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Abstract: This review paper summarizes the recent and past experimental findings to evaluate
the damage characteristics of carbonate rocks subjected to thermal treatment (20–1500 ◦C). The
outcomes of published studies show that the degree of thermal damage in the post-heated carbonate
rocks is attributed to their rock fabric, microstructural patterns, mineral composition, texture, grain
cementations, particle orientations, and grain contact surface area. The expressive variations in
the engineering properties of these rocks subjected to the temperature (>500 ◦C) are the results of
chemical processes (hydration, dehydration, deionization, melting, mineral phase transformation,
etc.), intercrystalline and intergranular thermal cracking, the separation between cemented particles,
removal of bonding agents, and internal defects. Thermally deteriorated carbonate rocks experience
a significant reduction in their fracture toughness, static–dynamic strength, static–dynamic elastic
moduli, wave velocities, and thermal transport properties, whereas their porous network properties
appreciate with the temperature. The stress–strain curves illustrate that post-heated carbonate rocks
show brittleness below a temperature of 400 ◦C, brittle–ductile transformation at a temperature range
of 400 to 500 ◦C, and ductile behavior beyond this critical temperature. The aspects discussed in this
review comprehensively describe the damage mechanism of thermally exploited carbonate rocks
that can be used as a reference in rock mass classification, sub-surface investigation, and geotechnical
site characterization.

Keywords: mineral dilatancy; thermal cracking; static–dynamic compression; brittle–ductile transition;
thermal transport properties

1. Introduction

Earthen materials such as rocks have a wide range of applications in various rock-
engineering related domains, including rock slope stabilization, rock drilling, tunneling and
excavation, coal gasification, nuclear waste repositories, geothermal energy extraction, con-
struction material, and foundation engineering [1–4]. Rocks are heterogeneous, anisotropic,
and aggregate of different minerals. They are not perfectly elastic material but rather brittle
in nature. However, deep-seated rocks show ductility under high pressure and temperature
conditions [5]. The rock mass exposed to the surface is found discontinuous due to its
weathering. Temperature is one of the most important weathering agents that significantly
alter the engineering properties of the rock mass. Construction of sensitive structures, such
as skyscrapers, dams, nuclear power plants, tunnels, etc., in the thermally deteriorated rock
mass is taken into account as a major challenge. These structures may experience severe
damage or reduction in their service life under the adverse effects of altered engineering
properties of the thermally damaged rock mass [6]. Therefore, the study of thermal effects
on rock properties has been garnering attention for the last few decades.
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Carbonate rocks are a sub-class of sedimentary rocks and abundantly found on the
upper Earth’s crust. Limestone and dolostone are the two major types of carbonate rocks
and have a wide range of applications in the construction, cement, glass, mining, and
petroleum industries [7]. Several researchers have investigated the engineering behavior
of carbonate rocks subjected to various temperature ranges between ambient temperature
and high temperature (20–1000 ◦C) [6–13]. They have noticed that limestone and dolostone
under high temperatures experience mineralogical alteration, inter-granular and intra-
granular cracking, reduction in dynamic–mechanical strength parameters, and appreciation
in porosity and permeability.

In high-temperature rock mechanics and geotechnics, the evaluation of the engineer-
ing characteristics of carbonate rocks is of great interest. For example, dimension stones
obtained from carbonate or silicate rocks are important construction materials. In a building
fire event, their temperature may rise above 800 ◦C [14]. The underground coal gasification
process may increase the temperature of host carbonate rocks up to 1500 ◦C [15]. This pro-
cess not only significantly damages host rocks but also releases oxides of nitrogen, carbon,
sulfur, etc., in the environment. Similarly, during a plate tectonic event (at depth > 40 km
and 500–850 ◦C), thick deposits of carbonate rocks at the subduction zone liberate exces-
sive carbon dioxide, which is one of the major global warming factors [16]. Furthermore,
magmatic activities, such as contact metamorphism, increase the temperature of country
rocks from 300 to 800 ◦C [17]. At a shallow depth, the decay of radioactive elements in
their repositories heats the host rocks from 50 to 250 ◦C [7]. The level of temperature
and pressure increases with depth. Therefore, the extraction of geothermal energy and
hydrocarbons from deep-seated carbonate rocks requires special attention because of their
altered geomechanical characteristics [18].

