thereafter, to assess effective
compound hepatotoxicity (0→ECcompound100) and simultaneously classify for cell-metabolite toxicity
(0→ECmetabolite100), we reveal utility by analyzing culture viability against ramping exposures of
acetaminophen (APAP) and nefazodone (NEF), compounds of hepatic significance. We then discern
metabolite generation with an emphasis on amplification across µchannel multiwell sites. Lastly,
using conventional cell functions as indicator tools to assess dual toxicity, we investigate a non-drug
induced liver injury (non-DILI) compound and DILI compound. The technology is for predictive eval-
uations of new compound formulations, new chemical entities (NCE), or drugs that have previously
failed testing for unresolved reasons.

Keywords: predictivity; hepatoxicity; liver; screening; microfluidics; multiwell; in vitro; compound
toxicity; cell metabolite toxicity; drug discovery

1. Introduction

New cell culture devices are populating life science and pharmaceutical R&D benches
at escalating rates, each with unique features and various functions [1–3]. Efforts in devel-
opment are driven by the need to improve human-relevant experimental systems earlier in
the drug evaluation process. New systems could arguably be termed “microfluidic devices”
or “benchtop bioreactors” and include characteristics such as kinetic flows, complex cell
mixtures, and 2-dimensional (2D) or 3-dimensional (3D) culture spaces [4]. Already, several
investigative teams recognize the need for integrating flow with compound exposure and
acknowledge this emerging technology may bolster high-content screening and predictive
computational modeling [5–9]. In regard to platform physical parameters, µfluidic con-
figurations commonly include a culture chamber, or multiple linked chambers, nutrient
flow, and controllers such as pumps, valves, and fluid transport tubes [10]. While such
devices can be skillfully prototyped, the refinement into mass manufacturing of product
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has tangible engineering constraints. Manufacture limitations often cause the platform’s
bio-functionality to fall short of what biologists, toxicologists, and drug development re-
searchers find valuable [11,12]. Hence, during µfluidic device creation, early knowledge
transfer from end-users and enduring communication with product fabricators are critical
evolving interchanges. End-user objectives align with targeted use-model strategies, needs
for lab compatible accessories, and design conditions that prompt development constraints.
Engineering considerations may include material properties to avoid adsorption of com-
pounds onto fabricated polymers [13–15], the process of seeding and removing cells for
evaluation [3,16], altered techniques to validate assays [17,18], and device compatibility
with lab equipment such as plate readers, imagers, and liquid handling systems.

1.1. A Fluidic Platform for Dual-Toxicity Screening

In this study, a multiwell µfluidic platform is targeted to monitor cellular effects from
both primary drug-toxicant and secondary generated cell byproducts (byproducts defined
as one or more metabolites). Regarding static culture systems, past literature discloses
fundamental limitations of in vitro testing methods that lack fluid flow to indicate no
chemical gradients, no metabolite distinctions, and no signaling through interconnected
compartments [19]. This no-flow technique can result in data that is less predictive of
how a compound will respond, or be responded to, in the in vivo environment. Asso-
ciatively, even in vivo animal testing can be unpredictable of human physiology due to
phenotypic differences in cell types and organ systems [20–22]. Strategically, benchtop
µfluidic environments that better mimic in vivo flow networks are gaining research and
development interests [3,12]. In this context, we stage the SsWaterfall fluidic culture
system (Figure 1), an exposure platform having two unique traits, (1) unidirectionality
with non-recirculating fluid flows, and (2) the sequential assembly-line of cell cultures.
The unidirectional fluid flow is configured as 1-way transport and conceptualized as a
waterfall stream (fluidics) trickle flow (time-influential), having riverbeds positioned all
along its downstream path (culture spaces). The non-recirculation feature infers that
drug distributions and generated cell secretions remain as distinguishable data indica-
tors, unblended across location and time, as sample traits that are critical descriptors for
definitive evaluations amid culture spaces. Comparatively, most precedent µfluidic designs
innately mix their nutrient elements (recirculating systems) and inherently blend sample
distinctions that inhibit definitive cell function analysis amid adjacent culture spaces. The
sequential assembly-line of cell cultures can be envisioned as a production line (as in man-
ufacturing) that is arranged so a product (dose of the compound) is moved sequentially
along the assembly line (µfluidic channel) and across workspaces (culture wells). Herein,
a procedure is performed at each location (cell function/well) prior to moving refined
products (cell signals) to the next downstream location (adjacent culture well). Paraphrased,
upstream compound dosing and upstream cell responses influence downstream culture
wells. Irrespective of flow path or generated cell byproduct, the µfluidic system allows for
modular tissue arrangements with passive fluid transport that is regulated by hydrodynam-
ics, capillary action, and a downstream syphon to pull media across culture chambers (i.e.,
no pumps, no valves, and no tubes [23]). The flow methodology and approach are essential
for studying microphysiological system (MPS) arrangements for predictable compound
efficacy and toxicity.

1.2. The Organ of Investigation Is Liver with Cell Culture Being Hepatoctyes

Drug failure during in vivo clinical trials or the retraction of a drug from an already
available commercial compound can be correlated with a lack of effective in vitro model
systems; namely, culture platforms that lack integration of flow dynamics and lack complex
cell interfacing as naturally observed amid native tissues [24]. It continues to be shown that
many clinical failures are due to unpredictable effects and unforeseen hepatotoxicity [25–27].
As one model template, DILI is responsible for many post-market drug withdrawals in the
European Union [28] and the United States [29,30]. In vivo, certain hepatic toxicities occur
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as the native liver generates cell metabolites that can cause liver damage [31]. To wit, the
advancement of in vitro models that better mimic behaviors of native liver tissue remains
an industry challenge, with a focus on improved efficacy and decreased toxicity [32]. To
enhance scientific understanding and development, the in vivo organization of cells in the
liver implies that in vitro culture systems might benefit from cell–cell communication and
intrinsic interactions between a parent compound and generated cell-byproducts. Amid se-
lect drug subgroups, literature already discloses that stagnant (i.e., no-flow) hepatic culture
systems do have a limited capacity to predict facets of toxicity or efficacy outcomes [33–35].
In efforts to broaden the success of predictive studies, a major focus of this research was to
demonstrate the ability of a stand-alone and disposable µfluidic platform to simultaneously
detect compound toxicity (upstream) and cell-metabolite toxicity (downstream) in one
integrated system. To evaluate cell-response modulations, due to perpetual shifts of as-
cending exposures, two stable but different hepatic cell models were exploited; the human
HepaRG cell-line (Biopredic International, Saint Gregoire, France) and freshly isolated rat
hepatocytes (Lonza, Basel Switzerland—Durham, NC, USA location).
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Figure 1. Characteristics of fluidic culture system. (a) Profile schematic highlighting source well 
(well 1), 10 connected compartments (wells 2–11), and sink well (well 12). Wells 2–11 having 0.5 mm 
decrease in height from each well bottom; total 4 mm height difference. (b1) Profile of source well 
(well 1) and regulator well (well 2; acellular) allowing nutrient media to flow between assembled 
components (i.e., yellow and green accents). (b2) Profile of wells 3–11 with polystyrene polymer 
overlay (grey) covering microfluidic channels. (b3) Top view of sink well (well 12) that is covered 
by syphon wick (wick not shown). (c1) Top CAD view of source well (well 1). (c2) Top CAD view 
of fluidics platform. (c3) Top CAD view of sink well (well 12). 
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Figure 1. Characteristics of fluidic culture system. (a) Profile schematic highlighting source well
(well 1), 10 connected compartments (wells 2–11), and sink well (well 12). Wells 2–11 having 0.5 mm
decrease in height from each well bottom; total 4 mm height difference. (b1) Profile of source well
(well 1) and regulator well (well 2; acellular) allowing nutrient media to flow between assembled
components (i.e., yellow and green accents). (b2) Profile of wells 3–11 with polystyrene polymer
overlay (grey) covering microfluidic channels. (b3) Top view of sink well (well 12) that is covered by
syphon wick (wick not shown). (c1) Top CAD view of source well (well 1). (c2) Top CAD view of
fluidics platform. (c3) Top CAD view of sink well (well 12).

1.3. Exposure Compounds and Cell Health Readouts

Hepatocyte cultures were exposed to diclofenac, APAP, aspirin (ASA), NEF, and
dimethyl sulfoxide (DMSO). Diclofenac is a known cytochrome P450 3A4 (CYP3A4) inducer.
APAP is a well-studied standard with known metabolites APAP-glucuronide (APAP-Glu),
APAP-sulfate, and APAP-glutathione (APAP-GSH). ASA and NEF are non-DILI or DILI
compounds, with DMSO being the compound control vehicle [36]. To appraise cell cul-
ture health, cell function readouts include lactate dehydrogenase (LDH) activity, CYP3A4
inducible-fold levels, glutathione (GSH-assay), and live/dead cell image responses (DAPI,



Appl. Sci. 2022, 12, 2786 4 of 39

calcein AM, CellTox Green, ethidium homodimer). To appraise metabolite generation, liq-
uid chromatography–mass spectrometry (LC/MS) was used to assess supernatant samples.

2. Materials and Methods
2.1. Device, Design, Material, Construction, Culture Surface, and Attributes
2.1.1. Device

Each fluidic culture system consists of 96 wells, 8-row replicate rows (A-H), with wells
connected by embedded micro-pathways that link 12 wells across a row (Figure 1). Com-
pound dosing occurs in well 1 (upstream), then the system auto-generates unidirectional
flow left-to-right (well 1→12) by hydrodynamics, capillarity, and wicking, i.e., stair-step
waterfall design without external pumps. The adjustable flow rate is regulated by removing
medium from well 12 (Sink well) and adding medium + drug into well 1 (source or dose
well). The frequency and volume of the dosing compound controls the rate by which the
drug migrates across the row [23].

Structure and Lab Compatibility

The platform is based on the Society for Biomolecular Screening (SBS) parameters and
formatted as a 1/2 area 96-well plate definition for use in existing scientific infrastructures to
include plate readers, imaging systems, and pipettors, i.e., designed lab-compatible, device
manageable, with user familiarity, Table 1. The device is considered a medium-throughput
system that has reduced cost structures based on decreased cell quantities (1/2 area 96-well),
a reduction in nutrient volumes (100 µL/well), and lower amounts of drug/compound for
exposure findings (scaled-down µchannels).

2.1.2. Material and Cell Compatibility

The device is manufactured from laboratory approved traditional polystyrene, suitable
due to its already established quality control and history as a validated cell culture surface
material with known assay outcomes. Still, because manufactures of polymers have variant
constituent formulas and resin adaptations, non-specific binding should be appraised for
quality control validation [23]. Moreover, the optical transparency property of polystyrene
enables ease of cell observation and imaging.

Mass Production for Repeatability

The microfluidic biotool is suited to be a cost-effective tissue culture system that can
be injection molded for mass production, construction repeatability, and dosing/exposure
applicability. The two separate injection molded pieces are ultrasound welded together
(Figure 1b); polystyrene welds are preferred as the process avoids extraneous adhesive or
diverse material contaminants within the culture areas.

Culture Surface and Treatment

The device’s polystyrene surfaces have been transformed into tissue culture plastic
(TCP) by corona plasma treatment. TCP adjusts surface tensions to aid in wetting of a
solid by a liquid and is utilized as a surface foundation to support numerous adherent
cell types for cell plateability and culture stability [23]. The dyne levels of untreated
polystyrene (34 dyne/cm2) and TCP (43 dyne/cm2) were measured to quantify surface
tension. EnerDyneTM pens (Enercon; Menomonee Falls, WI, USA) ranging from 30 to
66 provided a means of quantifying the contact angle, θ, which is defined geometrically
as the angle formed by a liquid at the three-phase boundary where a liquid, gas, and
solid interact.



Appl. Sci. 2022, 12, 2786 5 of 39

Table 1. µFluidics Culture Device—Attributes and Infrastructure.

Description 96-well geometric footprint (1/2 area). 8 replicate flow channels (A-H) with linked wells.
External Dimensions: Lab equipment agnostic. Compatible with most plate readers and most imagers.

Disposable Unit: 1× use. Amendable application models such as modular cell-system configurations.
Cell Alignment & Analysis Biologic support and functions.

Accessibility: Cell harvesting (cellular analysis.). Media aspiration (fluid analysis).
Cell Phenotype: Single cell phenotype. Multi-cell phenotypes. Cell-cell signaling.

Fluorescence Detection: Optically clear wells. Image through plate bottom. Plate shall not auto-fluoresce.
Format (x, y) well locations mimic traditional positioning. Z-height varies across 4 mm vertical.

Growth Area per Well: Surface area is 0.167 cm2. 2D, flat surfaces. Side walls have edges for manufacturing.
Each Channel Includes: Dose well (1); fluid regulator well (1); culture wells (9); waste well (1).

Device Composition: Dosing wells (8); fluid regulator wells (8); culture wells (72); waste wells (8).
Z-Height Offset: Wells 2–11, surfaces have 0.5 mm z-height offset amid adjacent (serially linked) wells.

Channels for Fluid Flow Paths connect wells. Capillarity involves both 3-wall and 4-wall designs; air venting.
Fluid Traverse: Passageway transport initiates in well 1 and terminates at well 12. Unidirectional flow.

Dose Well (Well 1): Max vol. 500 µL. Fluid flow passageway from bottom of well 1 into top of well 2.
Regulator Well (Well 2): Max vol. 100 µL. Force equilibrator w/fluid hydrodynamic. Fulcrum amid flow paths.

Culture Wells (Wells 3–11): Working vol. of 30–100 µL; 1/2 area of 96-well format; 4 mm well height.
Sink Well (Well 12): Max vol. 350 µL. Evaporation wick (syphon) pulls fluid from well 1 to well 12 (1-way).

Device Fluid Volume: Per channel working volume is 1850 µL (1.85 mL). Per device (8 channels), 14.8 mL.
Fluidic Mixing in Wells: Rapid mixing. Involves surface tension, laminar flow, well shapes, and fluid dispersion.

Flow Forces: Gravity driven, hydrodynamics, capillarity, wicking.
Materials in Fabrication Polystyrene, optically clear wells, conventional surface tension, base system with lid.

Thickness of Platform: 0.5 mm polymer thickness; parameter for injection molding and QA/QC non-warping.
Smoothness: Well bottoms. Avoid bubbles in resin (injection mold flow rate). Contamination free.

