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Abstract: The current digital age, mainly characterized by an economy based upon information
technology, demands a data integrity service, even more so because organizations and companies are
migrating their services over the cloud. This is not a simple task; it is cumbersome since traditional
schemes in databases could be subject to modifications. However, it can be solved using blockchain
technology. This paper provides a data integrity verifiability architecture for cloud systems based
on blockchain. The architecture provides a mechanism to store events (as logs) within a blockchain
platform from any cloud system. Users can then consult data integrity through a microservice, acting
as an intermediate server that carries out a set of verification steps within the blockchain, which
confirms the integrity of a previously stored log. Our architecture takes advantage of the blockchain
strength concerning integrity, providing a traceability track of the stored logs. A prototype system
and a case study were implemented based on the proposed architecture. Our experimental results
show that the proposed decentralized architecture can be adapted to cloud existing systems that were
born without blockchain technology and require a modular and scalable audit characteristic.

Keywords: blockchain; integrity; audit; microservices; cloud systems

1. Introduction

In recent years, cloud computing has been one of the most important topics in the
field of information technology (IT) [1]. Every day, many organizations and companies
are migrating their services over the cloud [2]. However, a primary obstacle in moving
their systems to the cloud concerns the security and the continuously increasing number of
digital crimes occurring in cloud environments [1]. Ensuring data integrity in any system
is currently an imperative requirement. Stored data can be vulnerable to manipulation,
intentionally or not, even more when placed in the cloud. Data integrity is a fundamental
aspect of storage security and reliability [3]. It consists of protecting information against
modifications or inappropriate destruction.

Policies, regulations, and secure mechanisms should be developed to protect people
from being deceived; cloud forensics is a step forward in dealing with it [1]. A fundamental
mechanism for digital forensics is auditing the logs; they are used to keep track of important
activities. Logs have been used to provide information about past events and, therefore,
show the path of the state of a system [4].

“Ensuring” logs from improper users has been reviewed by many researchers in
different areas, such as distributed systems [4,5], cloud computing [6,7], and services [8–11].
These system solutions have been developed to be adapted for TCP/IP internet
infrastructures. The internet was built to guarantee communication, not to guarantee
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information security properties. Thus, TCP/IP-based solutions layered on the internet
have raised significant trust and privacy concerns.

Blockchain seems to be a suited technology for dealing with cloud system data integrity,
because blockchain is characterized by features, such as transparency, traceability, and
security [12]. These features make the adoption of blockchain attractive toward enhancing
information security, privacy, and trustworthiness in very different contexts. Firstly, this
technology was developed to improve integrity in the Bitcoin network [13]; then, it gave
way to other cryptocurrencies. Recently, blockchain and the smart contract extension
have permitted considering other use cases, such as the supply chain, Internet of Things,
healthcare systems, digital right management, insurance, financial systems, and real estate
systems [14]. These implementations share a very important characteristic related to trust—
a crucial element of blockchain technology [15,16].

Blockchain applies cryptography and hash functions to chain the blocks, along with a
decentralized structure, making it very difficult for third parties to manipulate the
information compared to traditional databases. Its potential is enormous in information
transactions, such as cloud storage. Blockchain technology itself already has the strengths
of including logging and traceability mechanisms. However, the reality is that most
organizations were born without it, and their storage information is executed via
traditional databases (off-chain). A complete migration could imply very high economic
costs since systems with high information content would require too much computational
costs deploying their transactions on the blockchain network [17].

In this article, blockchain technology is used as a repository to store all events that
can arise in an external system, ensuring its integrity. We provide an audit mechanism,
propose a hybrid solution architecture on a permissionless blockchain with smart contract
support. Each event, before being stored, is transformed in a log containing the attribute
tags that respond to the following questions: how was the event generated? Who generated
it? What included the event? Where was it generated? When was the event generated? The
log is stored in the blockchain by executing smart contracts. This will allow validating and
knowing the traceability of any data modification, guaranteeing if the information provides
integrity or not, i.e., knowing the possible alterations by third parties.

On the other hand, following the new technological demands, in terms of software
development, we identified that the microservice approach offers an evolutionary step
concerning monolithic ones. Thus, we provided an architecture following the microservice
approach. However, a microservice system design remains challenging since it can be
independently deployed, has lower coupling, and is self-contained. For cloud applications
development, microservice allows more freedom to evolve and requires a mechanism to
inform others about what has changed or to track past events in the system. With the highly
decentralized development and design of microservices, it becomes difficult to maintain a
centralized architectural design reference [18]. As a result, the system might be vulnerable
to data integrity attacks. Hence, this paper aims to provide a decentralized architecture
with two general services. Firstly, a data integrity mechanism in which all events (records)
triggered by a cloud system are stored within a blockchain in a hashed form. Secondly,
a verifiability process that checks the data integrity. The mechanism was built through a
microservice architecture to be integrated with any system as a service.

We implemented our architecture, and our experiments show that it can be successfully
suited within other cloud systems. Our main contributions are listed as follows:

• A mechanism for auditing issues storing logs from the initialization phase of a system
until the execution of user transactions guaranteed by blockchain strengths concerning
integrity.

• A consulting mechanism that provides certainty about the integrity of the logs stored
in the blockchain.

• Traceability of each log transaction carried out by the corresponding users of a cloud
system in distributed environments.
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• An auditing mechanism where cloud systems (following the microservice architecture)
can plug it.

Our proposal falls in a design science research in the information systems area [19];
specifically, in the software engineering topic. The methodology of our work follows that
proposed in [20], commonly applied in engineering. Such a methodology comprehends the
following steps: (a) Motivation and problem identification; (b) Objectives; (c) Design; (d)
Development; and (e) Demonstration and validation.

Following the methodology described previously, we structured the paper as follows:
(Step a) is deepened in Section 2, which also grounds some technologies used throughout
the document and some related works; Section 3 raises the objectives (Step b) and describes
our general architecture (Step c) and main components; Sections 4 and 5 detail the design
of our architecture (continuing Step c); Section 6 explains our prototype (Step d), together
with a case study shown in Section 7; some demonstrations and validations (Step e) are
provided in Section 8. Finally, we outline our discussion and conclusions in Section 9.

2. Preliminaries and Related Work

The amount of data currently generated worldwide does not have a direct comparison
with the data generated in the past since users create and store more data than ten years
ago. For example, a single user currently solely provides large amounts of data per day in
social networks. The large amounts of data are often stored in the cloud. Thus, one of the
current high-demand issues is data integrity, especially for auditing matters.

On the other hand, companies are migrating their processes to the cloud, causing the
implementation of new strategies in the software development process. This section starts
contextualizing the evolutionary requirements of the automation systems highlighting what
worked in the past does not necessarily work today. Then, we approach some works that
focused on the subject of data integrity in cloud systems and those focused on blockchain.