This study aims to summarize the research work on thermally treated carbonate rocks
to discern their behavior against increasing temperature. In this research work, the literature
review covers the experimental findings of pre-heated and post-heated carbonate rocks.
Furthermore, it evaluates the damage characteristics of thermally degraded carbonate rocks
in terms of mineral dilatancy, rock fabric, microstructural properties, physico-mechanical
behavior, fluid transport properties, thermal transport properties, and dynamic response.

2. Thermal Dilatancy and Alteration in Rock Fabric

Carbonate rocks obtained from various sources can differ significantly in their texture,
depositional environment, chemical composition, crystal structure, and mineral geome-
try [19]. Limestones contain more than 50% calcite and a trace amount of a variety of
minerals, including quartz, feldspar, pyrite, siderite, micrite, clay minerals, and other
materials. On the other hand, dolostone is composed of the dolomitization process in
which calcite transforms into magnesium-rich calcium carbonate. It contains dolomite as a
primary mineral and a trivial amount of quartz, mica, iron oxide, and clay minerals [20].
They are chemically reactive substances and show large variations in their chemical reac-
tions. Microstructure patterns and impurities, such as silica, iron, magnesium, manganese,
sodium, potassium, etc., considerably affect their chemical reactivity [19]. The calcite and
dolomite minerals belong to the hexagonal-rhombohedral crystal system. In this crystal
system, the hexagonal unit cell is placed over the rhombohedral unit cell [21]. Calcite
mineral has ordered planes of Ca2+ attached with the CO3

2− groups orthogonal to the
c-axis. Whereas, dolomite mineral exhibits a well-defined order of alternating planes of
Ca2+ and Mg2+ bonded with the CO3

2− groups perpendicular to the c-axis [22].

2.1. Thermal Decomposition of Calcite and Dolomite

The investigation of thermal decomposition of the primary carbonate minerals is of
great interest. It develops a solid background rationale to anticipate the possible reason
behind microstructural variations in carbonate rocks under a thermal environment. The
reaction kinetics explains the decomposition of carbonate minerals into their respective
constituents at elevated temperatures.
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The rate of reaction is controlled by some important factors, such as heat transfer rate,
mass transfer rate, or their combination [23]. It is evident from past studies that particle
size, crystal structure, the order of atoms in a unit cell, possible impurities, and crystal
habit substantially affect the thermal transport mechanism and mineral dilatancy [23,24].
Considerable variations are found in the kinetic parameters of thermally decomposed car-
bonate minerals. For example, a great discrepancy is reported in the literature regarding the
activation energy values of calcite (155–222 kJ mol−1) and dolomite (146–440 kJ mol−1) [25].
As the temperature increases, the calcite starts to deform due to thermal expansion and
chemical reactions. It decomposes into calcium oxide (cubic crystal system) with the lib-
eration of carbon dioxide at a temperature greater than 600 ◦C [26]. Chemically, it can be
expressed as follows:

CaCO3(s)
∆→ CaO(s) + CO2(g) (1)

The hexagonal–rhombohedral crystal system of dolomite (i.e., CaMg(CO3)2) begins
to deform because of the dislocation of cations and anions. Its thermal decomposition
produces calcium oxide (cubic crystal system), magnesium oxide (cubic crystal system),
and carbon dioxide gas [25]. Several models have been developed to understand the
thermal decomposition mechanism for both natural and synthetic dolomites [27–32]. The
single-step reaction for the dolomite decomposition is described below:

CaMg(CO3)2(s)
600–800 ◦C⇐=====⇒ CaO(s) + MgO(s) + 2CO2(g) (2)

Another proposed model suggests that the thermal decomposition of a dolomite
mineral completes in more than one step [33]. In the first step, it breaks into magnesium
carbonate and calcium carbonate. In the second step, unstable magnesium carbonate
decomposes into magnesium oxide. Finally, calcium carbonate turns into its respective
metallic oxide against increasing temperature.