Manufacture Units Mass produced, 2 components, injection molding. Large quantity production capacity.
Manufacture Components: Lid (1 per unit). Row cover (8 per unit). Wick (8 per unit).

Assembly of Units: Ultrasound welding of molded parts. No glue. No adhesive. No bonding contaminants.
Surface Treatment: Tissue culture plastic (TCP). Can be surface coated (e.g., proteins, non-binding, etc.).

2.1.3. Assembly of µChannels

The platform has two assembled components. The base unit (96-well fitted plate)
has open pathways connecting each well within a row. Atop the base unit are fused row
covers over each row, forming a ceiling and two sides of each micro-channel. A computer
aid design (CAD) illustration of aligned culture wells shows the intersection between the
row-cover, base unit, and the formed fluidic-channel which connects every adjacent well
(Figure 1b). Wells in column 1 and 12, i.e., fluid source and sink, are different from well
sites in columns 2–11, having discrete functionality described in Table 1.

2.2. Device Preparation for Cell Seeding (Static) and µFluidic Operation (Flow)
2.2.1. Prepare Platform for Cell Seeding Using No Flow Conditions (Static)

Humidify the system by placing it in a humidified incubator for 2 h or longer
(overnight). The pre-incubation aids in plate wettability for small-area cell cultures and
also diminishes fluid capillary climb along the cell-chamber sidewalls. The inhibition of
capillary climb is important to retain disconnected “no-flow” culture traits. Seed the cells
in 50 µL of media/well (cell density is cell type dependent). The 50 µL volume is beneath
the entrenched micro-channels. Fill the wells from right to left (uphill): column 11, then 10,
then 9, 8, 7, 6, 5, 4, and 3; column 2 is normally left acellular as it is in very rapid equilibrium
with the source well. Allow cells to settle and attach before initiating fluidics; seed timelines
are dependent on cell type.

2.2.2. Connecting Culture Wells and Initiating Fluidic Conditions (Flow)

First, remove the spent media from the cell seeding and acclimation process. Next,
add 350 µL of fresh media to the sink well (well 12), 100 µL of fresh media into columns
2–11, filling the wells from right to left (Column 11, 10, 9 . . . 2), and 400 µL of fresh media
into the source well. Return the filled platform to a humidified 37 ◦C incubator, flow begins
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automatically. The same process is followed regardless of whether it is a cell line, primary
cells, or different cell phenotypes seeded in separate multiwell chambers within the device.

2.3. Cell Seeding Conditions in µFluidic Device

HepaRG cells and Rat hepatocytes were cultured in the platform. Cell counts were
performed using a hemocytometer and both phenotypes were seeded at 50,000 cells/well
in 50 µL of media (no flow conditions); i.e., 312,500 cells/cm2. All cell cultures were
maintained in a 37 ◦C incubator at 5% CO2. All culture material were purchased from
GIBCO, Waltham, MA, USA unless otherwise stated.

2.3.1. Human HepaRG Cell Line

The µfluidic platform’s tissue culture surface was suitable for seeding and long-term
culture [37,38]. Cells were grown in manufacture recommended media, Williams’ Medium
E (Life Technology, Carlsbad, CA, USA) containing supplements for growth (Biopredic).
HepaRGs were differentiated before procurement, not passaged, and required a 7-day
acclimation/maturity period before treatment. Throughout acclimation, the medium was
renewed every 3 days in no-flow static conditions. On day 3, cells reached contact inhibition.
On day 8, all media were removed, then the sink well was filled with 350 µL of media,
wells 2–11 filled with 100 µL of media, and the source well maximized at 500 µL (400 µL
media + 100 µL of treatment compound).

2.3.2. Rat Hepatocytes Freshly Isolated

Prior to cell seeding, rat tail collagen (Sigma-Aldrich, St. Louis, MO, USA) was diluted
into cold cell culture medium to 0.05 mg/mL and 30 µL (1.5 µg/well) was applied to each
culture well of the device, allowed to attach for 1-h at 37 ◦C, and washed with rat hepatocyte
culture medium containing high-glucose Dulbecco’s modified Eagle’s medium (DMEM)
supplemented with 5% fetal bovine serum (FBS), 2 mM Glutamax, 100 U/mL penicillin,
and 10 µg/mL streptomycin. For seeding, cells require a 24-h acclimation period before
treatment. During seeding/acclimation, medium renewal is not needed during no-flow
static conditions. On day 2, all media was removed, then the sink well was filled with
350 µL of media, wells 2–11 filled with 100 µL of media, and the source well maximized at
500 µL (400 µL media + 100 µL of treatment compound).

2.4. Drug Treatment during Cell Culture

In the fluidic platform, compounds were added to the source well (Figure 1a). Daily,
100 µL of media was removed from the last column (well 12), and 100 µL of fresh media
containing vehicle (0.1% DMSO) or drug was added to the source well every 24 h. The com-
pounds evaluated for cytotoxicity, in vitro, were assigned to one of 2 categories, non-DILI
and DILI, using information extracted from the peer-reviewed scientific literature [39,40]
and data contained in product labels. APAP, ASA, and NEF were purchased from Sigma-
Aldrich (Burlington, MA, USA). Cells were washed with phosphate-buffered saline (PBS)
and exposed to 0.1%DMSO (vehicle-control) medium containing the desired concentration
of 1 mM APAP, 25 µM ASA, and 16 µM NEF for 7 days.

2.5. Suitability of FITC Surrogate Drug to Ascertain Compound Concentrations

The fluorescent tracer fluorescein (FITC) was used as a surrogate evaluator (i.e., fluid
tracer) for the drug dissemination. FITC, dissolved in the medium at 5× desired concen-
tration (5 × 1 µM), was loaded into the source well adjacent to the actual drug compound
row, exactly the same as dosing and in the same volume and frequency as compound
re-dosing (100 µL every 24 h), unless otherwise noted. Prior to each dosing/feeding, the
fluorescence was measured in each well (CLARIOstar microplate reader, BMG LABTECH
USA, Cary, NC, USA) at ex485/em525 including the z-height offsets from Figure 1 and
Table 1, with gain optimized for 1 µM FITC. A standard curve of FITC fluorescent was
used to determine the shift of FITC concentrations (0–1 µM) across the device. Replicate
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fluorescent signals across the device, wells 3–11 (n = 9), were averaged and plotted against
known concentrations.

2.6. Quantification of APAP Drug Metabolites

Supernatants were collected after 4 h, 24 h, 48 h, and 72 h of incubation and stored
at −80 ◦C until quantification. The addition of acetonitrile precipitated samples for drug
metabolite analysis. After centrifugation, the supernatants (containing 90% acetonitrile)
were analyzed by LC/MS (OpANS, Research Triangle Park, NC, USA).

2.7. Assays to Evaluate Modulations in Cell Health
2.7.1. Live and Dead Assays (Imaging)

Cells were stained with a mixture of 1 µg/mL of Hoechst stain (Sigma-Aldrich,
St. Louis, MO, USA), calcein-AM (2 µM) and ethidium homodimer (EthD)-III (5 µM)
purchased from (Thermo Fisher, San Diego, CA, USA), or, with a mixture of 1 µg/mL
of Hoechst stain (Sigma-Aldrich, St. Louis, MO, USA) with 1:1000 CellTox Green Stock
solution (Promega, Madison, WI, USA), followed by 1× exposure for real-time assay multi-
plexing. Fluorescently stained cells were auto-imaged with high-content imaging (Cytation
5 Reader/Imager, BioTek, Winooski, VT, USA), using objective software allocating for x, y,
and z-height stair-step differences.

2.7.2. LDH Assay

LDH release was measured with a commercially available LDH assay kit (Cytotoxicity
Detection Kit, Roche, supplied by Fisher Scientific, Waltman, MA, USA) requiring flow
stoppage, incubation period, and generation of discrete data. Briefly, LDH, which becomes
released in the cell surrounding environment, causes a reduction in NAD+ to NADH and
H+ through the oxidation of lactate to pyruvate. After that, a catalyst (diaphorase) transfers
H/H+ from NADH + H+ to a tetrazolium salt (iodonitrotetrazolium, INT) to form a red-
colored formazan salt. The amount of color produced is then colorimetrically measured at
a wavelength of 490 nm by a spectrophotometer. The colorimetric was measured at room
temperature on a BMG CLARIOstar plate reader (BMG Labtech, Cary, NC, USA). LDH
content was shown as fold change over vehicle controls.

2.7.3. CYP3A4 Luminescence Assay

CYP3A4 enzyme activity was determined using the P450-Glo CYP3A4 assay (V9001),
which contained the substrate luciferin isopropyl acetal (luciferin-IPA) and luciferin detec-
tion reagent (Promega, Madison, WI, USA) requiring flow stoppage, incubation period,
and generation of discrete data. Briefly, after exposure to compounds, cells were washed
with PBS and incubated at 37 ◦C with luminogenic CYP substrate dissolved in medium
without phenol red. After 30 min, the medium was transferred to a 96-well opaque white
luminometer plate, and the same volume of luciferin detection reagent was added for
20 min. Luminescence was measured on a BMG CLARIOstar plate reader (BMG Labtech,
Cary, NC, USA). CYP3A4 enzyme activity was calculated as fold change over vehicle
controls.

2.7.4. Glutathione (GSH) Level

GSH activity was measured with a commercially available GSH assay kit according to
the manufacturer’s instructions (Promega) requiring flow stoppage, incubation period, and
generation of discrete data. Briefly, after treatment with compounds, cells were washed
with PBS, and 30 µL of GSH-Glo reagent 1X with luciferin-NT substrate and glutathione
S-transferase were added in each well. After 30 min, the lysed cells were transferred in
a 96-well opaque white luminometer plate and added the same volume of reconstituted
luciferin detection reagent for 20 min. GSH activity was measured using a luminometer.
This assay is specific for GSH; other thiols do not cause interference in the assay. Cellular
GSH concentration was calculated as fold change over vehicle controls.
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2.8. Statistical Analysis and Tactics for Lean Six Sigma Control Charts

Because different techniques are needed to evaluate the change in platform environ-
ments (drug exposure vs. cell assay), statistical relevance is presented in two formats,
either continuous variable or discrete variable outcomes [41,42]. Selection is based on a
logic tree diagram to indicate appropriate data charts (e.g., X and MR, u or p charts, etc.)
that are aligned with lean six-sigma practices (Figure 2a). The tree diagram is adapted
from traditional manufacture production lines (originally tracking production line errors)
but reformatted into cell-culture features that correlate with µfluidic or static cell-culture
schema. Continuous variable is defined as the infinite number of possible measured values
as it is impossible to list all scenarios (e.g., variable changes in cell functions). Discrete
variable is defined as data that is countable that enables a set number of possible values
(e.g., number of cells). Charts are equally valuable.
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Figure 2. (a) Logic tree diagram to select statistical control charts based on data interpretation for
microfluidic vs. static cultures. Data types correlate with appropriate statistical analysis. (b) X and MR
control chart. Variability is described by Nelson rules and tests for special causes or unusual patterns
on a production line. (c) Continuous exposure scales experienced in upstream wells, midstream wells,
and downstream wells. (d) DMSO controls are different at each multiwell site along the channel.

2.8.1. Continuous Data for µFluidic Culture

Complex numbers and varying data that are measured over a specific interval (range),
such as time or concentration levels. Values are simply not countable but require detailed
measurements that can have separate outcomes at any given point, referring to unspecified
numbers of possible measurements between two realistic points. The numbers are not
always clean and tidy (e.g., curves and skews). Continuous data is about accuracy and
typically involves fluctuating numbers between two presumed points. For continuous
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µfluidics, control charts are used to determine if cell responses are in states of statistical
control (predictable) or have become unstable (i.e., variation with unusual outcome such as
cell death or generated cell metabolites); Figure 2b. In this study, control charts are used to
analyze cell performances across µfluidic culture wells 3–11, conceptualized as a production
assembly line, each well with functional responsibility prior moving product (cell signals) to
the next location. DMSO vehicle control data is used to signify process average (mean) and
significance offsets±1σ (68%),±2σ (95%), and±3σ (99.73%). For normal distribution rules,
study data is expected within standard deviation variances [42,43]. If data falls outside
of significant offsets, variations imply special or assignable causes, e.g., Nelson rules [44],
such as inducible cell functions addressing injury vs. non-injury, compound weed-out, data
oscillations, pre-screening before study, and operator interventions. Terminology to define
cell modulation traits involving process shifts, special causes, and unusual outcomes are
further described in Appendices A.1 and A.2.

2.8.2. Discrete Data

Numerical data includes whole and concrete numbers with specific fixed data values
remaining constant over specific time intervals. Synonyms include disconnected, separate,
and distinct. Biological replicates from three separate wells were averaged to obtain the
mean and standard error of the mean for each treatment dose. To evaluate if a drug
induced cellular changes, the comparisons were made between compounds and vehicle
controls. Statistical analysis was performed using a two-way ANOVA test to assess the
significance of responses, * p < 0.05, ** p < 0.01, *** p < 0.001, and **** p < 0.0001; ns:
not significant. GraphPad Prism software (GraphPad, San Diego, CA, USA) was used to
generate all graphs.

2.9. Standard Operating Procedure (SOP) for One Drug in One Fluidic Culture System

One fluidic device has 8 replicate rows (A-H), Figure 3, affording statistical relevance.
For a 1-drug study being assessed using one device (Figure 3b), two rows remain acellular
and are used for FITC fluid flow tracers (n = 2; A and H); three cellular rows for DMSO
vehicle only control (n = 3; B, C, D) and three cellular rows for DMSO vehicle + study
drug (n = 3; E, F, G). A cursory protocol is presented to delineate experiment preparation
to convey cell seeding, first compound dose, and compound re-dosing (Figure 2, items
1–6). Briefly, cells are seeded in stagnant conditions and remain in no-flow status while
cells acclimate. To begin flow, surplus nutrient media is added to wholly fill culture wells,
automatically filling µchannels, and intrinsically connecting well-to-well fluidic pathways
such that a nutrient stream is formed across culture wells 1→12. Compound dosing is
initiated in well 1 (bolus input; 100 µL). The compound then auto-dilutes while flowing
from well 1 and towards well 12. Well 2, being the peak inflection point between uphill
nutrient flow energies (wells 1-to-2) and downhill flow forces (wells 2–12), remains acellular
and operates as a fluid regulator. The first cellular well, well 3, is exposed to compound
concentrations at higher/faster rates than downstream wells. The last cellular well, well 11,
experiences the lowest/slowest compound concentrations with delayed exposures. If one
entire row is considered as a single unit, i.e., not 12 sequentially linked culture sites, then
the bulk flow rate approximates 100 µL/24 h (4.16 µL/h = 0.069 µL/min) and corresponds
to hydrodynamic forces (0–1 h), transitional forces (1–3.3 h), and sustained equilibrium
forces (3.3–24 h @ re-dose) [23].
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Figure 3. Standard operating procedure (SOP) for 1-drug study (n = 3). (a) Preparation and cell
seeding. (b) First dose into well 1. (c) Re-dosing into well 1.