2.1. From Programming Office Systems to Microservice Architecture

Office systems, reference [21], were the first good solutions for the automation of
organizations. Over time, these systems became fragmented subsystems; then, an excellent
evolution was client–server systems. Organizations could obtain information in real-time
from centralized databases, which represented significant advances in software
development. A client–server system (denoted in the literature as monolithic architecture)
is a way to build a complete software as a unit and the central server has several
responsibilities and does mostly everything. Monolithic architecture is still valid for small
projects, but when organizations or team groups become more extensive, client–server
systems have been shown to not be enough, reference [22].

Microservice architecture is a good solution to solve the monolithic problem and it
recently has become more popular. It is a software architecture design that offers the
following characteristics: modularity, scalability, integration of heterogeneous and legacy
systems, and distributed development, reference [23]. These characteristics are highly
required when designing a system that will be mounted in the cloud. Although the
microservice system design remains challenging, it has become the leading design for
cloud native systems; since it provides benefits, such as faster deployment cycles, better
scalability, and good separation of concerns among services, reference [18].

2.2. Data Integrity in Cloud Systems

Cloud computing can be perceived as a collection of computing resources providing
shareable infrastructure through the internet,which are accessible and available everywhere,
reference [24]. The name was coined by Mr. Ramnath Chellappa in 1997, reference [25],
which agree with [24,26].

Cloud computing is defined by the National Institute of Standards and Technology
(NIST) as a model for enabling convenient, on-demand network access to a shared pool
of configurable computing resources (e.g., networks, servers, storage, applications, and
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services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction, reference [27]. Applications of cloud computing are mailing
services to storage, document processing, hosting services, image processing, and video
streaming [26].

The reality is that cloud computing right now is one of the most trending topics in
the field of information technology (IT) in recent years [1]. Companies, such as Amazon,
Google, and Microsoft, have enhanced their services to provide cloud environments for
their customers. Thus, every day, many organizations and companies are migrating
their services over the cloud, since the benefits of cloud computing encompass improved
efficiency, flexibility, and reduced infrastructure costs, reference [2].

However, there exist some concerns when uploading systems to the cloud, such as
security, privacy, power efficiency, compliance, and integrity [1,28]. Preserving
confidentiality and integrity in distributed systems and cloud services is also a key
problem. The importance of confidentiality and data integrity in cloud systems is
imminent. Confidentiality refers to restricting access to information, at least, it is
authorized to access it. Data integrity aims to protect information against intruder
modifications or software bugs.

Traditional techniques used for data integrity and verification for cloud storage are
already provided in the literature [29]. Man et al. [30] argue that traditional systems
(only off-chain) remain inefficient, antiquated, leading to critical data omissions, security
vulnerabilities, and even corruption. We explore a newer technique, the combination of
data integrity with a blockchain platform.

2.3. Data Integrity with Blockchain

Blockchain, firstly introduced by Satoshi Nakamoto [13] in the design of Bitcoin, is
described as a distributed database, where the information contained is allocated in blocks;
each block is chained with its previous one by adding the hash address of the previous
block, among other data, establishing a chain. Each block can also include smart contracts,
a set of computer instructions that are triggered to run specific tasks. Blockchain is an
excellent option for data integrity; it is resistant to malicious data modification.

Some initiatives have explored the use of blockchain to provide integrity in audit issues.
Suzuki, et al. [31], proposed a scheme using blockchain technology as a request-response
channel for a client–server system in a control access application to record both client
requests and the server responds in an auditable manner. Ahmad et al. [32] argued that
traditional log systems are vulnerable and subject to a series of attacks; they searched for a
system able to avoid audit logs being "tamped" by adversaries; then, they proposed a system
called BlockAudit, which used Hyperledger blockchain. There are other works based on
Hyperledger, focusing on auditing data integrity using schemes involving a third-party
auditor [33]. PengCheng et al. [34], use a mobile agent technology to deploy distributed
virtual machine agent model in the cloud; the machine agent enables to cooperate to store
data, then they built an integrity protection mechanism with their virtual machine proxy
model; they trust in the security mechanism of the blockchain technology to improve the
performance of the cloud computing concerning secure storing and secure computing.
Even though there are works focused on blockchain in data integrity aspects, we aimed
to provide a data verifiability architecture that can be integrated with other systems, in
particular with cloud-based.

A closely related work is presented in [35], an audit mechanism that saves all the
events of a supply chain in a blockchain in a hashed form; then users of the supply chain
system can query integrity, data provenance, and traceability from a blockchain through an
intermediate server that establishes communication between blockchain and the supply
chain. Recently, RootLogChain was proposed in [36], it is an audit mechanism that is built
upon a security protocol to create a root user in a blockchain, and from there, all root events
are stored as logs within a blockchain.
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3. The Architecture Model

This work provides an architecture able to store all events (logs) within a blockchain
in a hashed form; then, we give a verifiability process to check the data integrity. This
architecture can be adapted to cloud systems that generate HTTP events. These events
must be triggered to the architecture to be saved.

Figure 1 illustrates an outline of our model. The Cloud System, denoted as CS,
is illustrated in the left part of Figure 1. CS must establish communication with The
Verifiability Blockchain Service Interface, abbreviated as VBSI, for both to store each event
that occurs internally within CS and to provide reliability by means of a consulting process.
VBSI is an intermediary between CS and the blockchain part. Blockchain acts as a software
connector [37], where all events are registered. The following subsections outline the
general operability of these three parts: CS, VBSI and the blockchain.

Figure 1. General Model: interaction among The Cloud System, The Verifiability Blockchain Service
Interface and the blockchain.

3.1. The Cloud System

From the final user perspective, cloud computing can be divided into two parts: the
client and the server [38]. The client part comprises the software used by the final user.
The user does not have to install complex software to use services provided by the cloud;
usually, a web browser, mobile application, or terminal are used. The server side has to do
with the back-end, it is an abstract layer with the hardware and the connectivity; it means
various computers, servers, and data storage.

On the other hand, according to Zhang et al. [39], the cloud computing architecture
consists of four layers: the hardware, the infrastructure, the platform, and the application.
The hardware layer, typically implemented in data centers, manages the physical resources
such as servers, routers, switches, power, cooling systems, etc. The infrastructure layer
shares physical resources using virtual technologies, such as VMware, XEN, and KVM. The
platform layer consists of operating systems and application frameworks. The application
is the highest layer consisting of the cloud applications; it is the view of the final user.

In the case of our model, we locate The Cloud System in the platform layer according
to cloud computing architecture of Zhang et al. [39]. The Cloud System will establish
communication with VBSI using the TCP/IP protocol. In particular, it will be over the
hypertext transfer protocol (HTTP) [40], and its secure version HTTPS [41]. The methods
that The Cloud System will be requesting to VBSI will be GET, POST, PUT and DELETE.
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3.2. Microservices of VBSI

Considering that our model might be implemented as an extension in systems
requiring audit data characteristics, we designed it following a software scheme as a
service using a microservice architecture. This architecture was introduced as a new
alternative, reference [42], over the monolithic approach. Microservices were developed as
small, well-defined purposes, and autonomous services, deployed independently [23,43].
Currently, organizations tend to upload their services to the cloud, and this architecture is
usually recommended.