To study thermal damage characteristics and decomposition of carbonate minerals,
several techniques have been utilized, such as thermogravimetric analysis (TGA), differ-
ential scanning calorimetry (DSC), differential thermal analysis (DTA), thermo-balance,
scanning electron microscopy, optical microscopy, X-ray diffraction, high-temperature X-ray
diffraction, etc. [34–48]. A summary of major developments and employed quantitative
methods regarding the decomposition of carbonate minerals is provided in Table 1.

Table 1. Summary of major developments regarding the thermal decomposition of primary carbonate
minerals.

Mineral Type Major Developments Reference

Calcite The rate of mass loss was studied using isothermal and dynamic methods. [34]

Calcite A comparative study was conducted using isothermal–dynamic techniques and
thermogravimetric analysis. [35]

Calcite Morphological variations were studied in polycrystalline CaCO3 under temperature
and pressure. [36]

Dolomite Thermal decomposition and weight loss analysis was carried out under non-isothermal
conditions using in situ X-ray diffraction and thermogravimetry. [37]

Calcite Reaction rate constants were determined based on the grain model using thin
slab-type pellets. [38]

Calcite Thermal decomposition was analyzed using dynamic X-ray diffraction under the effect of
steam and CO2. [39]

Dolomite Prediction of rate of reaction using stoichiometric analysis and thermogravimetric analysis. [27]

Calcite Thermal decomposition was investigated using thermogravimetric analysis subjected to
non-isothermal conditions. [40]
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Table 1. Cont.

Mineral Type Major Developments Reference

Calcite The kinetic parameters were obtained from a new method that avoids the
Arrhenius equation. [41]

Dolomite Thermo-mechanical damage was examined under intensive grinding using X-ray
diffraction and thermal analysis. [42]

Calcite The solid-state transformation was evaluated using thermogravimetric analysis, evolved
gas analysis-mass spectrometry, and high-temperature XRD. [43]

Dolomite The thermal decomposition mechanism was explained in detail using thermogravimetry
and X-ray powder diffraction. [33]

Dolomite
Thermal expansion and decomposition behavior were investigated using

thermogravimetric analysis, differential thermal analysis, XRD, and scanning
electron microscopy.

[29]

Dolomite Stoichometric ordered and disordered single crytal dolomite was studied using X-ray
diffraction under high pressure and temperature conditions. [44]

Dolomite Investigation of kinetics of isothermal and non-isothermal decompositions. [25]

Calcite A simulated model was presented that effectively predicted the conversion time curve and
described the calcination–carbonation cycle after performing thermogravimetric analysis. [45]

Dolomite Differential scanning calorimetry and thermogravimetric analysis based on non-isothermal
calcination carried out under varying CO2–air environments. [46]

Calcite Thermo-physical decomposition was studied under equilibrium dynamic simulation. [47]

Calcite Parameters including unit cell volume alteration, thermal expansion, variations along lattice
axis, and thermal strains were studied using high-temperature X-ray powder diffraction. [26]

Calcite Thermal decomposition analysis was performed to validate improved reaction kinetic
equation based on the pore structure model. [48]

2.2. Reasons behind the Thermal Expansion

The crystal structure of a dolomite mineral is intermediate between calcite (CaCO3)
and magnesite (MgCO3). However, it differs from calcite in terms of two aspects: alter-
nating layers of calcium and magnesium in the unit cell and slight tilting of the carbonate
group [49]. Thermal expansion of calcite along the a-axis is observed negative. On the other
hand, in dolomite, it is measured positively along both the a-axis and c-axis [50]. Single
carbonate crystals, such as calcite, show typical strength–temperature behavior (strength
decrease with the temperature). Whereas, double carbonate crystals, such as dolomite,
exhibit a different behavior that is shown by the calcite. It is attributed to the thermal
vibration of the carbonate group that hinders the dislocation movement against increasing
temperature [51].