3. Results
3.1. Operational Insights for Compound Dosing, Quantified Concentration Gradients, Flow
Distribution Patterns, and Transforming Well-to-Well Exposures

To quantify fluid flow patterns, we surveyed a single row (1-of-8) over 10 consec-
utive dosing periods (Figure 4(a1,b2)). Acellular wells are well 1 (source/dose), well 2
(fluid regulator), and well 12 (sink/wick). Cell cultures being wells 3–11. For cell seeding
and µchannel flow preparation, the entire row is filled with shared nutrient media (e.g.,
uncolored and clear). When a bolus drug is placed into well 1, the drug flows toward
well 12, creating a dilution gradient of compound flow from high-to-low concentrations
(Figure 4(a1–a3), compound dilutions). Then, if cell metabolites are generated in down-
stream culture chambers, these cell byproducts are pushed towards well 12, hypothetically
creating low-to-high concentrations (Figure 4(a2,a3), generated metabolites). To track par-
ent drug exposures and quantify real-time shifts of concentrations, FITC is used as a drug
surrogate with FITC concentration gradients monitored/quantified using a microplate
reader, ex485/em525 [23]. The Data Table in Figure 4(b2) shows that 1 µM FITC is dosed
into the source well (well 1) on 10 chronological iterations. Dose “0” is before FITC dosing
(i.e., baseline media) measuring the common and shared nutrient media that is identical
across the entire row, wells 3–11, quantified “0.000”. Dose 1 shows well 3 at 0.445 (44.5%
of 1 µM FITC dose), well 4 at 0.322 (32.2%), and well 11 at 0.00 (0%), signifying an initial
gradient of dose-flow from wells 3–11. A 5th dose displays well 3 at 0.674 (67.4% of 1 µM
FITC dose) and well 4 at 0.650 (65.0%) and well 11 at 0.214 (21.4%). A 10th dose displays
well 3 at 0.674 (67.4% of 1 µM FITC dose), well 4 at 0.674 (67.4%), and well 11 at 0.624
(62.4%). The distribution of FITC increases after each dose, higher from left-to-right. Quan-
tified data can be assessed across one entire row for wells 3–11 (Figure 4(b2); horizontal
display) or within 1 culture well over time periods (Figure 4(b2); vertical display). For
individual culture wells (vertical display), time-dependent exposures are portrayed as
escalating linescans, i.e., flow timelines/well (Figure 4(b1)). During the 10-dose study, well
3 experiences the quickest/highest exposure (i.e., asymptotic with steepest slope), well 7
depicts an approximate linear exposure pattern, and well 11 foretells a delayed exposure
dynamic (i.e., delayed increase). Subsequently, fully developed linescans progress into
natural logarithm, linear, and delayed exponential growth [23]. Associatively, cumulative
well exposures are depicted in Figure 4(b3). Accrued exposures are similar to a radiation
exposure model with area-under-the-curve (AUC) quantifications. Well 3 has the highest
AUC at 6.21, wells 7 and 8 with midrange values of 4.26 and 3.60, and well 11 being the
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lowest at 2.69. From this single-row study, Figure 4(b2), ninety-nine (99) datapoints are
generated to establish a trending assessment of non-linear compound concentrations over
time and location. From this dosing study, by way of extrapolation, one device equates to
8 rows × 99 = 792 exploitable datapoints.
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Figure 4. Operational insights. (a) Top view simulation of one microfluidic channel signifying dual
exposure gradients of test compound (dosed into well 1) and cell generated metabolite. (b) Modulat-
ing experimental exposures of test compound throughout one device row having ten (10) re-doses
of 100 µL over 3 days. Values 0→1 equate to 0→100% of dose. Dose “0” is culture media without
compound (i.e., no-dose baseline). (b1) Linescans displaying a timeline of aggregate exposure kinetics,
per well, with compound exposure traits ranging from asymptotic (wells 3, 4), approximately linear
(wells 7, 8), and delayed increase (lag of exposures in wells 10, 11). Subsequently, fully developed
linescans progress into natural logarithm, linear, and delayed exponential growth [23]. (b2) Well-
specific, data centric, cumulative exposures over time (i.e., area under curve); similar to a radiation
model. The final equilibrium drug concentration is very similar across the entire plate (dose 10; wells
3–11; 67.4→62.4%). (b3) Total “Cumulative Exposure” is very different in each well, 6.21→2.69.

3.2. Incentive for Using FITC Surrogate to Track Actual Compound Distributions across Device
Wells 3–11

To ascertain actual study compound concentrations across the wells, i.e., spatial and
time distributions, 1 µM FITC surrogate was added into a source well in a row parallel to
the compound dosing row, simulating an actual compound dose of volume and frequency
(drug study). The FITC relative fluorescence units (RFU) are used as a surrogate evaluator in
drug dissemination. The fluorescence FITC was measured to estimate drug concentrations
after 1 day following a single bolus dose in well 1 (Figure 5a) and after 7 days with daily
dosing in well 1 (Figure 5b). In kinetic displays, data curves show the % FITC on the
y-axis (i.e., % of 1 µM FITC signal) versus device well-sites on the x-axis. The relationship
aligns time-resolved exposure gradients with % FITC surrogate, used to approximate %
drug/well [23]. At 1 Day (24 h), culture well 3 approaches 79.6% of initial dose, well 5
(20.2%), well 7 (3.7%), and well 11 (0.5%). Similarly, at 7 days (168 h), well 3 approaches
131.4% of initial dose, well 5 (107.1%), well 7 (88.9%), and well 11 (39.9%). The dose
values > 100% (Figure 5b) are a function of repeat dosing and residual FITC in wells
that accumulate in value. These data show how the platform can be used to generate
trackable and repeatable FITC gradient concentrations across the µfluidic system. In this, it
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is acknowledged that molecular weight differences between FITC and other drug categories
will shift gradients of flowing exposure dynamics; an awareness that trending line-shifts
can be calibrated for predictive accuracy [23].
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protocols (Figure 6a1,a3). Cell structures were morphologically unchanged with areas of 
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Figure 5. Percentage and quantification of FITC-flow and drug-concentrations in multiwell device.
(a) FITC concentrations after 1 day, i.e., 24 h, and a single FITC bolus dose into well 1. (b) FITC
concentrations after 7 days, i.e., 168 h, and daily FITC dosing into well 1. (TABLE: case study
using drug diclofenac): Comparison of CYP3A4 activity after diclofenac treatment in HepaRG cells.
(a1,b1) % concentrations of FITC surrogate, per well, measured. (a2,b2) µMolar concentrations of
diclofenac, per well, calculated from FITC % (i.e., diclofenac dose (well 1) × FITC % (well specific).
(a3,b3) CYP3A4 fold-∆ using device in “no flow” static mode. (a4,b4) CYP3A4 fold-∆ from compound
dosing in device µfluidics. (a5,b5) Values are mean ± SEM, (n = 10) **** p < 0.00001.

3.3. Validation of Tempered DMSO Compound as an Effective Control Vehicle Using High-Content
Cell Imaging across the Sequential Assembly-Line of µFluidic Culture Sites

To investigate effects of the DMSO control vehicle on the viability of cells, HepaRGs
were seeded in the µfluidic platform and exposed to the DMSO vehicle for 7 days. HepaRG
morphology was evaluated for cells experiencing fluid flow and for cells in no-flow static
protocols (Figure 6(a1,a3)). Cell structures were morphologically unchanged with areas
of tightly/loosely packed cell densities achieving 100% culture confluency. Yet, given
that upstream culture wells feed into downstream well sites, as shown in Figure 6(a2), a
variance in cell viability could occur amid adjacent multiwells. Adjacent wells might show
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cell viability with equivalent high or low measures (Figure 6(b1,d1/d2 or e1/e2)). Adjacent
wells might show upstream wells with lower cell viability (Figure 6(b2)). Adjacent wells
might show upstream wells having higher cell viability (Figure 6(b3)). To investigate the
DMSO control vehicle as a potential cell influencer, DMSO was deemed an actual study
compound at 0.1% DMSO (i.e., 0.1 v/v) and dosed daily into device well 1, over 7 days
(Figure 6c). At day 1, the DMSO v/v auto-dilutes from 0.075 (well 3) to 0.000 (well 10), with
well-to-well cell viability ranges from 98% (well 3) to 97% (well 8) to 98% (well 10). At day 3,
after daily re-dosing, the DMSO v/v auto-dilutes from 0.093 (well 3) to 0.004 (well 10), with
cell viability scales 98–99%. At day 7, after daily re-dosing, the DMSO v/v auto-dilutes from
0.112 (well 3) to 0.047 (well 10), with cell viability scales 95–98%. As quantified, the DMSO
vehicle does not influence cell culture viability across all device wells including upstream
(wells 3–5), midstream (wells 6–8), or downstream (wells 9–11) culture sites. In this study,
because well 11 undergoes pipette media changes, this site is considered an outlier culture
well (Figure 6c well 11). In brief, the data indicates the morphological appearance of cells
can be imaged with high content imaging (Cytation 5 Reader/Imager, BioTek, Winooski,
VT, USA) using objective positioning software allocating for x, y, and z-height stair-step
differences across the µfluidic device. Likewise, quantitative cell viability data indicate
that the DMSO control vehicle can be considered a baseline-control comparison for other
drug studies.

3.4. Use-Model, Drug Exposure, and CYP3A4 Comparisons between µFluidic Systems and
Static Cultures
3.4.1. DMSO Vehicle as Baseline Control for Cell Functions

We evaluated two cell culture systems, both without flow, one a conventional static cul-
ture plate and the second a static protocol in the µfluidic device (i.e., non-active µchannels).
In one study, we dosed 125 µM diclofenac compound (+0.1% DMSO) on HepaRGs to
evaluate CYP3A4 activity; comparatively, CYP3A4 activities were determined equivalent
(data not shown). In a second study, in SsWaterfall, we dosed HepaRGs with DMSO at
24 h, 72 h, and 168 h to evaluate adjacent-well changes related to cell death, CYP3A4,
and albumin; in all studies, DMSO-treated cells retained non-significant changes [23]. In
subsequent cell function studies, DMSO vehicle treatments were considered as baseline
control values.

3.4.2. Extrapolation of Drug Exposures in µFluidic System, Diclofenac (Days 1 and 7)

Day 1: We compared CYP3A4 activities after HepaRG cells were exposed to different
concentrations of diclofenac for 24 h (Figure 5 Case Study; a1–a5). The measured FITC
concentration per well, column a1, is the % of FITC dispersed across the multiwell system
and correlates with Figure 5a. The calculated µM diclofenac concentration, column a2, is
column a1 × 125 µM dose (i.e., well 3 is 79.6% × 125 µM = 99.5 µM diclofenac). The actual
µM diclofenac drug concentration, not determined, is line-shifted as FITC (389.3 g/mol)
and diclofenac (296.1 g/mol) have different molecular weights, but trending flow patterns
remain analogous [23]. Column a3 illustrates CYP3A4 outcomes from static culture proto-
cols (no flow) using equivalent drug exposure concentrations. Column a4 shows CYP3A4
outcomes with cultures experiencing kinetic nutrient movements (µfluidic device). At 24 h,
we did not observe any significant difference in CYP3A4 activity between the static and
µfluidic systems (column a5, statistical “p”, ns).

Day 7: We then compared the effect of different concentrations of diclofenac on
CYP3A4 activity after 7 days of exposure (Figure 5 case study; b1–b5), with daily drug
re-dosing. Notably, the well-1 dose % (column b1) is listed as >1× concentration and is
a function of repeat dosing with rising concentrations above the initial/starting well-1
dilutions to correlate with Figure 5b. Paraphrased, residual compound in well 1 with
repeat dosing accumulates values. The % FITC concentrations are increased across all wells
ranging from upstream 131.4% (well 3) to downstream 39.9% (well 11), column b1. The
calculated diclofenac µM drug concentration, column b2, is column b1 × 125 µM dose
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(i.e., well 3 is 131.4% × 125 µM = 164.3 µM diclofenac). CYP3A4 activity in HepaRG cells
was decreased in the µfluidic device wells 3–9 (column b4) as compared with the static
culture (column b3), indicating a significant difference noted in column b5, statistical “p”.
These data infer that flow in upstream well (well 3), or cascading flows across µfluidic wells
4–11, create cell-signaling concentration gradients of either dose–compound or endogenous
cellular byproducts that factor into cell variances of culture responses.
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Figure 6. Morphology and viability of HepaRG cells in device multiwell culture locations, post 0.1%
DMSO vehicle compound treatment. (a2) Profile of device displaying two adjacent wells, two flat
culture surfaces, and µchannels entering wells. (a1) Kinetic (fluid flow) cultures with cell images at
days 1 and 7, phase contrast brightfield 10×. (a3) Comparative cell images at days 1 and 7 in static
(no-flow) cultures, 10×. (b1–b3) Fluorescent image captures of cell nuclei stains (DAPI; blue) and
non-viable stains (CellTox Green; green) for adjacent device wells, 4× pictorials. (b1) Equivalent high
cell viability (d1,d2), or equivalent lower cell viability (e1,e2). (b2) Upstream device well displaying
lower cell viability vs. downstream well. (b3) Upstream device well displaying higher cell viability
vs. downstream well. (c) Fluorescent image captures of cell nuclei stains (DAPI; blue), viable cells
(Calcein AM; green), and non-viable cells (Ethidium Homodimer; red) to assess variance of cell
viability across device wells 3–11. (Day 1) Auto-DMSO concentration gradients after a single 0.1%
DMSO bolus dose (0.1 v/v) into well 1. (Day 3) After three 0.1% DMSO re-doses into well 1; daily
re-dosing. (Day 7) After seven 0.1% DMSO re-doses into well 1. Overall, cell viability remains
effectively unchanged, 95–99%.
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3.5. Trending Effects on Cell Toxicity from DMSO Vehicle Control, APAP, NEF, and Indirect Cell
Byproducts in µFluidic Device (Dual Toxicity Trends for Compoud Screening)

High-content cell imaging was used to evaluate valid object counts (VOC: i.e., cell
counts) across µfluidic platform locations, referencing device culture wells 3–11, monitoring
HepaRGs at days 1, 3, and 5 (Figure 7). The four exposure compounds being DMSO vehicle
control, APAP (+DMSO), NEF (+DMSO), and potential indirect exposures coming from
inducible cell-generated byproducts.
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Figure 7. High content imaging to evaluate the variance of cell counts to indicate direct-compound
or indirect-cell-byproduct toxicity locations; nuclei count (DAPI). Initially, HepaRGs were cultured
for 7 days in static conditions prior to activating flow and dosing 1× daily (well 1). (a1,a2) After 1
day and a single bolus dose in well 1. The DMSO control is baseline culture while APAP and NEF are
study compounds. (b1,b2) After 3 days and three bolus doses into well 1. (c1,c2) After 5 days and five
bolus doses into well 1. Data are expressed as means± SEM (n = 9). Applied statistics (a2,b2,c2) using
six-sigma control charts with DMSO vehicle control signifying process average (mean) and ±1σ
(68%), ±2σ (95%), and ±3σ (99.73%) significance offsets. If data fall outside of significant offsets,
UCL or LCL, variations in the data imply special or assignable causes, (b2,c2).