Figure 1 illustrates three general microservices: Event API-Gateway , Audit and Users,
as illustrated at the top-right of Figure 1. VBSI is the interface of our model, dedicated
to interacting with The Cloud System. CS sends HTTP (respectively HTTPS) request
methods to trigger events. These events are received by the Event API-Gateway, which
assorts the events and resends to one of the following types of services: (a) Storing data (it
involves submitting, updating, or deleting information) in a hashed way; or (b) Consulting
information for audit issues. Any of these services must check the suited permissions
with the Users service. The answer sent to The Cloud System depends on the processed
operation in the blockchain. Details of the global mechanism of VBSI will be explained in
Section 4.

3.3. Participants as Smart Contracts

The blockchain part stores events in order to validate the information stored in the The
Cloud System. Our proposal of including blockchain as a verification procedure coincides
with [35,44]. Each event in the system is marshaled in hashing data to be stored by smart
contract named Bitacora.

To execute, this smart contract is required to be called by a specific type of user. We
created three types of users (root, administrator and transaction users), these type of users
are represented in the blockchain as smart contracts. The general overview is as follows:

• Root: It is a crucial role, which is formed at the time that the system is initiated. Our
model trusts in the root, and a smart contract Root is created the first time when the
architecture is started. Hence, all subsequent operations are chained to this contract.
The creation of the root is carried out following [36].

• Administrator: It is created by the root. An independent smart contract is created for
each administrator. In our model, the administrator can add TUsers.

• TUser: When an administrator adds a new user, creates a TUser smart contract, and
also generates a Resource smart contract. TUser is a transactional user who can store
hash data in the blockchain through a smart contract called Resource.

Details of the global mechanism of the smart contracts will be explained in Section 5.

4. The Verifiability Blockchain Service Interface (VBSI)

VBSI interacts with two external entities: The Cloud System and the blockchain. The
interaction with The Cloud System is performed through the Event API-Gateway, while
the interaction with the blockchain is carried out by the Audit microservice. Internally,
all operations must be "permissioned" by a microservice, so-called Users. In the following
sub-sections, we will explain them in detail.

Table 1 gives a general abstract of some notations and abbreviations that can be
found throughout the paper. The last column pinpoints the reference formula where it can
be found.
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Table 1. Descriptions and references of some abbreviations and formulas.

Abbreviation Description Section Explained Formula

CS The Cloud System Section 3.1

VBSI The Verifiability Blockchain Service Interface Sections 3.2 and 4

Audit Verifiability Blockchain Micro-Service Sections 4.2 and 4.3

Ev Event’s type Sections 4.1 and 4.2 (1)

m Message sent to VBSI to be stored in the blockchain Section 4.2 (2)

A Sender Section 4.2

B Receiver or Target Section 4.2

D Data to be stored in the blockchain Sections 4.2 and 4.4 (2)

Hx Hashed message Section 4.2 (2)

Hash(m) Hash function on message m Section 4.2 (3)

To Token Section 4.4 (4)

R Audited answer compound by {|To, Atr, Asc|} Section 4.2 (5)

Rp Details generated in the blockchain Section 4.3 (6)

Res Receipt answer after a consulting process in the blockchain Section 4.3 (7)

Pd Personal data Section 4.4.1 (8)

b Boolean answer denotes if a user can or not execute an event Section 4.3 (9)

Dp Set of permissions Section 4.4.1 (10)

Ut Type of user Section 4.4.1

Gas Gas required to execute a transaction Section 4.4.1

RS Resource that a user has access Section 4.4.3

K+
p Public key address Section 4.4.1

Atr Transaction address Sections 4.2, 4.3 and 5.2

Asc Smart contract address Sections 4.2, 4.3 and 5.2

4.1. Event API-Gateway

This follows the API-Gateway architecture of Gadge et al. [45]. The Event API-Gateway
is the main controller of the backend. The Event API-Gateway is a server that is the single
entry point into the system. It receives events requested by The Cloud System and emits a
comeback answer. Such events are denoted as Ev and involve the following CRUD (Create,
Read, Update and Delete) operations. These operations are HTTP methods (POST, GET,
PUT and DELETE, respectively). It means that an Ev(m) is a polymorphic function, hence,
it could refer to any of the following forms:

Ev(m) =


POST(m)

GET(m)

PUT(m)

DELETE(m)

(1)

Table 2 represents how the Event API-Gateway receives an HTTP (HTTPS, respectively)
request method, and it specifies what is the corresponding interface played in the Audit
service. For example, if a Create operation is requested, it is carried out using a POST
method, then Storing interface is executed, meaning that a new operation is requested. In
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case an Update or Delete operation is requested, Audit service interprets it as an Update
operation since no element is deleted.

Table 2. CRUD operations sent via HTTP methods and the interpretation in the blockchain by services
consulting and storing.

Event API-Gateway Audit

Type of Transaction HTTP(S) Methods Consulting Storing

t CRUD Operation GET POST PUT DELETE Read New Update

01 Create X X

02 Read X X

03 Update X X

04 Delete X X

The Event API-Gateway communicates internally with Audit and Users and can also
communicate externally with other microservices through another API-Gateway or cloud
services directly.

The Event API-Gateway encapsulates the internal system architecture and provides
an API that is tailored to each client. One of its responsibilities is to identify the following
services: user administration, user authentication, user authorization, audit-storing, and
audit-consulting. Other responsibilities are monitoring, load balancing, and caching.

4.2. Audit: Storing

Figure 2 illustrates the process of receiving an event and data storing in the blockchain.
Let us assume that the Event API-Gateway receives an event Ev(m) with message m to be
stored within VBSI. The message is composed of:

m = {|A, B, D, Hx|} (2)

A denotes who is sending the message; B who is the receiver; D a set of data required
to be stored in the blockchain; and Hx is a hashed of the previous messages, as follows:

Hx = Hash(A,B,D) (3)

Token To (Section 4.4 for more details) is obtained from D:

To ∈ D (4)

Figure 2. Storing operation, illustrating communication between Event API-Gateway, Storing, Users-
Authorization service and the blockchain.

Storing service involves the following off-chain operations:
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• Verify with the Users-Authorization service if To has enough permissions to execute
event Ev, using Boolean function b = permit(To, Ev). Returning true if it has privileges
to store the event in the blockchain; otherwise, it returns false.

• Send the event to the blockchain, using function R = deploy({Ev(m)}). Returning R,
which is a tuple (calculated in the blockchain) of three elements, {|To, Atr, Asc|}: (a) the
token; (b) a transaction address and (c) a smart contract address.