In dolomite, the octahedral system of CaO6 and MgO6 plays an important role in
stabilizing the crystal structure. The Ca-O bond length is found larger in dolomite as
compared to that in calcite [49]. The variations in the bond length of Ca-O relative to
temperature is different in both single carbonate crystals and double carbonate crystals.
At the temperature range of 24 to 600 ◦C, in dolomite, a linear elongation in Ca-O bond
length is observed at a faster rate. Whereas, in the case of calcite, an exponential trend
is noted in the expansion of Ca-O bond length at a slower rate [52]. The bond strength
can be expressed in terms of thermal expansion. Longer bonds (in dolomite) show less
resistance and expand rapidly. There are different trends reported in the literature that
explain the thermal behavior of polyhedral crystals in terms of volume expansion (VE) and
quadratic elongation (QE). In dolomite, Ca-octahedron shows a very slight or no change
in QE. Whereas, in Mg-octahedron, QE increases substantially. This behavior shows a
contrast with the QE trends observed in calcite and magnesite. The QE under increasing
temperature varies sharply for Ca-octahedron but, in the case of Mg-octahedron, exhibits
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no distortion [52,53]. The possible reason for such trends in these carbonate minerals is the
thermal expansion between the oxygen atoms of octahedra at the basal edge and lateral
edge. Furthermore, the Ca-octahedron of calcite shows less anisotropic thermal expansion.
However, the thermal expansion in Mg-octahedron of dolomite displays more anisotropic
character relative to magnesite [54]. Figure 1 illustrates the thermal effect on the interatomic
distances of Ca-O and Mg-O in calcite, dolomite, and magnesite.

Figure 1. Percentage increase of thermal elongation in the bond length of Ca-O and Mg-O adapted
from Reeder and Markgraf [52].

As concerns the thermal dislocation of the carbonate group in dolomite, it is intermedi-
ate between the calcite and magnesite. In calcite, the displacement of the carbonate group is
the result of rotational disorder, which is the rotary oscillation about the three-fold axis [55].
In the case of dolomite and magnesite, the influence of the Mg-O bond confines the motion
of the oxygen atoms. Therefore, the dislocation of the carbonate group in both dolomite
and magnesite is less relative to that in calcite [56]. However, in magnesite, it is further less
just because of the slight tilting of the basal plane. The displacement of the carbonate group
contributes a minimum in the thermal deterioration of carbonate rocks. Previous studies
show that, in calcite, the change in orientation of the carbonate group even at elevated
temperature (i.e., 600 ◦C) is <0.5◦ as compared to its ambient conditions [49]. In dolomite,
the adjacent layers share corners with different octahedra. In other words, the carbonate
group makes the bond with unlike cations that further restrict its motion. This signifies
that rotation of the carbonate group is not a decisive factor in the thermal deterioration of
carbonate rocks. The thermal expansion of calcium and magnesium octahedral systems
considerably affects the thermal damage of the carbonate rocks.

2.3. Thermal Cracking and Microstructural Variations

Carbonate rocks exposed to a temperature window of 500 ◦C to 1500 ◦C considerably
experience an alteration in their mineral composition, mineral strength, physical structures,
textural characteristics, and grain cementations [57]. Under the thermal environment,
chemical processes, such as hydration or dehydration, red-ox reactions, deionization, min-
eral phase transformation, dissolution, and disappearance of bonding agents, alter the
behavior of rocks to a great extent [58]. Rock–water interaction in geothermal systems, espe-
cially along the fault zones, recrystallizes the minerals through geochemical processes [59].
Each rock-forming mineral has a specific value of the coefficient of thermal expansion.
Mineral elongation under thermal stresses increases the particle contact surface area and
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causes microstructural changes in the rock matrix that adversely affect the mechanical,
physical, and dynamic properties of rocks [60]. The phenomenon of thermal damage to
rocks can be ascertained by observing the microscopic changes in rocks, such as mineral
expansion under thermal stresses, grain boundary conditions, the density of intergranular
and intragranular cracks, amount of the induced thermal strain, and mineral resistance to
destruction [61].