3.5.1. Data Generation

Day 1 signifies one day of culture after a single drug dose (Figure 7(a1)). Days 3 and 5
after three and five doses (Figure 7(b1,c1)). •At Day 1, the DMSO vehicle shows baseline
VOCs (cell counts) range between 5000–6300; Figure 7(a1). Similarly, VOCs are quantified
for APAP (4400–6300) and NEF (4300–6500). •At Day 3, the DMSO control has cell counts
between 4000–5800; Figure 7(b1). APAP shows fewer cell numbers in upstream wells 3–5
(1200–2100), increasing cell numbers in midstream wells 6–8 (3100–4000), and equivalent
DMSO control cell numbers in downstream wells 9–11 (5000–5100). NEF has DMSO
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equivalent numbers in upstream wells 3–4 (4400–4700), a rapid count decline in midstream
wells 5, 6, and 7 (400–2000) with increasing cells numbers in downstream wells 8–11
(3100–5800). •At Day 5, the DMSO control has sustained cell counts between 3900–4100;
Figure 7(c1). APAP displays much lower cell numbers across the entire channel, wells 3–11
(300–2900). NEF has DMSO equivalent numbers in upstream wells 3–7 (4100–5000) and a
rapid count decline in midstream wells 8–9 (0–100), with slightly increased cells numbers
in downstream wells 10–11 (800–2100).

3.5.2. CV Values for VOC and Fluid-Flow Tracing across the Multiwell Channels

To illustrate intra-plate robustness of the system, coefficient of variation is used to
provide a method of performance as overviewed in Table 2.

Table 2. Coefficient of Variation for Intra-Plate Robustness.

Valid Obj Counts (Figure 7(a1,b1,c1)) Well 3 Well 7 Well 11

DMSO Vehicle Controls (Days 1, 3, 5) (2.1%, 11.4%, 7.8%) (2.6%, 13.0%, 0.64%) (9.8%, 7.2%, 14.8%)

APAP (Days 1, 3, 5) (2.8%, 20.1%, 12.8%) (8.6%, 6.3%, 12.8%) (1.9%, 8.2%, 5.8%)

NEF (Days 1, 3, 5) (7.5%, 23.1%, 11.4%) (3.3%, 5.8%, 0.04%) (3.5%, 5.6%, 3.3%)

Tracing Fluid Flow Movements [23] (First
Dose and Repeat Dosing) Upstream (Wells 3–5) Midstream (Wells 6–8) Downstream (Wells 9–11)

≤1 h after each dose into well 1 not appraised not appraised not appraised
(acute hydrodynamic forces in action) SOP waits 1 h before analysis. Fnc of user interface (manual pipette dosing).

1 h > dosing ≤ 3.3 h
5–8% 5–6% 4–6%(transitional forces creating stability)

>3.3 h till re-dosing
4–5% 4–5% 4–5%(sustained equilibrium forces)

3.5.3. Data Reconfigure for Trending Applications Using X Control Charts Aligned with
Statistical Process Control

To expand data relevance, DMSO controls from Figure 7(a1,b1,c2) are reconfigured into
lean six-sigma control charts to emphasize data-set process averages (mean) and standard
deviation parameters ±1σ (68%), ±2σ (95%), ±3σ (99.73%); Figure 7(a2,b2,c2) and Table 3.
Statistical boundaries for the upper control limit (UCL) and the lower control limit (LCL)
are defined at DMSO ± 3σ. If study data fall outside UCL or LCL, the variation implies an
observable change or unexpected nonstandard outcome (e.g., cell modulation, cell death,
or generated metabolite).

3.6. Metabolite Generation and Dissemination in Multiwell µFluidic Culture System
3.6.1. Targeting APAP Metabolites

Due to the extensive literature history on APAP metabolites [45–47], APAP was tar-
geted onto HepaRG culture wells to evaluate metabolite generation across the µfluidic
channel, i.e., occurrence trends. APAP was dispensed as a bolus dose (20 mM) into well
1, once daily, and downstream media were collected from each site to measure mutable
concentrations of acetaminophen and generated APAP metabolites (Figure 8). LC/MS was
used to quantify concentration intensities over a timeline 0→72 h. �At 24 h (Figure 8(a1)),
gradient concentrations of APAP range from 8.045→0.088 mM (y-axis logarithmic scale)
across the µfluidic wells 3–11 (x-axis). The metabolite APAP-glutathione (GSH) displays
the lowest magnitude values, ranging 0.23→0.0 µM (y-axis line graph) across the same
µfluidic wells 3–11 (x-axis). Metabolite APAP-sulfate has elevated magnitude values rang-
ing 13.26→0.36 µM, while revealing activity in the last culture site, well 11. Metabolite
APAP-glucuronide (APAP-Glu) has the highest magnitude values, ranging 67.7→0.8 µM,
while displaying a prominent decay curve in downstream wells 6–11. �At 72 h (Figure 8(a2)),
gradient concentrations of APAP range from 17.048→7.94 mM. The metabolite APAP-GSH
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retains comparable 24 h displays ranging 0.21→0.0 µM. Both APAP-Sulfate 6.98→20.7 µM
and APAP-Glu 39.9→103.3 µM exhibit increased levels across downstream wells 4–11,
an indication of ongoing generation of metabolites. Contrastingly, well 1 reveals lower
magnitudes (~0.5-fold) with the recognition that well 1 encounters highest APAP exposures.
Of note, for trending appraisals, data in well 9 show a reduction in concentrations for
APAP-sulfate and APAP-Glu, being possible data outliers or potential special cell-function
outcomes.

Table 3. Trending VOC outcomes from direct parent compound and indirect cell byproducts.

Day DMSO Mean
UCL/LCL APAP Correlations Superimposed over DMSO Data NEF Correlations Superimposed over DMSO Data

1 6098.3 VOC
8173.8/4022.8
Figure 7(a1,a2)

� All wells within ± 3σ boundaries � All wells within ± 3σ boundaries

Conjecture: APAP concentrations and exposure time not yet
influenced cells

Conjecture: NEF concentrations and exposure time
not yet influenced cells

3
5265.7 VOC
6885.8/3645.6
Figure 7(b1,b2)
“Time-delayed
provocations”

� Upstream wells 3–6 (2164.0, 1393.5, 2185.0, 3260.0)
below −3σ boundary

� Downstream wells 7–11 w/i ± 3σ boundaries

� Upstream wells 3–4 (4445.0, 4756.0) w/i ± 3σ
boundaries

� Midstream wells 5–8 (2300.0, 356.0, 537.5,
3206.5) below −3σ boundary

� Downstream wells 9–11 (4374.0, 5554.0,
5926.5); w/i ± 3σ boundaries

Conjecture: APAP w/direct negative influence at highest
conc in upstream wells. APAP conc dilutions are less
detrimental in downstream wells

Conjecture: NEF w/o direct upstream influence.
Generating cell-byproducts w/negative influence in
midstream wells 5–8 but not yet reached
downstream wells 9–11

5
4353.2 VOC
5534.9/3171.4
Figure 7(c1,c2)
“Time-delayed
provocations”

� All wells below −3σ boundary
(889.0→2729.0)

� Upstream wells 3–7 (4433.5→5109.0) w/i ±3σ
boundaries.

� Observable distrubance at well 8 (17.0 VOC)
with additional downstream wells 9–11 below
−3σ boundary

Conjecture: APAP w/direct negative influence at all ramped
concentrations and time durations

Conjecture: NEF w/o upstream influence.
Generating cell byproducts w/negative influence at
downstream wells 8–11

3.6.2. Distribution of APAP Metabolites

Given that APAP metabolites are generated in the device (Figure 8(a1,a2); line graphs),
the distribution of each metabolite’s timeline, location, and shifting concentrations becomes
significant exposure descriptors across µfluidic culture wells. To chronicle distribution
patterns, moving-range (MR) control charts from six-sigma variability processes [41,42,48]
are revamped to examine the change in biologic activity amid adjacent culture wells
(Figure 8(b1–b3)). The early detection of metabolites, using LCMS, is observed 4 h after
a single APAP dose into well 1, measuring for APAP-GSH (Figure 8(b1)), APAP-sulfate
(Figure 8(b2)), and APAP-Glu (Figure 8(b3)). Graphically, the horizontal axis is device
wells 3–11; the vertical axis is concentration ∆ amid adjoining wells; the mean is the
average of aggregate data points; UCL is the upper control limit calculated as 3σ. The MR
activity for APAP-GSH is revealed in upstream culture wells 4 and 5, having well–well
concentration ∆’s of 0.02 µM and 0.08 µM; thereafter, downstream wells 6–11 register “0”
fluctuations. The MR for APAP-sulfate is displayed in upstream culture wells 4–6, with
well–well ∆’s being 0.07 µM, 0.45 µM, and 0.43 µM; thereafter, downstream wells 7–11
register “0” fluctuations. The MR for APAP-Glu is displayed in upstream culture wells 4–7
with well–well ∆’s being 0.23 µM, 1.37 µM, 0.49 µM, and 0.24 µM; thereafter, downstream
wells 8–11 register “0” fluctuations.
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Figure 8. Trending channel evaluations for n = 1. (a1,a2) Concentration of APAP and cell-generated 
metabolites in each multiwell location, post compound dosing in the source well. x-axis is device Figure 8. Trending channel evaluations for n = 1. (a1,a2) Concentration of APAP and cell-generated
metabolites in each multiwell location, post compound dosing in the source well. x-axis is device
culture wells 3–11, left vertical axis is APAP (logarithmic scale), right vertical axis is generated
metabolites. (a1) After 1 day, i.e., 24 h, and a single bolus dose in well 1. (a2) After 3 days, i.e., 72 h,
and daily dosing in well 1. (b1–b3) Origination of APAP metabolites across device multiwell locations
4–11, observed at 4 h after one APAP bolus dose into well 1. MR is the concentration change (∆)
between adjacent wells. Well 3 is devoid of an upstream adjoining well (i.e., cellular) and precludes
calculation. The APAP metabolite variances (∆/well) are (b1) APAP-GSH, (b2) APAP-sulfate, and
(b3) APAP-Glu.

3.7. Metabolite Variance across Multiwell Fluidic System to Ascertain Sites of Generated
Cell Byproducts

The detailed surveillance in metabolite variance, on HepaRG cells experiencing APAP
exposures after 24, 48, and 72 h timelines, are presented using MR control charts to chronicle
distribution patterns across device wells 3–11, Figure 9. Moving ranges are itemized by
APAP-GSH-24/48/72 h (Figure 9(a1–a3)), APAP-Sulfate-24/48/72 h (Figure 9(b1–b3)), and
APAP-Glu-24/48/72 h (Figure 9(c1–c3)). Graphically, accompanying descriptors include
the data aggregate mean (mean) and UCL (3σ). By way of itemization, Table 4 is portioned
to compare/contrast metabolite generation and dissemination. The APAP-metabolite
data indicate the platform is able to allot for evaluations of cell-generated metabolites
as cellular byproducts disperse across the device in compound-exposure patterns and
time-distribution dynamics, allowing for trending evaluations in cell metabolite kinetics,
i.e., a statistical process survey.
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Figure 9. Surveillance of metabolite variability amid device multiwell locations 4–11 (n = 1), observed
at 24 h, 48 h, and 72 h. MR is the concentration moving range (∆) between adjacent wells. Well 3 is
devoid of an upstream adjoining well and precludes MR calculation. Metabolites are (a1–a3) APAP-
GSH. (b1–b3) APAP-sulfate. (c1–c3) APAP-Glu.

Table 4. Summary of APAP-Metabolite variance from HepaRGs—generation and dissemination.

APAP-GSH Highest MR @ 24 h Most well–well ∆ is 0.18 µM occurs at 24 h in midstream well 6 (Figure 9(a1)).

Mean MR @ 24 h Uniform well–well ∆ is measured in wells 4, 7, 8, and 9 (0.05 µM) (Figure 9(a1)).

Negligeable MR @ 24 h No well–well ∆ found in downstream wells 10 and 11 (0.0 µM) (Figure 9(a1)).

MR Compilations @ 24, 48, 72 h � 24 h mean (0.06 µM) and the UCL (0.24 µM) are highest when compared alongside
GSH-48 h and GSH-72 h; Figure 9(a1–a3).

� 48 h mean is least (0.042 µM) with UCL having a midrange distinction (0.125 µM);
Figure 9(a2).

� 72 h mean is midrange (0.051 µM) with UCL having the lowest distinction (0.11
µM) to divulge least variation ∆’s across device culture wells; Figure 9(a3).

In Brief (Figure 9(a1–a3)): 3σ UCL is maximum at 24 h and decreases over time to indicate that cell generated
APAP-GSH has the highest variance during early APAP exposure periods in upstream
sites (wells 3–5; 0.05 µM; Figure 9(a1)) and conditions midstream culture wells with cell
byproducts (well 6; 0.18 µM).