Storing service can work under two scenarios: (a) Creating users; or (b) Executing
operations over resources. Both will be explained in detail in Section 4.4.

4.3. Audit: Consulting

In order to consult information, Audit has another service, consulting, see Figure 3.
Let us assume that the Event API-Gateway receives an event Ev(To, Hx, R) to consult a
data that previously was stored within VBSI. There, To is provided by the authorization
service; and

R =
{∣∣To′, Atr, Asc

∣∣} (5)

In this case, R is the receipt received when the storing action was carried out (it is the
same as explained in Section 4.2); note that To′ was the token id approved in the transaction
Atr for the smart contract address Asc.

Figure 3. Consulting operation, illustrating communication among Event API-Gateway, Consulting,
and Users-Authorization services and the blockchain.

Consulting service involves the following off-chain operations:

• Verify with the authorization service that To has enough permissions to execute Ev; it
is used with permit(To, Ev, RS) function, which is detailed in Equation (9).

• If b is true, then it calls to the following remote function:

Rp = getReceipt(R) (6)

There, Rp states for the receipt details consulted with the blockchain and Hx′ ∈ Rp is
the hashed information previously stored within the blockchain.

• Then, it is compared Hx with Hx′, if they are the same, r variable is changed to true.
• A tuple Res is returned, where:

Res = {|r, Rp|} (7)

Res can be one of two options according to the previous steps: (a) r = true and the
detailed receipt Rp when integrity is noted; otherwise, (b) it returns r = f alse and an
empty receipt.

4.4. Users

As one can see in Figure 1, the Users microservice has direct communication with
the Audit microservice and the event API gateway. It means that Audit or the Event API-
Gateway must verify with Users whether or not the requests received can be executed or
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not. This service acts as an access control service management. Although an alternative
solution could be to consume an external system (e.g., software as a service, SaaS) provided
by trusted third parties, as some proposed in the literature [46,47]; we preferred developing
our solution to take better control of the logs.

Following some proposals in the literature about how to deal with access control
management systems [48–50], Users microservices provide the following services:
administration, authentication, and authorization. Table 3 illustrates all operations. The
input column specifies the parameters received, whereas the output column, the answer.
Column storing pinpoints if the service deserves (

√
) audit:storing operation in the

blockchain; however, according to the user’s convenience, it could be modified. For
example, each time a request involves an authentication process, we configured that
functions authenticate() and tokenRenovation() must register a storing operation (

√
) in

the blockchain. However, any other implementation could lighten it up and omit it,
arguing that it is unnecessary.

Table 3. User’s microservice.

Service Name Function Name Input Output Storing

userCreation() D, Hx R
√

Administration
userRead() To J

userUpdate() D, Hx, R R′
√

userDelete() D, Hx, R R′
√

authenticate() Pd, Ut, Ev To
√

Authentication tokenRenovation() To To
√

tokenIsValid() To bool

Authorization
permit() To, Ev, RS bool

permissions() To JSON

4.4.1. Administration

It provides the four CRUD operations: creation, read, update, and delete. When a
request is received to create a user, function userCreation(D, Hx) is processed. Where:

Pd ∈ D; To ∈ D; Ut ∈ D; K+
p ∈ D; Ev ∈ D; Gas ∈ D; Dp ∈ D (8)

Let Pd be credentials related with personal information of the user to be created,
such as username, email, and a hashed password; Ut be the type of user to be created; K+

p
be the public key of the user; Gas is the value required to execute the transaction in the
blockchain; Dp be a set of permissions that the user will be granted expressed in JSON
format (Section 4.4.3 explains more about the permissions); and Hx be the hashed of the
previous messages. When a user is created, it also requires to create its smart contract,
calling a storing operation (see Section 4.2), receiving R and it is returned also.

When update and delete are requested (userUpdate(D, Hx, R) and userDelete(D, Hx, R)
respectively), it is assumed that each user has its own smart contract, as it was previously
created. These operations require generating new transactions over the existing smart
contract, returning a new answer of the blockchain R′. These operations internally call for
the storing service.

Our model follows the idea of [51], which is designed with three general types of
users: Root, Administrators and TUsers. The following conditions are followed to build a
tree structure:

• The system must have only one root, it follows the idea of [36].
• A public key must be used for only one type of user (validated via off-chain).
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• The root user can create administrators (validated via off-chain and blockchain).
• Administrators can create other administrators and TUsers (validated via off-chain

and blockchain).
• When a TUser is created, also a Resource smart contract is created (instruction sent via

off-chain to the blockchain).

4.4.2. Authentication

This service provides three operations:

• authenticate(Pd, Ut, Ev); this function receives the user’s credentials, type of user and
type of event. Returning a token To as a result;

• tokenRenovation(To); this function receives a token and returns an updated token.
This function is used when a token is about to expire.

• tokenIsValid(To); this function receives a token and evaluates if the token is valid or
not, returning a Boolean result.

4.4.3. Authorization

This service provides two main operations (9) and (10):

b = permit(To, Ev, RS) (9)

This function receives a token, an event, and a resource. The function verifies if the
token To supplied previously to some type of user has permissions to execute event Ev on
resource RS. The following is an RS example in JSON format:

{
"resource": "RootCreation",
"event": "POST",
"permitAccessTo": {
"Root": "true",
"Administrator": "false",
"TUser": "false"
},
"description": "Root is the user permitted to create a root"
}

This resource is called RootCreation, whose event POST is permitted only by the root
user; the other users are not permitted; a description is also included.

On the other hand, the following function:

Dp = permissions(To) (10)

receives a token and returns a JSON format Dp pinpointing a set of permissions that a user,
linked with the token, has available to execute. The following is a permission example Dp:

{
"stage": "users",
"serviceName": "hasAccess",
"typeOfOperation": "delete",
"nameOfOperation": "deleteMe",
"permitAccessTo": {
"Root": "true",
"Administrator": "true",
"TUser": "true",
"NameType": "Consumer"
},
"description": "Delete personal data"
}
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which, it is a transaction user with type named “Consumer” can delete its own personal
information; the types of users root and administrator have the same privileges.

5. The Smart Contracts

Trust in data integrity is one of the primary concerns in computer systems. To remove
that worry, we will register all events in a trustworthy architecture, such as blockchain. We
consider that events are triggered by different types of users. These users will store events
through smart contracts.

We established some particular user roles to limit the operations that each user can
execute within the blockchain: Root, Administrator, and a Transaction User (TUser for
shorter). TUsers are a generalization of more specialized transactional users. We designed
these roles, such as smart contracts.

Our model establishes that any event generated by one of the role users must be
registered in a Bitacora and the transactional users have Resources and any action or event
over the resources must be registered in their own Bitacora.