Temperature levels and time of exposure are both factors that play an important role
in the thermal degradation of different rocks. For example, in the case of crystalline rocks at
a low temperature, no significant changes are observed in their internal structure because
of their resistant mineral composition. At a moderate level of temperature (300–500 ◦C),
minerals start to expand and make closures at grain boundaries that lead to a reduction
in the void spaces. At a high level of temperature (>500 ◦C), thermal stresses in the rocks
exceed the threshold limit of minerals’ coefficient of thermal expansion, which causes
mineral damage and relaxation at their contact boundaries. Researchers observed that
mineral expansion in crystalline rocks occurs at a temperature ranging from 400 ◦C to
600 ◦C, and, beyond this temperature, rocks start to deform plastically [62,63]. On the other
hand, in the case of carbonate rocks, at a low level of heating (<300 ◦C), the relaxation phe-
nomenon starts at the grain contact boundaries because their minerals and bonding agents
are less resistant to thermal damage. On heating limestones at temperatures > 600 ◦C, the
emission of carbon dioxide with the decomposition of calcium carbonates weakens the
limestone [57].

Advanced techniques such as X-ray diffraction (XRD), X-ray fluorescence (XRF), com-
puterized tomography scanning (CT), and scanning electron microscopy (SEM) have been
used widely in high-temperature rock mechanics to investigate microscopic variations
in rocks that give an idea to understand macroscopic changes [64–67]. Furthermore, a
summary of the major findings regarding the microscopic variations in thermally damaged
carbonate rocks is described in Table 2.

Table 2. Summary of major findings regarding the microscopic evaluation of the thermally damaged
carbonate rocks.

Temperature Range Major Findings Reference

200–800 ◦C
They analyzed the thermally treated limestones using scanning electron microscopy. They

showed orientation of thermal tension and shear cracks developed in limestone. The cracks
were straight, curved, parallel, vertical, oblique, and crossed layers.

[64]

100–500 ◦C

They studied the monomineralic carbonate rocks subjected to various temperature ranges.
They observed that, in these kinds of carbonate rocks, thermal damage was the function of
anisotropic dilation of calcite and shrinkage of clay minerals. The mineral expansion was
observed at a temperature range of 100–200 ◦C, whereas intergranular and intragranular

cracking was noted at 300–500 ◦C.

[13]

25–600 ◦C

They demonstrated the thermal deterioration of the limestone in terms of spectral reflectance.
They found that, at an initial level of temperature, mineral expansion under elastic constraints

increased the spectral reflectance, and, at a temperature above 500 ◦C, the thermal
degradation of minerals decreased their spectral reflectance.

[20]

20–1000 ◦C
He investigated the effect of mineral crystal structures on the thermal behavior of carbonate

rocks. In the case of dolostone, he observed that larger crystals of dolomite minerals
decomposed more than the dolostone containing the smaller size dolomite crystals.

[65]

25–800 ◦C.
XRF technique was used to investigate the microstructural changes in limestones. They

noticed an appreciable alteration in the percentage of the mineral content at a temperature
window of 400–700 ◦C.

[66]

20–800 ◦C

They studied microstructural variations in carbonate rocks and found no noticeable changes
in the chemical composition at a temperature below 400 ◦C. Furthermore, they observed that
calcite and dolostone were decomposed at 400–500 ◦C and clay minerals started to decay at a
temperature above 500 ◦C. In the case of trace minerals and impurities, their concentration

was decreased gradually up to 400 ◦C and then increased sharply above 600 ◦C.