APAP-Sulfate Highest MR @ 72 h Most well–well ∆s are 12.79 µM and 11.11 µM occurring at 72 h in downstream wells 9
and 10 (Figure 9(b3)).

Mean MR @ 72 h Uniform well–well ∆s are present in upstream wells 4–8 (0.84→4.9 µM) and
downstream well 11 (0.9 µM) (Figure 9(b3)).

Negligeable MR @ 24 h Limited well–well ∆ found in upstream wells 4 and 5 (~0.0 µM) (Figure 9(b1)).

MR Compilations @ 24, 48, 72 h � 24 h data mean is lowest (2.0 µM) with UCL having the lowest distinction (7.0 µM)
to divulge least variation ∆’s across device culture wells; Figure 9(b1). �48 h data
mean is midrange (2.8 µM) with UCL also having a midrange distinction (9.0 µM);
Figure 9(b2).

� 72 h mean (5.0 µM) and the UCL (18.5 µM) are the highest when compared
alongside sulfate-24 h and sulfate-48 h; Figure 9b1–b3.
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Table 4. Cont.

In Brief (Figure 9(b1–b3)): 3σ UCL is minimum at 24 h and increases over time to indicate that cell-generated
APAP-GSH has the highest variance at later APAP exposure periods with both upstream
sites and prolonged exposure times augmenting downstream device sites with
conditioned media; Figure 9b3 wells 9 and 10.

APAP-GLU Highest MR @ 72 h Most well–well variations are 68.1 µM & 48.6 µM occurring at 72 h in downstream wells
9 and 10 (Figure 9(c3)).

Mean MR @ 72 h Uniform well–well ∆s are present in upstream wells 4–8 (0.91→21.24 µM) and
downstream well 11 (3.9 µM) (Figure 9c3).

Negligeable MR @ 24 h Limited well–well ∆ found in upstream wells 4 and 5 (~0.0 µM) (Figure 9(c1)).

MR Compilations @ 24, 48, 72 h � 24 h data mean is the lowest (9.0 µM) with UCL at the lowest distinction (30.0 µM)
to divulge least variation ∆s across device culture wells; Figure 9(c1).

� 48 h data mean is midrange (21.0 µM) with UCL also a midrange distinction (79.0
µM); Figure 9(c2). MRs also display notably high variations in culture wells 8 and
9 (63.5 µM and 34.7 µM).

� 72 h mean (23.0 µM) and the UCL (92.0 µM) are the highest when compared
alongside Glu-24 h and Glu-48 h; Figure 9(c1–c3).

In Brief (Figure 9(c1–c3)): 3σ UCL is minimum at 24 h and increases over time to indicate that cell-generated
APAP-Glu has high variance at both intermediate and late APAP exposure periods
(Figure 9(c2) wells 8–9 and Figure 9(c3) wells 9–10).

3.8. Cell Function Variance across Multiwell Fluidic System to Assess Bio-Activity Trends
Affiliated with Direct Drug Exposure and Predictive Recognition for Indirect Cell-Byproduct
Stimuli (Dual Assessment Screens)

Conventional cell function assays LDH, CYP3A4, and GSH are re-purposed as µfluidic
device biomarkers and utilized as cell function indicators (sensors) across the platform’s
changing well–well environments, i.e., monitoring worksites across an assembly line.
Assays are used to track mutable cell-health kinetics, throughout µchannel wells 3–11,
corresponding to real-time ramps in drug concentrations, accruing exposure times, and
for gaging the incidence of cell-generated byproducts. To initiate surveys, an exposure
compound is dosed into the upstream source well 1, daily for 7 days. Compounds in this
study are DMSO control vehicle (0.1%), ASA (25 µM; non-DILI drug), and NEF (16 µM;
DILI drug). With flow, compounds auto-disperse along the µchannel, catalyzing adaptive
bioactivity amid aligned device culture site locations, i.e., wells 3–11. To reveal if gradients
of drug, time, or cellular byproducts have influence on cell functions, we assessed both
system-trends and adjacent-well responses, i.e., six sigma control charts, from two hepatic
sources: human HepaRG cells and rat hepatocytes.

3.8.1. Trending Relevance

Study outcomes of discrete, continuous, and trending models are displayed in Figures 10–12;
LDH (Figure 10), CYP3A4 (Figure 11), and GSH (Figure 12). In figures, vertical columns
are categorized (a1–a3) HepaRGs exposed to ASA, (b1–b3) rat hepatocytes exposed to
ASA, (c1–c3) HepaRGs exposed to NEF, and (d1–d3) rat hepatocytes exposed to NEF.
Within figures, horizontal rows are demarcated by a1→d1, a2→d2, and a3→d3 as defined
in Table 5. From the same SOP, trending effects of DMSO vehicle, additional exposure
compounds, and additional assays are corroborated in Appendix A with Figure A1 and in
the supplemental section as illustrated in supplemental Figure S1.

LDH ASSAY—Functional Indicator (Studies 1–4)

LDH is found in cells. LDH discharge is used as a biomarker of cell cytotoxicity as
release can increase mitochondrial damage [19]. ASA exposure on HepaRG cells (Study 1)
is displayed in Figure 10(a1). LDH outcomes, for DMSO vs. ASA, are non-significant (ns)
as revealed in wells 3–11. ASA exposure on rat hepatocytes (Study 2) is displayed in
Figure 10(b1). ASA induces LDH release in upstream well 3 (*) and downstream wells
10 (*) and 11 (*). NEF exposure on HepaRG cells (Study 3) is displayed in Figure 10(c1).
NEF stimulates LDH in upstream wells 3 (***), 4 (****), 5 (*), and 6 (****); thereafter, wells
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7–11 register as non-significant cell function activities. NEF exposure on rat hepatocytes
(Study 4) is displayed in Figure 10(d1). NEF stimulates LDH in upstream well 3 (***),
midstream well 7 (***), and downstream wells 10 (**) and 11 (*). Interior wells 4–6 and
8–9 register as non-significant. For Studies 1–4, LDH trending responses are further
summarized in Table 6.
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(vertical axis) vs. DMSO vehicle controls; vehicle normalized at 1. (a1,b1) Effect of aspirin exposure Figure 10. LDH release across multiwell cultures on Day 7. LDH activity shown as fold change
(vertical axis) vs. DMSO vehicle controls; vehicle normalized at 1. (a1,b1) Effect of aspirin exposure
in HepaRG cells and rat hepatocytes. (c1,d1) Effect of NEF exposure in HepaRG cells and rat
hepatocytes. (a2,b2,c2,d2) Re-expression of data using individual trending charts (i.e., X control
charts) to convey DMSO controls with drug study outcomes. (a2—HepaRG line graph) ASA does
not induce LDH. (b2—rat hepatocyte line graph) ASA stimulates LDH across all wells, 3–11, with
increased relevance at upstream well 3 (*) and downstream wells 10 (*) and 11 (*). (c2—HepaRG line
graph) NEF stimulates LDH at upstream wells 3 (***), 4 (****), 5 (*), and 6 (****). (d2—rat hepatocyte
line graph) NEF stimulates LDH across all device wells, with increased relevance at upstream well 3
(***), midstream well 7 (***), downstream wells 10 (**) and 11 (*). (a3,b3,c3,d3) Variability charts (i.e.,

MR control charts) to display functional fold-changes amid adjacent wells. (a3—HepaRG line graph)
ASA does not induce a trending variation. (b3—rat hepatocyte line graph) ASA stimulates a process
shift at upstream well 3 and special cause in downstream wells 10 and 11. (c3—HepaRG line graph)
NEF induces a trending process shift at upstream wells 4–7. (d3—rat hepatocyte line graph) NEF
stimulates a process shift at upstream well 3, a special cause at wells 7–8, and an unusual outcome
in downstream wells 10 and 11. Values a1-d1 represented as the mean ± SEM (n = 9). * p < 0.05,
** p < 0.01, *** p < 0.001, and **** p < 0.0001.
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Figure 11. CYP3A4 enzyme activities across multiwell culture locations at Day 7. Activity shown
as fold changes (vertical axis) vs. DMSO vehicle control; vehicle normalized at 1. (a1,b1) Effect
of ASA exposure in HepaRG cells and rat hepatocytes. (c1,d1) Effect of NEF exposure in HepaRG
cells and rat hepatocytes. (a2,b2,c2,d2) Re-expression of data using individual trending charts (i.e.,
X control charts) to convey DMSO controls with drug study outcomes. (a2—HepaRG line graph)
ASA impedes CYP3A4 at upstream wells 3 (**) then shows upregulated stimulation in midstream
wells 6 (*), 7 (*), 8 (*), and 9 (*). (b2—rat hepatocyte line graph) ASA has no effect on upstream
well 3, then stimulates CYP3A4 across all remaining downstream wells 4 (*)–9 (*) and 10 (****)–11
(****). (c2—HepaRG line graph) NEF inhibits CYP3A4 activity across the entire µfluidic channel,
inclusive of wells 3–11. (d2—rat hepatocyte line graph) NEF inhibits CYP3A4 activity in upstream
wells 3–6 (*), regains normal function in wells 7–8, has functional increases in wells 9 (*) and 10 (****),
and returns to near normal activity in downstream well 11. (a3,b3,c3,d3) Variability charts (i.e., MR
control charts) to display functional fold changes amid adjacent-wells. (a3—HepaRG line graph)
ASA induces a trending process shift of upstream inhibition (well 3) followed by midstream recovery

(wells 6–9). (b3—rat hepatocyte line graph) ASA is inconsequential at upstream well 3, stimulates
a special cause “A” in wells 4–9, then an upregulation special cause (A+) in downstream wells 10
and 11. (c3—HepaRG line graph) NEF induces a negative trending process shift across the entire
µchannel. (d3—rat hepatocyte line graph) NEF creates a negative process shift, wells 3–6, normal
functions wells 7–8, special cause wells 9–10, and unusual decline outcome in well 11. Values a1-d1
are represented as the mean ± SEM (n = 9). * p < 0.05, ** p < 0.01, and **** p < 0.0001.
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Figure 12. GSH levels across multiwell culture locations at Day 7. GSH synthesis shown as fold
changes (vertical axis) vs. DMSO vehicle control; vehicle normalized at 1. (a1,b1) Effect of aspirin
exposure in HepaRG cells and rat hepatocytes. (c1,d1) Effect of nefazodone exposure in HepaRG
cells and rat hepatocytes. (a2,b2,c2,d2) Re-expression of data using individual trending charts (i.e.,
X control charts) to convey DMSO controls with drug study outcomes. (a2—HepaRG line graph)
ASA inhibits GSH activity across wells 3 (**)–9 (*). (b2—rat hepatocyte line graph) ASA promotes
GSH synthesis in upstream wells 3 (****)–5 (****), displays normal function in well 6, then stimulates
GSH functions in wells 7 (****)–11 (****). (c2—HepaRG line graph) NEF inhibits GSH activity across
wells 3 (*)–7 (*) and wells 9 (*)–11 (*). (d2—rat hepatocyte line graph) NEF promotes GSH synthesis
in upstream wells 3 (*)–5 (*), displays normal function in wells 6–7, again stimulates GSH functions
in wells 7 (*)–10 (*). (a3,b3,c3,d3). Variability charts (i.e., MR control charts) to display functional fold
changes amid adjacent wells. (a3—HepaRG line graph) ASA induces a trending process shift across
most of the µchannel, wells 3–10. (b3—rat Hepatocyte Line Graph) ASA stimulates a process shift in

wells 3–5, has normal function at well 6, stimulates a special cause “A” in wells 7–9, then enhanced
special cause “A+” in wells 10–11. (c3—HepaRG line graph) NEF induces a trending process shift in
wells 3–7, normal function at well 8, then a negative special cause in wells 9–11. (d3—rat hepatocyte
line graph) NEF stimulates a process shift in wells 3–5, has normal function in wells 6–7, stimulates a
special cause in wells 8–10, then unusual outcome in well 11. Values (a1–d1) are represented as the
mean ± SEM (n = 9). * p < 0.05, ** p < 0.01, and **** p < 0.0001.
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Table 5. Trending relevance displays in Figures 10–12.

Rows Purpose Description

a1→d1
Reveal cell functions having discrete statistical analysis, i.e.,
Generation of Data. The vertical axis are fold-changes related to
DMSO vehicle control.

DMSO vehicle studies (white bars) are normalized at 1,
i.e., 100% normal function per well; the
compound-of-interest data (black bars) are function
fold-changes versus DMSO controls.

a2→d2
(system)

Re-expressions of data using X control charts, continuous
systems (e.g., fluidics assembly line), to identify DMSO control
averages (Mean) and ±3σ DMSO offsets (UCL and LCL). The
vertical axis are fold-changes related to DMSO vehicle control.

Superimposed over DMSO controls are
compound-of-interest results to reveal statistical shifts
in cell bioactivity along upstream (wells 3–5),
midstream (wells 6–8), and downstream (wells 9–11)
cell stations.

a3→d3
(adjacent)

Display adjacent-well variations using MR control charts, i.e.,
Application to Diagnose Cell-Generated Stimuli. The vertical axis
is fold-changed to probe well–well irregularities, magnitudes
are absolute values, orientation with DMSO vehicle = 1 (line
shifts @ 1). Standard deviations are +1σ, +2σ, +3σ.

Blending of system trends with adjacent-well analysis
facilitate deductions for direct drug influence (i.e.,
process shift), indirect drug influence (i.e., special
cause (cell generated secretions)), and indirect tertiary
influence (i.e., unusual outcomes (secondary
cell metabolite)).