5.1. Notation

The notation to be used to represent smart contracts will be similar to classes in object-
oriented languages. A smart contract is composed of attributes and methods, which can be
public (+) or private (−); prefix (*) denotes an attribute internally calculated. To provide
encapsulation, all private attributes can be accessed using the corresponding getter method
get[Attribute](); for example, let X be an attribute, its corresponding getter method would
be getX().

A contract also has a constructor, which is a method that uses the same name as the
contract and is used to create the contract. Figure 4 illustrates the smart contracts as class
diagrams. Private methods can only be called within the contract, as long as public methods
are still accessible from other contracts. Abstract methods are not implemented in such a
contract. If a smart contract includes at least one abstract method, such a contract is also
considered abstract and can only be deployed when abstract methods are implemented.
The figure also illustrates some relations of a contract with others, for example: inheritance
(extends arrow); and use dependency (dotted arrow).

5.2. Objectcontract, Log, Bitacora and Root

The base model of the contracts Objectcontract, Log, Bitacora and Root were taken
from [36], here were used to engage with smart contracts Admor, TUser and Resource as
illustrated in Figure 4.

The explanation is as follows:
ObjectContract denotes the parent of all contracts. It contains two attributes: contract

address Asc and transaction address Atr. When a contract is created, these attributes are
generated and can be accessed publicly by methods getContractAddress() and
getTransactionAddress(), respectively. Method getReceipt() is used to obtain the receipt of
a transaction. Contract address is used to identify the contract in the blockchain and the
transaction address to identify the event.

Log inherits from ObjectContract, you can see a description of the attributes in Table 4.
All of such attributes are stored in the blockchain when method Emit(Ev) is called.
Attributes marked with ∗ are auto-generated within the smart contract; the rest are
obtained from Ev. Emit(Ev) is an abstract method, which must be implemented in a
specialized smart contract, such as Bitacora. A particular log event can be obtained using
getEvent(Atr).
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ObjectContract

*Atr: address
*Asc: address

+ ObjectContract(address)
+ getConAddress(): address
+ getTranAddress(): address
+ getReceipt(): address

Root

- Kp: address
- typeU: string  // type of user
- nameU: string // name of the user
- users []: address
- idEvents: int
- bitacora[]:Bitacora

+ Root(M): User
+ addEvent(Ev)
+ addAdmor(address, address): address
+ getBitacora(C): Bitacora
+ getLog(C) : Log
+ get ...[private attributes]: [ type depending of
                                             the attribute ]

Log

* Ablock: address
* idEvent: int
* Asig: address
* when: timestamp
- Op: string
- where: string
- target: string
- token: string
- hashed: string

+ Log(address)
-  Emit(Ev): abstract
+ getEvent(Atr): Log
+ get ...[private attributes]: [type depending of
                                            the attribute]

Bitacora

- events: Log[]

+ Bitacora(M): Bitacora
+ setEvent(Ev): Log
+ getEvents(): Log[]
- Emit(Ev): Atr
+ get ...[private attributes]: [ type depending of
                                             the attribute]

Extends

Extends

Admor

- admor: address
- father: address
- users []: address
- bitacora: Bitacora

+ Admor(admor): User
+ addTUser(address): address
+ addAdmor(address): address
+ getBitacora(): Bitacora

TUser

- user: address
- role: string
- father: address
- bitacora: Bitacora

+ TUser(user,role): TUser
+ addResource(string)
+ updateResource(Resource, string)
+ deleteResource(Resource,string)
+ getBitacoraOfResource(Resource): Bitacora
+ getRoleUser(): roleR
+ getBitacora(): Bitacora

Resource

- owner: address
- resource: (nameR,description)
- resources[]: resource
- bitacora: Bitacora

+ Resource(resource): Resource
+ updateResource(string)
+ deleteResource(string)
+ getNEvents(): int
+ getResource(int): string
+ getBitacora(): Bitacora

Extends

Extends

Extends

Figure 4. The smart contracts illustrated as class diagrams.

Table 4. Attributes (Atr) and description of Smart Contract Log.

Abbreviation Description

∗Ablock Abbreviates Address Block of the blockchain.

∗idEvent Identifier of the current event. This attribute is formed by auto-incrementing.

∗Asig This is a signature hash of the log.

∗when A timestamp T, denoting when the event has happened and
submitted to the blockchain.

Op HTTP methods (GET, POST, PUT or DELETE).

where The source of the event

target The target of the event

To Token identifier to know who has carried out the event.

Hd Hashed message that describes more details about the event.
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Bitacora inherits all attributes and methods of smart contract Log. Events are registered
in this smart contract. The constructor Bitacora(M) is created when it is called the first time,
from M, data are extracted to form Ev, and it calls Emit(Ev), which is a private method,
inherited from Log. This method stores Ev in the Log. setEvent(Ev) is another method,
which can add events with information Ev by calling Emit(Ev) to be stored in the Log. All
log events can be obtained using method getEvents().

Root smart contract is created executing constructor Root(A, AS, m, To).The constructor
creates its Bitacora and the first Log. Let A be a user wanting to become a root; AS be a
receiver user or target; To be a token identifier to identify the transaction; and m is composed
of two set of messages m1 and m2. m1 is formed by {K+

p , Gas, credentials}, where K+
p is the

user public key, which will be the owner of the contract, and the key address will be used
to execute the next transactions; Gas represents the cost necessary to perform transactions;
credentials is related with root’s secret information, such as username, email, and a hashed
password. With m2 is possible to store extra information of the root.

As a result of executing constructor Root, it is generated a blockchain transaction
answer R, see Formula (5) for more details about R.

Smart contract Root can add events, using method addEvent(Ev). This method calls
setEvent(Ev) of smart contract Bitacora. This transaction generates another transaction, R;
however, the smart contract address Asc is still the same since this method does not create a
new smart contract.

In order to consult a Bitacora and a specific log, smart contract Root contains methods
getBitacora(R) and getLog(R) respectively. Being R the answer to the root after triggering
an event.

Some modifications were carried out within the smart contract of the Root. We added
method addAdmor(address, address), which the Root can add administrators and to store in
its private attribute called users[]. addAdmor(address, address) requires to specify the smart
contract key of the creator (in this case the smart contract of the root in the first parameter)
and the key address of the new administrator.

5.3. Admor, TUser and Resource

Admor is an abbreviation of Administrator. An administrator is a special type of user that
can add TUser’s (addTUser(address)); add other administrators (addAdmor(address, address),
specifying the smart contract key of the creator and the key address of the new
administrator); and obtain its Bitacora (getBitacora()).

TUser is an abbreviation of transactional user. In our model TUser is the operative
type of user of a system able to execute CRUD transactions over some specified module
or resource. Neither root nor administrators can deal with resources directly. Thus, tasks
related to resources have to do with TUsers.