[67]
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3. Crack Initiation and Propagation

Griffith’s theory provides a solid base to ascertain the concept of fracture initiation
in brittle materials. His work mainly focuses on the initiation of the tensile failure at the
tip of the elliptical cracks. He studied the fracture initiation in glass material under biaxial
loading. Later on, researchers applied this concept to the rocks subjected to the triaxial
loading conditions [68]. This extended work undergoes the analysis of stresses around the
minute defects or cracks under a three-dimensional state of stress i.e., σ1, σ2, and σ3. It is
noted that, at the tip of the crack, the confining stress. σ2, does not contribute significantly to
tensile failure initiation (see Figure 2). Therefore, it is analogous to an extension of Griffith’s
work. Griffith’s original theory deals with the crack initiation and does not consider the
crack propagation or shear failure. However, in some cases, tensile failure can propagate
parallel to σ1 when tensile stress overcomes the tensile strength [69].

Figure 2. Crack propagation from a typical Griffith’s crack in a 2-dimensional stress field adapted
from Hoek and Martin [69].

In carbonate rocks, weak zones are considered along the pre-existing cracks, clay
lenses, fossils, solution cavities, etc. The brittle–ductile behavior of limestone shows that
strength has a negative relationship with textural characteristics [70]. Recrystallization in
carbonate rocks under high temperatures significantly affects their stiffness. This process
produces the void spaces in carbonates that may start a crack initiation event. Previous
studies showed that, in limestone, a crack can easily propagate along the weak zones,
such as bedding planes, rather than orthogonal to it [71,72]. A crack can propagate in
a straight path with less energy through a medium having almost the same mechanical
characteristics. However, it can bend along the grain boundaries, internal defects, clay
lenses, and fossil-matrix interfaces (see Figure 3). During loading, shear failure can be
noted along such bends or offsets. Apart from the above discussion, loading direction and
strain rate are two important parameters that decisively play a significant role in governing
crack propagation. A loading direction parallel to crack propagation helps it to propagate
along grain boundaries.
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Figure 3. Schematic diagram showing crack propagation and its offset around the fossil fragments
adapted from Hoagland et al. [71].

Brittle–Ductile Transition

Rocks show brittle behavior at ambient conditions, whereas high pressure and tem-
perature shift their behavior from brittle to ductile. During brittle flow, two phenomena
are very common (1) slippage and (2) twining. When stress exceeds the critical limit,
atoms in the crystal lattice slip on one another. In the case of twining, some portion of
the crystal lattice takes up an orientation that is a mirror image of the untwined parent
crystal [73–75]. The stress–strain trend shows that brittle failure of rock exhibits high peak
strength at a lower value of axial strain and, after failure stress, immediately reduces to a
minimum level.

On the other hand, the ductile failure of a rock shows comparatively lower peak
strength at a larger value of the axial strain, and, after failure, stress does not drop
sharply [76]. In a loaded carbonate rock, the induced time-dependent strain initiates
a microcracking event that governs the failure mechanism. The variations in the deforma-
tion behavior of limestone and dolostone under varying temperature conditions depend on
the loading rate, strain amplitude, mineral composition, and internal defects [77]. Increas-
ing axial stress induces tensile strain, which develops intergranular cracks. These cracks
propagate in the direction or at an angle to the deviatoric stress. When crack propagation
length becomes equal to the grain size, the coalescence of cracks enhances the stress effect;
thus, the rock becomes deteriorated [78]. Therefore, researchers elucidate the rock damage
mechanism in terms of micro-fissuring.