CYP3A4 ASSAY—Functional Indicator (Studies 5–8)

Cytochrome P450 3A4 activity is found in the liver and has a significant role in
the biotransformation of compounds [49]. ASA exposure on HepaRG cells (Study 5) is
displayed in Figure 11(a1). ASA impedes CYP3A4 activity in well 3 (**) with slightly
upregulated activities in wells 6 (*), 7 (*), 8 (*), and 9 (*); remaining wells 4, 5, 10, and
11 register as non-significant. ASA exposure in rat hepatocytes (Study 6) is displayed
in Figure 11(b1). In data presentation, the scale of the vertical axis increased 10-fold
to accommodate for intensified CYP3A4 outputs, i.e., range 0–5 adjusted to 0–50. ASA
exposure is non-significant in well 3, CYP3A4 upregulates in wells 4 (*)–9 (**) to denote
3-to-10-fold increases over DMSO controls, then maximized in wells 10 (****) and 11 (****)
at 40-fold and 20-fold levels. NEF exposure in HepaRG cells (Study 7) is displayed in
Figure 11(c1). NEF exposure shows no CYP3A4 activity in wells 3–6 and marginal 0.1-
fold functions in wells 7–11. Throughout, DMSO vehicle controls have higher CYP3A4
over NEF datasets, wells 3 (****)–11 (****). NEF exposure in rat hepatocytes (Study 8) is
displayed in Figure 11(d1). In data generation, the scale of the vertical axis is increased
10-fold to accommodate intensified CYP3A4 outputs, i.e., range 0–5 adjusted 0–50. The
NEF datasets show impeded CYP3A4, below DMSO vehicle controls in wells 3 (*)–6 (*),
data being non-significant in wells 7–8, then NEF has higher CYP3A4 activity in wells
9 (*)–10 (****), concluding with non-significant cell reactions in well 11. For Studies 5–8,
CYP3A4 trending responses are further summarized in Table 7.
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Table 6. Summary of LDH indicator responses.

Study 1
ASA on

HepaRG cells

Trending Chart
(system wide):

Discloses a cyclical culture response across the µfluidic channel with most
datapoints inside ± 3σ DMSO boundaries, Figure 10(a2).

Variability Chart
(adjacent well):

Shows well 4 is differentiable from wells 5–11 (1.6-fold vs. 0.9–1.35-fold),
Figure 10(a3), yet the adjacent-well asymmetry is negligible as determined “ns”

in Figure 10(a1).

Blended Data
(Figure 10(a1–a3)): Infers ASA does not induce LDH release or incite hepatoxicity in HepaRG cells.

Study 2
ASA on Rat Heps

Trending Chart
(system wide):

Discloses an inverted bell curve response, Figure 10(b2), revealing rat hepatocytes
have greater activity above HepaRG (1.35-to-2.2-fold vs. 0.5-to-1.3-fold). The rat
hepatocytes up-, mid-, and downstream cell functions are tempered (i.e., fewer

cyclical fluctuations) compared with HepaRG cells, Figure 10(b2) vs. Figure 10(a2).

Variability Chart
(adjacent well):

Confirms irregular functions at upstream well 4 (i.e., 2.4-fold change) implying
direct ASA exposure induces a process shift. Moreover, irregularity in downstream
wells 10–11 infer indirect ASA exposures have special cause implications (e.g., cell
generating impacts) as midstream wells have lower functions; Figure 10(b2,b3).

Blended Data
(Figure 10(b1–b3)):

Infers ASA-induced endogenous metabolites stimulate LDH release in
downstream rat hepatocytes

Study 3
NEF on

HepaRG cells

Trending Chart
(system wide):

Discloses upstream activity with fold changes 1.4 to 2.6 above DMSO controls,
with cyclical data patterns; Figure 10(c2).

Variability Chart
(adjacent well):

Confirms irregularities in upstream wells 4–5 (1.45 and 2.1-fold ∆) and midstream
wells 6–7 (1.8 and 2.2-fold ∆); Figure 10(c3).

Blended Data
(Figure 10(c1–c3)):

Infers NEF directly induces an upstream process shift in HepaRG cells (wells 3–6);
i.e., direct NEF influence.

Study 4
ASA on Rat Heps

Trending Chart
(system wide):

Discloses three cell-function peaks to at upstream well 3 (3.1-fold ∆), midstream
well 7 (2.3-fold ∆), and downstream well 10 (2.4-fold ∆) that are interspersed

between normal cell-function outcomes; Figure 10(d2).

Variability Chart
(adjacent well):

Confirms irregularities in upstream well 4 (i.e., process shift = direct NEF
influence), midstream wells 7–8 (i.e., special cause, cell secretions, or generated

metabolite), and downstream wells 10–11 (i.e., unusual outcome or
tertiary/secondary metabolite = indirect NEF influence); Figure 10(d3).

Blended Data
(Figure 10(d1–d3)): Infers NEF directly, indirectly, and tertiary stimulate LDH release in rat heps.

GLUTATHIONE (GSH) ASSAY—Functional Indicator (Studies 9–12)

Glutathione (GSH), a tripeptide present in most tissues, is highly concentrated in the
liver [50]. GSH protects against oxidative stress and regulates important events such
as growth and apoptosis. ASA exposure in HepaRG cells (Study 9) is displayed in
Figure 12(a1). ASA impedes GSH activity in wells 3 (**), 4 (**), 5 (**), 6 (*), 7 (**), 8 (**), and 9
(*); wells 10–11 register as non-significant. ASA exposure in rat hepatocytes (Study 10) is
displayed in Figure 12(b1). The scale of the vertical axis is increased 6-fold to accommodate
for intensified GSH outputs, i.e., range 0–5 adjusted 0–30. ASA stimulates GSH response
in wells 3 (****)–5 (****) with activity approaching 5.8-fold, then non-significant at well 6,
then inducible again in wells 7 (****)–11(****) with activity 26.5-fold above DMSO controls.
NEF exposure in HepaRG cells (Study 11) is displayed in Figure 12(c1). NEF impedes
GSH activity in wells 3 (**), 4 (**), 5 (*), 6 (*), and 7 (*) having 0 to 0.25-fold ranges, is
non-significant in well 8, then impedes activity in wells 9 (*), 10 (*), and 11 (*), having 0.2 to
0.3-fold ranges. NEF exposure in rat hepatocytes (Study 12) is displayed in Figure 12(d1).
The scale of the vertical axis is increased 6-fold to accommodate for intensified GSH outputs,
i.e., range 0–5 adjusted 0–30. NEF stimulates GSH activity in wells 3 (*), 4 (*), 5 and (*), is
non-significant in wells 6–7, induces again in wells 8 (*), 9 (*), and 10 (*), then falls below
DMSO control in well 11 (*). For Studies 9–12, GSH trending responses are summarized
in Table 8.
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Table 7. Summary of CYP3A4 indicator responses.

Study 5
ASA on HepaRG cells

Trending Chart
(system wide):

Discloses a bell curve response having inferior function at upstream well 3 (0.4-fold ∆),
maximum functions in midstream wells 6–9 (1.3-fold ∆), and diminishing function at

downstream well 11 (0.7-fold ∆); Figure 11(a2).

Variability Chart
(adjacent well):

Confirms irregularities in upstream well 4 (process shift = direct ASA influence), and
midstream wells 6–9 (special cause or generated metabolite = indirect ASA influence) given

that well 5 has lower functions; Figure 11(a3).

Blended Data
(Figure 11(a1–a3)): Infers ASA directly and indirectly stimulate CYP3A4 activity in HepaRG cells.

Study 6
ASA on Rat Heps

Trending Chart
(system wide):

Discloses an exponential growth curve response, Figure 11(b2), revealing rat hepatocyte
CYP3A4 functions 7.5× to 33.1× are higher than HepaRG functions, ranges being 3.0-to-43.0

fold versus 0.4-to-1.3 fold, respectively.

Variability Chart
(adjacent well):

Confirms irregularities having partitioned influences. Influence-1, well 3, being unchanged
and replicates DMSO control functions (i.e., no direct ASA influence = no process shift).

Influence-2, wells 4–9, have upregulated CYP3A4 at 1.5-to-7.0-fold ranges (i.e., special cause
A (e.g., metabolite A = indirect ASA influence)). Influence-3, wells 10–11, have top-heavy
upregulated CYP3A4 with 20-to-40-fold ranges (i.e., special cause A↑ (e.g., additional cell

generating impacts = indirect ASA influence)); Figure 11(b3).

Blended Data
(Figure 11(b1–b3)):

Infers ASA endogenous metabolites stimulate CYP3A4 induction in rat hepatocytes, i.e.,
wells 4–11.

Study 7
NEF on HepaRG cells

Trending Chart
(system wide):

Discloses NEF outcomes with fold levels 0.9–1.0-fold below the DMSO vehicle control. A
marginal rise is evident at wells 7–8; Figure 11(c2).

Variability Chart
(adjacent well):

Confirms activity as minimal, no irregularity across the entire µchannel (i.e., a process shift
as direct NEF exposure inhibits CYP3A4 functions); Figure 11(c3).

Blended Data
(Figure 11(c1–c3)): Infers that NEF directly impedes CYP3A4 in HepaRG cells.

Study 8
ASA on Rat Heps

Trending Chart
(system wide):

Discloses three notable cell-function influencers; Influence-1 with upstream wells 3–6 at fold
levels 0.6–1.0 below the DMSO vehicle control, Influence-2 shows wells 9–10 at fold levels
2.3-to-8.3-fold above DMSO control, Influence-3 displays downstream well 11 at 1.9-fold

above the DMSO control; Figure 11(d2).

Variability Chart
(adjacent well):

Confirms irregularities in upstream wells 4–6 (i.e., process shift = direct NEF influence),
highly irregular in downstream wells 9–10 (i.e., special cause or generated metabolite =
indirect NEF influence), and a decline in downstream well 11 (i.e., unusual outcome =

tertiary indirect NEF influence); Figure 11(d3).

Blended Data
(Figure 11(d1–d3)):

Infers NEF has direct, indirect, and tertiary influences on CYP3A4 mutable responses in
rat hepatocytes.

Table 8. Summary of GSH indicator responses.

Study 9
ASA on HepaRG cells

Trending Chart
(systemwide):

Discloses a delayed exponential growth curve with inferior functions upstream and
midstream (0.2–0.6-fold ∆) and ramping at downstream well 11 (1.19-fold ∆). Only well

11 resides in ±3σ DMSO boundary limits; Figure 12(a2).

Variability Chart
(adjacentwell):

Confirms functions remain similar across the entire µchannel (not well 11), inferring direct
ASA exposure induces a process shift; Figure 12(a3).

Blended Data
(Figure 12(a1–a3)): Infers ASA directly impedes GSH in HepaRG cells.

Study 10
ASA on Rat Heps

Trending Chart
(system wide):

Disclose an atypical-inverted bell curve response with upstream increases (4.5 to 5.8-fold),
midstream DMSO vehicle levels at 1.0, a 2nd midstream increase (3.0 to 9.0-fold), and

ramping downstream activity at 15.0 to 26.5-fold ∆’s; Figure 12b2.

Variability Chart
(adjacent well):

Confirms functions are similar in upstream wells 3–5 (process shift = direct ASA influence),
then upregulated in midstream wells 7–9 (3.4 to 7.0-fold) occurring after non-significant well

6, (indirect ASA influence = special cause A (e.g., metabolite A)), then top-heavy
upregulation in wells 10–11 (10.9 to 18.4-fold), i.e., indirect ASA influence = special cause A↑

(e.g., additional cell generating impacts); Figure 12(b3).

Blended Data
(Figure 12(b1–b3)): Infers ASA metabolites stimulate GSH induction in rat hepatocytes (wells 7–11).
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Table 8. Cont.

Study 11
NEF on HepaRG cells

Trending Chart
(system wide):

Discloses a bell curve response having upstream wells below the DMSO LCL (−3σ), well 8
approaching DMSO control at 1, and downstream wells below the DMSO LCL (−3σ);

Figure 12(c2).

Variability Chart
(adjacent well):

Confirms functions are similar in upstream wells 4–7 (process shift = direct NEF influence)
and similar in downstream wells 9–11 (special cause or generated metabolite = indirect NEF

influence); Figure 12(c3).

Blended Data
(Figure 12(c1–c3)): Infers that NEF directly and indirectly impedes GSH in HepaRG cells.

Study 12
ASA on Rat Heps

Trending Chart
(system wide):

Discloses an inverted bell curve response having segmented influencers; Influence-1 in
upstream wells 3–5 at fold levels 2.0–2.5 above the DMSO vehicle control; Influence-2 in

wells 8–10 at fold levels 2.0–7.0 above DMSO controls, Influence-3 in downstream well 11
displaying fold-level 0.1 below the DMSO control; Figure 12(d2).

Variability Chart
(adjacent well):

Confirms functions are similar in upstream wells 3–5 (process shift = direct NEF influence),
returns to DMSO levels at well 7, becomes upregulated in downstream wells 8–10 (special

cause or generated metabolite = indirect NEF influence), then experiences an irregularity in
downstream well 11 (infers an unusual outcome); Figure 12(d3).

Blended Data
(Figure 12(d1–d3)):

Infers NEF directly, indirectly, and tertiary stimulate GSH mutable responses in
rat hepatocytes.