TUser is a generalization type of user, when created (in its constructor TUser(user, role))
is required to pass: the specific role that it will be playing, which can be recovered via
getRoleUser(); and an address key of the user. TUser can create, update, and delete resources
by executing methods addResource(string), updateResource(Resource, string),
deleteResource(Resource, string) respectively. TUsers can also obtain their own Bitacora
getBitacora() and the Bitacora of its Resource getBitacoraO f Resource().

On the other hand, smart contract Resource is only created by a TUser, being its owner,
and can only be accessed by it. When a resource is created (constructor Resource(resource)),
an owner is assigned, in this case, the smart contract of the TUser accomplishes this role.
The owner of the resource must be the only one that can update it or/and delete it, using
its respective methods, see Figure 4.

6. Prototype System

The following prototype aims to give a better idea about the architecture we have
proposed. Following the exposed in Section 3.2, in the sense that our architecture might be
implemented as an extension on systems requiring an audit characteristic, the prototype
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follows a software scheme as a service using a microservice architecture. Figure 5 outlines
the microservices and technologies used to implement our proposal. The implementation
of each microservice includes Docker version 19.03.8 with Ubuntu 18.04 bionic operating
system at the upper layer. Docker is a platform that delivers software in packages called
containers. These containers are executed independently by the lightly operating system
kernel and, therefore, use fewer resources than virtual machines, reference [52,53].

The following subsections describe how we have implemented the verifiability
architecture, including its different parts; and the smart contracts within the blockchain.

Figure 5. Microservices and technologies implemented in the proposal architecture.

6.1. VBSI

As you can see within the dotted rectangle in Figure 5, the VBSI part includes the
following microservices: (a) Event API-Gateway; (b) Audit; and (c) Users.

Event API-Gateway was configured to accept HTTP methods (such as GET, POST,
PUT, AND DELETE) in both ports 80 and 443. Port 80 was configured while developing the
prototype, and port 443 to provide a private communication, implementing the transport
layer security (TLS) protocol. This microservice is outward-facing for receiving external
requests (such as the Internet); therefore, the rest of the ports were closed. Axios library was
configured in the Event API-Gateway to deal with HTTP requests to the other microservices.

The Users microservice contains Administration, Authentication and Authorization
services explained in Section 4.4. User administration involved to implement simple trusted
tokens, which we have implemented with Nonce infrastructure (Nonce being an
unguessable number built concatenating a random number with the current date); hashed
messages were achieved with MD5-256 ( it is a hashing algorithm that takes an input string
of any size and generates an output, which is a 256 bit size); and public key infrastructure
with openPGP. User-Authentication was implemented using an access control
password-based protocol;internally, a trusted compound token is generated when
authentication is achieved. For user authorization we have implemented a compound token
using Jason web token (JWT): https://jwt.io, accessed on 4 February 2022. All services
were required to use HTTPS connections.

Green rectangles within the Audit microservice in Figure 5 illustrates the Storing and
Consulting services explained in Sections 4.2 and 4.3. An example of storing and consulting
service using Postman application will be explained in Section 7.3.

6.2. Blockchain and the Smart Contracts

The software component installed to execute the blockchain (as shown in Figure 5)
was Ganache CLI v6.4.3. Ganache is a personal blockchain for rapid development and
experimental tool under the Ethereum platform. It can be installed following the
instructions shown in the Truffle suite at https://trufflesuite.com/ganache/index.html,
accessed on 4 February 2022.

https://jwt.io
https://trufflesuite.com/ganache/index.html
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The smart contracts designed and shown in Figure 4 were implemented in Solidity
language programming (Solidity available via https://docs.soliditylang.org/en/v0.7.4/,
accessed on 4 February 2022, using version 6.12. The smart contracts can be downloaded at ht
tps://github.com/UPclopezpProjects/VBSI_smartContracts, accessed on 4 February 2022.

Library web3.js was used to connect with the blockchain. Unlike DAuth, mentioned
in [54] where MetaMask extension was used in the client side description, our client side
application is the User microservice, which, running node.js, connects with the blockchain
by using an OAuth API web3 authentication protocol.

7. Case Study: An Avocado Cloud System

The following case study refers to an avocado supply chain system; although it could
be adapted to any other, we provide this example to give a general idea of how it is
integrated with the VBSI architecture we have proposed. Figure 6 illustrates such an
integration, as one can see, it is a specialization of Figure 1.

Figure 6. An avocado cloud system integrated with VBSIarchitecture.

7.1. Stages of the Supply Chain

The main requirement of the avocado supply chain is to register all events triggered
from the producer to the end consumer. The stages of the supply chain are represented as
individual microservices in the left part of Figure 6. Note that our experiments show that
the configured operating system is similar to those used in VBSI, although it could be any
other. The stages explanation, shown in the left part of the figure are:

1. Farmer can have one or more orchards, might sell his/her harvest, and be sent
to packers.

2. Packers receive the avocado lot directly from the producer. They verify the lot, check
regulatory documentation and establish if the fruit will be sent to be commercialized
directly or a manufactured process.

3. Carrier are engaged in transporting the avocados from one point to the next in the
chains of the supply chain.

4. Merchant buys the product to sell it directly to a consumer, a retailer (another merchant)
or a wholesaler (another merchant).

5. Consumer is the user who buys the fruit. It is the last stage of the chain.

https://docs.soliditylang.org/en/v0.7.4/
https://github.com/UPclopezpProjects/VBSI_smartContracts
https://github.com/UPclopezpProjects/VBSI_smartContracts
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7.2. The Data Integrity Storing Process in the Experimental System

The transaction users interact at different stages with the avocados and every
interaction records information to provide traceability. Then, the system can monitor the
avocados from each stage. Figure 7 illustrates a sequence diagram that, at the top, shows
the operations, at the bottom the created user’s type, at the center the smart contracts
created after the operations and at the right part (last column) the resources generated.

Figure 7. Sequence diagram: stating an execution tree operations of the avocado supply chain with
their smart contracts.

The smart contracts in the figure are represented with a rectangle split in three parts:
at the top with its name; in the middle with two parts: the smart contract used to create the
new smart contract and the user key; at the bottom the address of such smart contract. The
figure also states a tree smart contract instance from the root creation until the generation
of users resources, the general steps are as follows:

• Root creation: following the protocol in [36] the Root user is created with key K+
r . Asc is

the smart contract address generated in the blockchain; and Ascb1 is the Root’s Bitacora.
• Administrators creation: root, through smart contract Asc, executes method

addAdmor(Asc, K+
an) to create two administrators (Admor1 and Admor2); K+

an in this
case are K+

a1 and K+
a2; and the smart contracts generated are Asc1 and Asc2 respectively.

Their smart contracts Bitacoras are Ascb2 and Ascb3
• TUsers creation: the explanation of creating a TUser by an administrator is similar to

that explained by the root creating administrators. In this case Admor1 creates a Farmer
and a Packer user; and Admor2 creates a Carrier and a Merchant user.