3.8.2. Vetting Trends in Cell Modulation by Drug or Cell Byproduct Stimuli (Studies 1–12)

LDH, CYP3A4, and GSH cell indicator data are coalesced to ascertain if exposure
compound or endogenous cell byproducts induce cell function variance across device
worksites (Table 9). In Table 9, the twelve aforementioned studies are itemized with odd
study numbers being HepaRGs (1, 3, 5, 7, 9, and 11) and even study numbers featuring rat
hepatocytes (2, 4, 6, 8, 10, and 12). The table’s vertical columns are cataloged into cell phe-
notype, exposure drug, cell function, and device culture well sites for upstream (wells 3–5),
midstream (wells 6–8), and downstream (wells 9–11) workspaces. Subcategorized are sta-
tistical classifications using six-sigma nomenclature, for cell function activities, to indicate a
process shift (direct drug influence; light grey backdrop), w/i normal limits (not significant;
white backdrop), and special cause or unusual outcome (cell byproduct/metabolite influ-
ence; dark grey backdrop). As demarcated, all HepaRG studies initiate with a process shift,
i.e., direct drug influence, except Study 1. Study 1 is the LDH response from aspirin expo-
sure (HepaRG/ASA/LDH; Figure 10(a1–a3)) displaying no significant change when com-
pared against the baseline DMSO control (i.e., w/i normal limits). Comparatively, distinct
studies show cell functions remain under direct drug influence (HepaRG/NEF/CYP3A4;
Figure 11(d1–d3)) while other studies rebound to achieve normal cell functions aligned
with baseline DMSO controls (HepaRG/ASA/GSH; Figure 12(a1–a3)). Probingly, Study
5 (HepaRG/ASA/CYP3A4; Figure 11(a1–a3)) and Study 11 (HepaRG/NEF/GSH; Fig-
ure 12(c1–c3)) allude to midstream normal functions, i.e., w/i control limits, with reduced
downstream cell activities to indicate marginal levels of special cause effects (i.e., cell
byproducts). In comparison, assessing rat hepatocytes, all studies initiate with a process
shift, i.e., direct drug influence, except Study 6. Study 6 is the CYP3A4 response from
aspirin exposure that remains within DMSO baseline controls (rat Hep/ASA/CYP3A4;
Figure 11(b1–b3)). For other companion studies (Table 9; Studies 2, 4, 8, 10, 12), cell activities
rebound into normal cell function levels, i.e., w/i control limits. Thereafter, all downstream
cell functions modulate again to indicate a special cause (i.e., cell byproduct) or unusual
or tertiary outcome (i.e., 2nd cell byproduct), inclusive of LDH, CYP3A4, and GSH com-
pound appraisals. Studies having both special and tertiary variances are Study 4 (Rat
Hep/LDH/NEF; Figure 10(d1–d3)) and Study 12 (rat Hep/GSH/NEF; Figure 12(d1–d3)).
By proportion, HepaRG studies experience 33.3% special cause outcomes, albeit displaying
minimal effects, while rat hepatocyte studies experienced 100% special cause outcomes
and reveal significantly high magnitude differences for CYP3A4 (Figure 11b,d) and GSH
(Figure 12b,d), 7.9-fold to 40-fold, respectively. The high-magnitude responses inferring
rat hepatocytes have elevated sensitivity outputs related to cell indicator functions. In
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brief, the variance of cell functions across device culture wells can reveal if an exposure
compound has no influence (i.e., w/i normal limits), has direct drug influence (i.e., process
shift), or has indirect drug influence (i.e., special cause from cell byproducts/metabolites).
In this manner, when variance trends are detected (i.e., special cause or tertiary), follow-up
studies using LC/MS (discovery mode) could be resourcefully applied, via compound
targeting, so previously unspecified cell byproducts are identified into metabolite inducers.
That is, efficiently, logically, and resourcefully finding the unknowns.

Table 9. Summary of trending responses and predictable exposure stimuli using cell-based screening
indicators LDH, CYP3A4, and GSH. Coalesced cell function indicator data from Figures 10–12.

Study Feature {—–Upstream—–} Device Culture Wells {–Downstream–}

Cell
Phenotype

Exposure
Drug

Cell
Function 3 4 5 6 7 8 9 10 11

Ctrl ALL DMSO ALL DMSO vehicle control: 0.1% dimethyl sulfoxide (labeled as 0.1 v/v)
Establishing baseline and standard cell culture limits = Normalized at 1

1 HepaRG ASA LDH w/i control limits (i.e., not significant [ns] compared with the DMSO vehicle)
3 HepaRG NEF LDH Process Shift (↑fnc) w/i Control Limits

5 HepaRG ASA CYP3A4
Process

Shift
(↓fnc)

w/i Control
Limits

Special Cause
(* minimal ↑fnc)

w/i Control
Limits

7 HepaRG NEF CYP3A4 Process Shift (↓fnc)

9 HepaRG ASA GSH Process Shift (↓fnc)

w/i
Con-
trol

Limits

11 HepaRG NEF GSH Process Shift (↓fnc)

w/i
Con-
trol

Limits

Special Cause
(*minimal ↓fnc)

2 Rat Hep ASA LDH
Process

Shift
(↑fnc)

w/i Control Limits Special Cause
(↑fnc)

4 Rat Hep NEF LDH
Process

Shift
(↑fnc)

w/i Control Limits
Special
Cause
(↑fnc)

w/i Control
Limits

Unusual
Outcome (↑fnc)

6 Rat Hep ASA CYP3A4

w/i
Con-
trol

Limits

Special Cause (A); (↑fnc) Special Cause
(A+); (↑fnc)

8 Rat Hep NEF CYP3A4 Process Shift (↓fnc) w/i Control
Limits

Special Cause
(↑fnc)

Unusual
Out-
come
(↓fnc)

10 Rat Hep ASA GSH Process Shift (↑fnc)

w/i
Con-
trol

Limits

Special Cause (A); (↑fnc) Special Cause
(A↑); (↑fnc)

12 Rat Hep NEF GSH Process Shift (↑fnc) w/i Control
Limits Special Cause (↑fnc)

Unusual
Out-
come
(↓fnc)

Nomenclature: Process Shift = direct cell culture reaction to drug. Special Cause = indirect cell culture reaction
to drug (e.g., cellular byproduct/metabolite). (A) and (A↑) and (A+) = consecutive, albeit distinct, ramps of
special causes. Unusual Outcome = a secondary indirect cell culture reaction occurring after an initial special
cause activity (e.g., tertiary or secondary cellular byproduct/metabolite). w/i Control Limits = no significant
changes when contrasted against DMSO vehicle control data. ↓ = Decrease. ↑ = Increase. * = Statistical relevance
(Figures 10–12).

4. Discussion
4.1. Drug Development Is a Very Long and Expensive Process

A pharmaceutical compound can take 10–15 years to progress through the develop-
ment process before FDA clearance. Depending on the type of drug being developed,
the total cost per compound can run USD 1.8B–5.0B [51–54]. The process is plagued by
late-stage clinical failures, which could be circumvented to some degree by implementing
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innovative tissue engineering in vitro testing earlier in the development pipeline. A goal
being “fail fast” in early research stages to avoid expended time, squandered resources, and
depleted finances. Many companies attempt to improve efficiency in drug development
by employing a battery of front-end in vitro assays, these being efforts to distinguish lead
compounds for toxicity and efficacy. Still, the evolution of predictive science continues to
result in false-negative (missing potentially unsafe compounds) and false-positive (falsely
identifying potentially efficacious compounds as toxic) outcomes. Similarly, the use of
in vivo animal models has become more questionable as they often fail to identify safety
liabilities that ultimately arise in human trials. One in vivo study, comparing drug toxicities
between human and animals, indicated that only 43% of animal models can predict human
toxicity [55]. Correspondingly, many political and societal pressures are driving the effort
to reduce or eliminate the use of animal studies in toxicological research [56,57]. Overall, a
critical unmet need persists for innovative in vitro physiologically tools that can improve
predictive potentials for evaluation of new drug candidates.

4.2. Natural 3D Organs with Instrinsic Fluid Flows

Native organ systems, human or animal, innately have in vivo fluid movements from
velocity and diffusion, i.e., dispersion, together being flow vigors to help facilitate expo-
sures of compounds, nutrients, and metabolites [58]. In contradiction, in vitro drug research
historically employs static cultures for evaluating compounds [59]. These no-flow schemes
are absent of delivery velocity, are limited in transport diffusion, and lack dynamic ex-
posure conditions intrinsic to 3D natural organ systems. As such, traditional “no-flow”
classifications are disadvantaged in schemes to predict efficacy and toxicity of compounds,
are inefficient in monitoring gradient ramps of drug concentrations (e.g., nonlinearity and
redosing), and are perceived incomplete for evaluating cell byproducts for metabolite inter-
facing. Accordingly, contemporary tissue engineering processes are impelled to provide
in vitro, multifarious, and complex models having rapid, accurate, and focused predictions
for compound evaluations [60–62].

4.2.1. µFluidic Contemporary Technologies for In Vitro Cell Simulations

Already, rival µfluidic culture systems provide use-model benefits having dissim-
ilar microenvironments with discrete applications and distinct advantages [63,64]. For
evolving technologies, Kirkstall’s Quasi Vivo allows Lego-like building systems. Hurel’s
Hurelflow allows co-cultures and reactive metabolites. BellBrook’s IUVO allows cell in-
vasion analysis. BioIVT’s HepatoPac allows cell-patterned modules. Various commercial
systems having fit-for-purpose functions include Millipore’s CellAsic with flow gradients,
CNBio having transwells and basal flow, Emulate with microchannel scaffolds, TissUse
with systemic organics, Mimetas with vascular Phaseguides, and inSphero with 3D hepatic
co-cultures. A synopsis of simulations includes drug screening, cell signaling, proliferation,
and differentiation, as overviewed in Table 10.

4.2.2. Unmasking the Cell-Byproduct Mechanism Using 1-Way In Vitro µFluidics

Static systems have limits in identifying drug toxicity due to a lack of separation
between parent-compound and cell-metabolite, i.e., masking cell-byproduct mechanisms.
Depending upon the rate of metabolism, toxicity may be missed in a static system or
a drug’s safety may be grossly overestimated. In static systems, slowly metabolized
compounds appear to be much safer because the standard protocol involves complete
media changeover every 24–48 h. Total media changes remove all cell byproducts from
the static system and replenish the parent compound; thus, creating a need to dose at
exceedingly high parent compound concentrations to accumulate enough metabolites to
detect any toxicity—a limitation of short incubation times provided in static techniques.
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Table 10. µFluidic contemporary technologies with fit-for-purpose application.

Company Device Transport Microenvironment

BellBrook IUVO Cell movement
through ECM Micro conduits for invasion cell analysis across 3D environments

BioIVT HepatoPac Static co-cultures Liver modules that are based culture patterning for segmented
hepatocytes and stromal cells.

CNBio Microphysiologic
Platforms

Mixing chamber and
recirculating flow

Scaffolds for 3D tissue formation and transwells for basal
component re-circulation

Emulate Organ on
Chips

Molecular scaffolds
in microchannels

Suite of organ-chip models with automated flow, instruments,
consumables, and software; microfluidic channels lined with cells

Hurel Hurelflow Recirculating Three devices on a biochip. Each device with two cell
compartments aligning co-cultures with reactive metabolites

InSphero Akura
Platforms

Gravity driven
and rocker

InSight microtissue models in 3D for co-culture liver cells.
Microslides, robotics, and cell spheroid pipette transfers

Kirkstall Quasi Vivo Recirculating Interconnected flows, peristaltic pump, chambers for cultures,
tubes for media transports, and Lego-like building system.

Millipore CellAsic
ONIX2 Flow gradients Automated platform, manipulation of culture parameters, and

continuous culture observation

Mimetas Organoplate Gravity driven Perfusable vascular liver models with Phaseguide meniscus
channels and barriers for chemical and compound gradients

TissUse Human
on Chip

Micropump chips and
dynamic circulations To simulate activity of multiple connected human organs; systemic.

Recirculating µfluidic systems have limits in identifying metabolite toxicity as cell secre-
tions are blended into the common nutrient media and this mixture is repeatedly transmitted
back onto the same culture spaces, i.e., masking individual cell-byproduct mechanisms.

Unidirectional µfluidic systems, i.e., 1-way flows, are able to preserve cell byproducts
to allow for enhanced detection of metabolite-mediated toxicity of slowly metabolized
compounds as conserved cell secretions are used to evaluate de-risking of toxicity profiles
by way of concurrent mechanistic evaluations of both ascending primary compound (i.e.,
drug) and perpetually generating secondary metabolite exposures (i.e., cell byproducts).

4.2.3. Trending Variations to Observe Different Types of Cell Toxicity

The SsWaterfall platform is a screening tool with the potential to evaluate wide-ranging
compound exposures and concurrently observe indirect cell byproduct influencing amid
stable, upregulated, or downregulated cell functions. The outcomes are non-specific by
design, such that all-inclusive datasets are utilized as additional information categories (i.e.,
cell responses previously unviable) to be co-analyzed with traditional culture techniques.
From an analogous viewpoint, nuclear magnetic resonance (NMR) metabolite snapshots are
all-inclusive, non-specific, and powerful datasets that provide generalized bulk information
(e.g., inclusive cell byproducts), whereas liquid chromotography mass spectrometry (LCMS)
is specific to one deliverable such as one evaluated metabolite. In this NMR–LCMS scenario,
NMR can be utilized to evaluate all-inclusivity that affords information to guide effective
and efficient LCMS studies; that is, bulk analysis as resourceful tailoring into specific
details. In this regard, the SsWaterfall platform’s aim is to recognize unforeseen cell-
modulation trends early in research and development in vitro stages, as generalized non-
specific data snapshots. For a study, if data trends of primary compound and indirect cell
byproducts remain stable, e.g., do not modulate, the implication is that the compound
is not detrimental to cell health. However, if culture modulations are recognized, then
additional and precise evaluations of the compound are needed as drug developers better
understand unanticipated incidences to include inducible cell byproducts. Herein, drug
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developers may quickly weed-out the compound to avoid lost time, lost effort, and lost
money corresponding to the fail-fast mantra.

4.3. DILI Is One Reason That New Compounds Are Removed from Late-Stage Clinical Trials

In the framework of precision medicine, DILI is a subgroup of liver injury and is
one reason that new drug compounds are removed from late-stage clinical trials and after
market entry [65–67]. Typically, static cultures or animal studies are deemed unreliable
because DILI can be induced by parental drugs or subsequent cell-generated metabo-
lites [55], indicating DILI as a longer-term chronic hepatotoxicity injury model with explicit
cell signaling implications, whereas short-term in vitro cultures of hepatocytes, in static
setups, are limited due to omitted cell signaling dynamics. Meanwhile, longer-term in vivo
animal studies can be limited by species-specific cell metabolite generation of contradictory
complexities. In consequence, in vitro methods to predict DILI with high accuracy continue
to be sought-after attributes. Suitably, fluid-flow systems are evolving to replicate, as accu-
rately as practical, in vivo exposure schemes. Given that hepatocytes are the performing
biologic participants, and distinct cell phenotypes have unique functional responses, both
the adequately studied human HepaRG cell line [37,68] and historically analyzed primary
rat hepatocytes are considered stable reproducible contributors needed for these exposure
investigations. Relatedly, isolated primary human hepatocytes were excluded from initial
studies due to their inherent cell function variability [69], but primary human cells could
be available for accommodating evaluations.

4.4. Perpetually Adapating Cell Responses for Complementary Knowledge

With flow, the operational use of hepatocytes in culture facilitates extended cul-
ture timelines, retains cell function efficacy, and maintains activities of metabolizing
enzymes [70]. Collectively, by emulating a radiation AUC exposure model, the device
supports atypical cell responses to create complementary data outcomes, i.e., not repli-
cate or replacement data. Each µchannel workspace experiences quantifiable-centric con-
tacts, compound-centric exposures, and accumulation-centric encounters (Figure 4(b1–b3)).
Herein, the multiwell µfluidics device is designated a biologic process assembly line for
both compound-exposure and cell-generated byproducts, where real-time trending varia-
tions are used to evaluate bio-transformations. Analogous trending charts are successfully
employed in conventional manufacture assembly-line processes, i.e., six-sigma engineering
analysis, to track, sustain, or re-align production processes within boundary limits (e.g.,
UCL and LCL).

4.4.1. Focused Modeling with Enhanced Tissue Engineering

Traditionally, in efforts to predict the bioactivity responses of new compounds, drug
development companies have devoted enormous in vitro research efforts for predictive
efficacy and foretelling toxicity, by employing high-throughput cell culture systems. Still,
the abundance of front-end testings utilized, i.e., extensively searching for validations,
continues to generate findings that do not fully recapitulate in vivo effects and results in
late-stage clinical failures at significantly high costs. Many shortfalls could be overcome
through enhanced tissue engineered models that more robustly mimic natural in vivo organ
structures. Focused modeling could have explicit and tangible deliverables contrary to
the voluminous routine of implicit studies, i.e., evaluating subgroups in high accuracy
formats. By evolving complex organ structures, in vitro assemblies might exist as viable
and non-viable influencers to include nutrient mass transport, cell communication, and cell
generated byproducts. In this framework, multiwell and µfluidic platforms are expected to
enrich supplemental datasets to help select/deselect compounds of interest.
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4.4.2. LDH Release Is a Biomarker to Evaluate Liver Damage

LDH release in the blood is an indicator of cell death and disintegration of the cell mem-
brane. �LDH release from HepaRGs was non-significant from ASA exposure (Figure 10a).
LDH release from HepaRGs had upstream significance from NEF exposures (Figure 10c).
�LDH release from rat hepatocytes was more sensitive with up/downstream significances
from ASA exposure (Figure 10b) and up/mid/downstream significances from NEF expo-
sure (Figure 10d). United, these findings suggest that trending variations in the µfluidic
system can be used to predict compound influence via modulations in cell functions or
differentiating cell health (i.e., upstream process shifts to include toxic influences) and
concurrently evaluate indirect bio-transformations from their sequential downstream cell-
generated byproducts (i.e., consequent special cause and unusual outcomes). This in vitro
screening outcome generates general cell-byproduct information, non-specific by design, to
signify weed-out selections or to indicate that additional compound evaluations may be
necessary before in-vivo studies.

4.4.3. CYP3A4 Is the Most Critical Drug-Metabolizing Enzyme Expressed in Liver Cells

CYP3A4 is involved in phase I metabolism of xenobiotics and participates in the
metabolism of many clinical drugs [71]. CYP3A4 also contributes to remarkable first-pass
elimination of its substrates, modulations being essential in this study. �CYP3A4 activity
from rat hepatocytes exposed to ASA showed as non-significant upstream, upregulated
midstream, and modified again downstream (Figure 11b). Comparable high-sensitivity re-
sponses are derived from rat hepatocytes exposed to NEF (Figure 11d). �CYP3A4 bioactivity
from HepaRG cells was decreased with high-dose ASA at upstream sites, then nominally
upregulated during lower-dose midstream exposures (Figure 11a); findings consistent
with the literature reports that ASA increases CYP3A4 activity [72]. CYP3A4 bioactivity
from HepaRG cells was decreased by NEF showing negligible activity, far below DMSO
controls (Figure 11c); findings consistent with the literature reports that NEF is a substrate
and inhibitor of CYP3A4 in vitro [73] and an inhibitor of CYP3A4 in vivo [74]. United,
these findings suggest that cell-generated byproducts are low in HepaRGs and high in rat
hepatocytes, having inducible trends of CYP3A4 activity.

4.4.4. Glutathione Is Produced in All Mammalian Cells

Glutathione has secreted forms of thiol-reduced (GSH) and disulfide-oxidized (GSSG).
GSH is the primary form, 90% is in the cytosol and 10% in the mitochondria and endoplas-
mic reticulum (ER). GSH is involved in several vital functions including (i) scavenging free
radicals; (ii) detoxifying electrophiles; (iii) providing a reservoir for cysteine; (iv) maintain-
ing the essential thiol status of proteins; and (v) modulating critical cellular processes such
as growth and death, immune function, and fibrogenesis [75]. The liver has the highest
GSH level and plays a crucial role in interorgan GSH homeostasis. Reduced hepatic GSH
levels can exacerbate and perpetuate liver injury, modulations being essential in this study.
�HepaRG cells exposed to ASA or NEF decreased GSH across most worksites (Figure 12a,c),
suggesting exposures induce a reduction in expression of the genes involved in GSH syn-
thesis. �Opposingly, rat hepatocytes exposed to ASA or NEF had significantly higher GSH
for up/mid/downstream µfluidic sites (Figure 12b,d), possibly inducing hepatocyte prolif-
eration [76,77]. United, these results suggest predictable dysregulation of GSH synthesis
after treatment.

4.4.5. Observing Cell Behaviors

Historically, APAP is a well-studied drug standard having known metabolites APAP-
glucuronide (APAP-Glu), APAP-sulfate, and APAP-glutathione (APAP-GSH) [45–47]. The
targeting of APAP metabolites within the µfluidic device, initially, confirmed that multiwell
behaviors are consistent with known APAP compound activities as three metabolites did
generate across the µfluidic channel, Figures 8 and 9. Consequently, new information
includes APAP concentrations versus metabolite generation levels, accruing timelines of
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APAP exposures related to up-/mid-/-downstream sites of metabolite formation, and
revealing how signals from adjacent wells may influence cyclical pattens in metabolite
behaviors (Figure 9). In Figure 9, APAP-GSH displays the highest cell function variability
at 24 h (well 6), whereas APAP-sulfate and APAP-Glu display most function variability at
72 h in downstream culture wells 9–10.

Previously, in 2003, Nefazodone was removed from the market after 9 years as an
antidepressant product (Serzone) [78]. Discontinuation was due to adverse hepatic events
and hepatic injury as listed in the World Health Organization database of adverse drug
reactions, with severe reactions involving elevated bilirubin and onset of jaundice, hepatitis,
and hepatocellular necrosis. With respect to time intervals, cases of hepatotoxicity usually
occurred within the first 4–8 months of starting the drug. Still, the mechanism with which
nefazodone causes injury remains unknown, with scientific relevance focused on P450-
CYP3A4, as nefazodone is both metabolized and is an inhibitor of this enzyme. Dual
functionality, induction/inhibition, indicates that competing P450-CYP3A4 drugs could
delay or increase nefazodone clearance. Herein, hepatotoxicity may be mediated by toxic
intermediates of its metabolism as cell byproducts influence downstream hepatic structures
initiated from hepatic zone 1 (periportal), progressing through zone 2 (intermediary), and
influencing zone 3 (perivenous) locals. In patient cases of acute hepatitis, liver biopsy
usually demonstrated variable degrees of centrolobular zone-3 necrosis [79]. By trending
comparisons, the µfluidic cell responses shown in Figure 7(b1–c1) display downstream cell
death, an influence of cell byproducts, as upstream culture sites continue to remain viable.

In µfluidic devices, 1-way flow creates ascending compound exposures that are differ-
ent from well 3 to well 11, Figure 4(b1). Gradient ramps may allow cell cultures to craft
resistance against compounds. In auxiliary assessments (data not shown), select cell studies
revealed two unique corollaries amid fluidic vs. static cultures: (i) cell function responses
from µfluidic cultures were delayed by 3–5 days prior to achieving similar outcomes as
derived from static cultures, and (ii) a resistance response from µfluidic cultures allowed
cells to tolerate 2×–3× higher compound concentrations prior to harmful responses, as
quantified from static cultures. Herein, the ramp of compounds may have relevance to
in vivo studies as the natural body ramps exposures by repeat dosing.

4.5. Emerging Advantages with Continued Optimization

The in vitro µfluidic system can help evaluate trending variances of drug–drug in-
teractions between compounds and their cell generated byproducts, with importance of
fluid-flow for liver culture models [58]. Healthy hepatocytes require a relatively mas-
sive influx of oxygen difficult to achieve by diffusion alone, highlighting a significance
in perfused oxygen-rich media [80]. While this µfluidic platform is capable of perfused
cell culture, further optimization is needed to obtain in vivo-like vascular structures across
device µchannels. Still, the µfluidic device is advantageous because there is no need for
pumps, tubing, or auxiliary support components. The device’s compatibility with different
cell phenotypes, multiplex and multiwell configuration, and adjustable flow conditions is
essential for assessing biological and mechanical components that are necessary for a fully
optimized liver model.

4.6. Future Research Directions

This study is limited with attention on APAP (having known metabolites), ASA
(non-DILI), and NEF (DILI). Along with expanding assay panels of cell functions such
as ATP (metabolic activity), albumin, urea, ROS (reactive oxygen), and BSEP (bile salt
transporter), ongoing work will focus on different drug categories with the goal to broadly
apply techniques for quick and easy identification of parent compound and toxic metabolite
influencing. Future advancements will involve hepatic 3D spheroids that are formed within
the device (i.e., no spheroid transfer) and complex arrangements of multi-organ tissues
such as intestinal (upstream), hepatic (midstream), and target cancer (downstream) for
body-on-chip systems.
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5. Conclusions

The multiwell device, unidirectional flow, and six-sigma analysis presented here
demonstrate the rapid detection of direct compound toxicity and trailing detection of cell-
byproduct influencers across a cell culture platform. In trailing detections, the unmasking of
cell-byproduct mechanisms allow for evaluations of metabolite-mediated toxicity through
slow-, medium-, and fast-acting toxicity profiles, formerly concealed. With cell-byproduct
secretions ascending from 0→subtoxic→borderline toxic→high toxic concentrations, this
study explores real-time adaptive bioactivity trends and invites opportunities for cell-based
screenings of new compounds, NCE, or to revisit market-removed drugs. Herein, lean
six-sigma tactics are used to establish process control charts in the tracking of perpetually
fluctuating cell health variances. Variance surveys of adjacent µchannel wells continu-
ously evolve as cell-function indicators reveal upstream, midstream, and downstream
mechanisms for process shifts (i.e., direct parent compound influence), special cause influ-
encers (i.e., generated cell byproduct stimuli), or unusual outcomes (i.e., indirect secondary
metabolite impacts). Akin to the idioms of precision medicine, personalized medicine, and
predictive toxicology, bioreactors are progressing as fit-for-purpose in vitro tools providing
complementary data intelligence.

We believe the patterns of observed dual toxicity (i.e., parent compound plus one
or more cell byproducts) should be applicable across a wide variety of drugs, where cell
metabolites are latent unknowns that may induce toxicity profiling.

6. Patents

Cell method and related systems for use in a fluidics device. US Pat No. 9,829,499.
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Appendix A

Appendix A.1. Terminology to Define Modulation Traits of Cell Data for Process Shift, Special
Cause, and Unusual Outcome

The terms process shift, special cause, and unusual outcomes represent six-sigma
expressions across a unidirectional manufacture production line that is based on (i) in-line
sequential workstations, (ii) resultant product variability outcomes from each workstation
that is doing an itemized job, and (iii) the final product at the end of the production line.
When a variation falls out of ±3σ boundaries, per workstation, an indexed terminology is
rendered based on physical production-line location as related to upstream, midstream, or
downstream worksites. Associatively, for SsWaterfall, a single platform channel involves
1-way flow and has nine cell culture workstations (wells 3–11). Each worksite accomplishes
itemized functions in response to station-specific exposures allied with timelines, concentra-
tion ramps, and specific compound traits. Unidirectional flow infers that the downstream
distribution of drugs remains as both conclusive and observable elements, unmixed (un-
blended), as sample traits that are critical for assay evaluations. Herein, a process shift is
defined as a direct drug influence (Table 5, row a3–d3, Description), where modulations
are directly attributed to the dosing compound, are usually found close to the dosing well,
and have inflection cadences confirmed against DMSO controls. A special cause is also a
modulation with two-fold comparisons against an upstream process shift and well-specific
DMSO controls. The change is not directly associated with the dosing compound. Instead,
an indirect association can be represented as a cell byproduct that induces a downstream
culture site modulation (Tables 6 and 7, Studies 2, 4, 5, 6, and 8 variability charts). The
physical location is important as upstream cell-generated byproducts are needed to influ-
ence downstream workstation functions. Accordingly, the special cause is inferred from a
1st cell-generated byproduct. Similarly, an unusual outcome is also a modulation, but the
change is from a 2nd cell-generated byproduct to induce worksite inflections occurring
after a special cause (Table 8, Studies 10, 11, 12 Variability Charts).

Appendix A.2. Modulation of Cell Byproducts/Metabolites

In vivo, particular hepatic toxicities emerge as native liver cells generate cell secretions
that can catalyze liver damage. The advancement of in vitro models that better mimic
behaviors of native liver tissue remains an industry challenge. To enrich scientific un-
derstanding, in vitro culture systems may benefit from established cell–cell networks and
the intrinsic interactions between a parent compound (upstream direct effect) and the
maturity of cell-generated secretions (downstream indirect effect). In-line arrangements of
cell cultures potentially include:

• Hepatocyte→ hepatocyte→ hepatocyte→ (channel multiwells 3–9 as presented in
the current text);

• Liver zone-1 (wells 3–5)→ liver zone-2 (wells 6–8)→ liver zone-3 (wells 9–11); corre-
lated to cell maturity;

• Intestinal (wells 3–4)→ liver (wells 5–9)→ target cancer (wells 10–11); correlated to
multiorgan systems, etc.

Appendix B

Trending Effects of Vehicle DMSO Used for Normalization across Wells

Charts are normalized to facilitate well-to-well data comparisons. The technique for
normalization is visualized in Figure A1 as evaluated for assays LDH (U/L), GSH (µM), and
CYP3A4 (RLU). Panels (a1, b1, c1) are DMSO-only controls displaying 3 study replicates
along with the combined average. Panels (a2, b2, c2) are the same DMSO controls compared
against an alternative compound, norbuprenorphine at 20 nM dose, to illustrate variability
in replicate drug studies and variability against DMSO controls. Panels (a3, b3, c3) are
the same DMSO controls compared against three alternative compounds, (flurbiprofen
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at 573 µM, norbuprenorphine at 20 nM, propranlol at 2 µM) to signify variability amid
exposure drugs.
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