• Resources creation: resources are added via a TUser by executing method
addResource(string). The figure shows resources created with addresses from Asc7 to
Asc10. These resources will be used to manage harvests. For example, Farmer will
register new hashed data of the harvest in the blockchain to start the traceability;
Carriers will register the harvest transportation from one part to another; Packer will
create a new harvest batch with the information reported by the Farmer and will carry
out the selection procedures; Merchant will register data information about when the
lot was received and when it is sent to the wholesalers, retailers or ready to be sell for
the consumers. In each stage, a QR code is generated, containing the transaction
address generated in each stage. The QR code might be used by the consumer or any
user of each stage of the supply chain to obtain the traceability and verify the origin of
the avocado.

Figure 8 shows a dummy representation of the smart contracts executed in Figure 7.
Note that each block contains three transactions represented by each of the smart contracts.
This figure will be related with the below explanation of Figure 9 in the next subsection.
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Figure 8. Blockchain representation of the smart contracts shown in Figure 7.

7.3. The Integrity Verifiability Process

Figure 9 illustrates a summary of those resources created and shown in Figure 7,
applying the Storing service explained in Section 4.2 and following the experimental storing
process of Section 7.2. The Figure 9 illustrates two tables. The left one shows some data of
the resources stored via off-chain. In particular, this table shows seven columns: Stage is
the name of the stage in the supply chain; Id is used to identify the row; R is the receipt
received from the blockchain after a Storing process is called; D is the data to be hashed;
Hash(D) is the hashed data; Asc and Atran are the transaction and smart contract addresses
where the row were stored within the blockchain.

Figure 9. The Left table shows some data about where the resources are stored off-chain and in the
blockchain; and the right table shows the logs stored in each Bitacora of the smart contracts.

On the other hand, the right table of Figure 9 shows some information stored within
the smart contracts, which guarantees integrity by a verification procedure as explained
in Section 4.3. This table shows ten columns (see Table 4 to reference for the meaning of
their titles): the first one, Ablock, specifies the block number where the smart contract is
located within the blockchain, check Figure 8 to link it; in this case all event methods (Op in
the table) triggered by the requesters were POST (because events were the creation of the
stages, see Table 2 to collate), column When is denoted with unix epoch number, Operation
type being the operation description carried out; column Where is the IP number from where
the request was triggered; To is the session user identifier; and Hx the hashed data.

Table 5 shows a representative values of variables included in Figure 9, assuming that
the rest variables can be interpreted in a similar way.

Once explained Figures 7–9 about how the logs of events are stored in the blockchain
through the smart contracts, and exemplifying some values in Table 5; we are ready to
instance a consulting operation as demonstrated in Section 4.3. Assume that the Event
API-Gateway receives a consulting operation request (it might be from any microservice of
the supply chain as illustrated in Figure 6); an example of the consulting request is shown
in the right part of Figure 10, note that the data to be sent are r1 and h1 of Table 5, these
values are stored via off-chain (see the left table of Figure 9). Taking into account that h1
coincides with the stored information in the blockchain (see the right table of Figure 9) the
answer will be Res = {|true, r1|}, pinpointing that h1 is valid for r1. If h1 would have been
modified, then the answer would be Res = {| f alse, r1|}.
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Table 5. Representative variable values of Figure 9.

Abbreviation Description

r1 {To = “eda1917110fb1ea22709138e38ab9f0”,
Atr = “0x586382da3ef2a8026738123ca47d656943bdb573af6c185b192492ec3c29d4b6”,
Asc = “0x1F4DD9f716bbb9D4b2FdA10D2C7a7D6E2C90580d”}

d1 {name = “FarmerName”, stage: “Farmer”, gas = “900000”, pass = “sa23lfd_2”,
key = “0xCd801D62AF617641964db500D98146eFCEF610E0"}

h1 6d64619ba21d1114facb3efd54a1d4be

Ascb8 0x1F4DD9f716bbb9D4b2FdA10D2C7a7D6E2C90580d

t1 0x586382da3ef2a8026738123ca47d656943bdb573af6c185b192492ec3c29d4b6

s1 c5a13ecf53fb22134a4613120da887e4

w1 1638991308

IP1 189.129.78.230

To1 eda1917110fb1ea22709138e38ab9f0

Figure 10. Storing and consulting service example using Postman application.

8. Validation and Proofs

This section provides some validations to our prototype and the case study to give
certainty about its viability. They consist in setting two types of agents: friendly and
unfriendly. Both types of agents, acting their corresponding roles, attempt to execute
transactions. Each of the executed transactions must be registered within the blockchain
and must generate a log.

We explain the behavior of the agents, some results about their implementations; a
data integrity verifiability example interface; and the system complexity by stating a run
showing the latency and processing time of the system.

8.1. Friendly and Unfriendly Agents

Friendly agents consist of a set of compliant agents following the rules of expected
behavior. This type of agent aims to identify programming errors under normal situations.
These situations mean that if a request contains n fields, and each field is configured
with a specific type, then friendly agents send n fields without changing the types. On
the other hand, unfriendly agents are non-compliant. They do not follow the rules, can
change types, and change an unexpected behavior. Table 6 describes the behavior of the
unfriendly agents.
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Table 6. Behaviour of the unfriendly agents.

Resource Unfriendly Agent Description

Create Root We replicated the proofs executed in [36], but adapted in this context.
A set of agents do not follow the protocol rules for the root creation.

Create Administrators They might change the permissions, the tokens value, and change the types
and TUsers of the fields.

Add data to stages They can try to add data to stages not permitted.

Currently, there exist tools that can help with the software development process as
a tester in the requests, e.g., the Postman application, which we also used. However, to
implement the behavior of Table 6, was necessary to develop a tool with Java threads using
an interface as shown in Figure 11. At the top of the figure can be seen some Resources of the
first column of Table 6, among other things. Each tab of the figure was configured to execute
automatic or manual requests. The number of requests must be input and the amount
of friendly and unfriendly agents (honest or dishonest in the figure). Depending on the
number N of agents, internally, the simulator creates N threads acting the corresponding
role of the agents. Each friendly request must send the data as you can see in the input
fields of the figure; note that some fields are required to be introduced manually, and others
follow a regular expression to calculate random and automatic data fields.

Figure 11. User interface to test the creation of different types of users.

At the end of each run, the system generates a detailed description as you can see in
Figure 12. A version of the tool can be downloaded from GitHub: https://git.io/JDtin,
accessed on 4 February 2022.

We executed multiple stress proofs with this customized application and configured a
malicious scenario. The following list describes the aspects of this tool and the prototype,
which helped in the design of our proposal:

• Programming: we corrected some programming errors. It involved fixing from simple
validations during the development process until more complex troubles, such as
distributed and concurrent programming that sometimes are very difficult to detect.

• Adjustment to the smart contracts: although our smart contracts are illustrated as
class diagrams to give a general representation, they were implemented on solidity
programming language.

• Adjustment to the architecture: developing the prototype and the tester tool was more
clear to make some adjustments to the proposed architecture.

https://git.io/JDtin


Appl. Sci. 2022, 12, 2754 21 of 26

Figure 12. Latency details shown in the graphical interface while sending and receiving requests.

8.2. A Data Integrity Verifiability Example Interface

Figure 13 shows the outstanding interfaces from a mobile application we developed to
verify the integrity of data previously stored within a blockchain. The figure contains four
images, from left to right: (1) Login interface: where the user might sign in by a previous
register or by social networks; (2) A menu option with the possibility to scan QR codes
to see the traceability of the avocado supply chain that the user wants to buy; (3) The
traceability interface with a specific location in Google maps, and options such as stage
details forward and backward arrow navigation, among others; and (4) The evidence log
taken from the blockchain illustrates the interface that the final user can see to verify the
details stored in the blockchain, otherwise, such details would not be shown.

Figure 13. Mobile application to check the traceability of an avocado supply chain and the log
example obtained from the blockchain.
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8.3. System Complexity

We carried out some tests with respect to the amount of resources required to run the
storing and consulting services. The tests were latency and processing time. Latency is the
time any supply chain microservice takes to reach its destination and return, taking into
account an HTTP request. The processing time is the time in milliseconds (ms) that the
API Gateway takes to execute a request since it arrives until it is processed and returned
to the requester. Table 7 shows some details of one of the runs. The first column states
the stage of the cloud supply chain microservice from where the request was established.
The following three columns state the transaction latency (Start, End) that the request takes
(Time) to reach its destination and return to the microservice. The fifth column pinpoints
the HTTP method executed (POST, PUT, DELETE, or GET). The next three columns state
the processing time within the Event API-Server. The last column is a brief description
about the type of request. Note that Start and End columns are expressed in epoch Linux
time, and column Time is expressed in milliseconds, being it the difference between End
and Start.

Table 7. Transaction latency from a Cloud Supply Chain and processing time in the Event API-
Gateway.

Cloud Latency from a Cloud Supply Chain HTTP Processing Time Description
SChain Start End Time (ms) Method Start End Time (ms)

Farmer 1645057568522 1645057575176 6654 POST 1645057575177 1645057577016 1839 Creating a Farmer

Farmer 1645057572394 1645057575191 2797 GET 1645057575192 1645057576297 1105 Consulting a log

Carrier 1645057569135 1645057575901 6766 PUT 1645057575902 1645057577691 1789 Updating information

Carrier 1645057574510 1645057576801 2291 GET 1645057576802 1645057577797 995 Consulting a log

Packers 1645057570272 1645057576902 6630 DELETE 1645057576903 1645057578528 1625 Deleting information

Packers 1645057574996 1645057577904 2908 GET 1645057577905 1645057578795 890 Consulting a log

Merchant 1645057570477 1645057577011 6534 POST 1645057577012 1645057578832 1820 Creating a Merchant

Merchant 1645057575175 1645057577365 2190 GET 1645057577366 1645057578474 1108 Consulting a log

Consumer 1645057576367 1645057578762 2395 GET 1645057578763 1645057579562 799 Consulting a log

We can analyze that methods POST, PUT, and DELETE, which correspond to storing
information within the blockchain, are very similar and took 6646 ms latency on average,
respectively, a 1768 ms processing time. On the other hand, consulting information took
2516 ms latency on average, respectively 979 ms in processing time. These statistics
could oscillate using another blockchain platform. The average transmission rate from the
microservices was a 1.91 Mbps upload and 29.78 Mbps download.

9. Discussion and Conclusions

The work presented in this article is closely related with [35,36]; in this section, firstly,
we discuss the main differences with our work, highlighting the extensions and our main
contributions, then we give the conclusions.

9.1. Discussion

Table 8 shows, with a X, the main characteristics supported in the works [35,36]
and our proposal model. We coincide in both works in prevailing characteristics of data
integrity, blockchain technology, auditing and traceability services, and implementing the
microservice architecture. However, reference [35] focuses exclusively to supply chain
systems resulting in very bounded implementations, so, in this work, we decide to include
a more generalized solution for cloud systems. In contrast with [35], our proposal starts
with the security suggestion of [36] concerning the auditing mechanism from when a Root
user is created in a decentralized environment.

On the other hand, we propose a decentralized architecture that extends both
works [35,36], presenting a general solution for cloud computing services; and considering
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the creation of several types of users and roles; respectively, making scalable and modular
the audit mechanism proposed. Thus, we can integrate more services through smart
contracts (as shown in Figure 4) and traceability with the processing time and latency
shown in Section 8.3. A critical remark is that we can provide information by consulting
the log stored in the blockchain provided by the smart contracts about how an event was
generated, who generated it, what included the event, where was it generated, and when was
the event generated.

Table 8. Main characteristics of the following works [35,36] vs. the proposal model.

No. Characteristics [35] [36] The Proposal Model

1 Provides data integrity X X X

2 Uses blockchain technology X X X

3 Focuses exclusively to supply chain systems X

4 Focuses to generalized cloud systems X X

5 Provides auditing service X X X

6 Provides traceability service X X X

7 Involves different role users X X

8 Integrity: Stores events as hashed messages X

9 Integrity: stores events as logs X X

10 Integrity: stores hashed messages in logs X X

11 Implements microservice architecture X X X

12 Ensures the creation of a root user X X

13 Ensures the creation of different types of users X

9.2. Conclusions

Organizations tend to move their information systems to the cloud. Increasingly, one
of the questions from users is about the integrity of storing data. Thus, providing data
integrity is an essential activity that adds value to organizations. If this activity is provided
using the appropriate technologies, it generates more value.

In this paper, we described a data integrity verifiability architecture comprised of
the following:

(a) An event API-gateway able to receive HTTP requests and to decide if it is addressed
to an administrative user, for storing hashed data, or for consulting (audit) issues;

(b) An administrative user service, able to register different types of users, authentication
service able to provide tokens and authorization service, able to decide the
permissiveness of the requester;

(c) A storing service that saves hashed messages that later will be used as an audit process;
and

(d) A consulting mechanism that provides certainty about the integrity of previously
stored data.

We described each of the components, and to give a better idea about implementations
details, we supplied a prototype description. We also developed a pair of tools to validate
our proposal, consisting of a tester tool and a mobile application to be used for end-users.
In addition, as shown in this research, a distributed system connected to a public blockchain
induces high transaction times due to processing and, hence, a longer latency.

This architecture can be replicated in different applications that do not natively have
blockchain technology built-in as an extension for those systems requiring modular and
scalable audit characteristics. Our solution has been built using a microservice architecture
because, currently, this approach is the tendency in the software development area.
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This is an ongoing work, we are looking for performance statistics, and it has been
implemented under the Ethereum platform. Still, it could be interesting to compare other
platforms, for example, Hyperledger.
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