Zhao and Cao [79] explained the deformation behavior of limestone in five typical
stages (see Figure 4). The stress–strain curves at ambient temperature and low confining
pressures describe the deformation response as follows: stage 1 shows a concave upward
gentle slope due to the nonlinear closure of the preexisting cracks. The fragmental length is
based on the number of cracks in the rock. Stage 2 exhibits the elastic deformation after the
compaction phase. It leads the integrated stress path to a yielding point by considering
rock as a continuous medium. Stage 3 illustrates a concave downward slope leading to a
threshold point. In this phase, stable microcracks develop and propagate in the direction or
at an angle to the deviatoric stress. Preexisting cracks, weak planes, internal defects, and
damaged grain boundaries contribute to this phase. Stage 4 depicts the concave downward
curve leading to a peak strength point. It deals with the rock internal damage phase where
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unsteady growth and coalescence of microcracks are prominent. Stage 5 demonstrates the
post-failure curve after peak strength.

1 

 

 
Figure 4. The behavior of limestone under compression test at ambient temperature and low confining
pressure adapted from Zhao and Cao [79].

Mao et al. [80] performed a series of uniaxial compression tests on limestones heated
at various temperature ranges (25–800 ◦C). As shown in Figure 5, at a temperature window
of 25 to 600 ◦C, pre-failure stress–strain curves show a very similar kind of trend in
their dilation phase, linear-elastic deformation phase, and brittle deformation phase. A
nonlinear increment is found in their peak strength, with the rise in temperature up to
600 ◦C. Above a temperature of 600 ◦C, stress–strain curves give a lower value of peak
strength at a comparatively larger value of axial strain, which is a clear indication of
plastic deformation. In another study, Castagna et al. [81] performed a triaxial compression
test on thermally treated limestones (20–600 ◦C) at room temperature and low confining
pressure of 15 MPa. The thermally treated samples showed almost the same peak stress
before 450 ◦C, and, beyond this temperature, abnormal behavior was noted, as shown in the
stress–strain curves (see Figure 6). With the increase in temperature, the percentage of strain
accumulation also increases, and, at 600 ◦C, a limestone sample can endure maximum strain
at the cost of minimum peak stress. This anisotropic strain-softening behavior signifies the
transition of phase from brittle to ductile. It is evident from both uniaxial and triaxial testing
that carbonate rocks show ductile behavior above the critical temperature of 400 to 500 ◦C.
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Figure 5. Uniaxial compression test on limestone subjected to various temperatures adapted from
Mao et al. [80].

Figure 6. Triaxial compression on limestones subjected to various temperatures adapted from
Castagna et al. [81].
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Brittle–ductile transformation under a thermal environment considerably depreciates
the mechanical properties of rocks [82–84]. Table 3 briefly describes the effect of thermal
deterioration on the mechanical characteristics of carbonate rocks.

Table 3. A brief description of major findings regarding the variations in mechanical properties of
the thermally damaged carbonate rocks.

Material Properties Major Findings Reference

Compressive Strength
At a temperature of 100–500 ◦C, linear changes were observed because ultimate rock

strength was higher than the induced thermal strains. Above 500 ◦C, about 70%
reduction was recorded in the peak strength, which was a result of plastic deformation.

[82]

Compressive Strength
& Elastic Modulus

They tested the San Julian’s calcarenite at a temperature of 100–600 ◦C to investigate the
behavior of porous carbonate rocks. At 600 ◦C, they found a reduction in peak strength

and elastic moduli by 35% and 75%, respectively.
[83]

Compressive Strength
& Elastic Modulus

They studied the mechanical behavior of thermally deteriorated carbonate rocks at a
temperature window of 25–900 ◦C. They observed that, beyond the brittle–ductile

transformation phase, the slippage–twining effect in crystal lattice governed the plastic
deformation and significantly reduced the peak strength and elastic modulus

[84]

Compressive Strength
& Elastic Modulus

They found a significant reduction in elastic modulus at a temperature of 600 ◦C.
Beyond this critical temperature (i.e., 600 ◦C), rock strength dropped to 81%. The

decomposition of carbonate at elevated temperature was considered the main reason for
depreciation in mechanical characteristics.

[9]

Compressive
& Tensile Strength

They investigated the thermal cycling effect on carbonate rocks at a temperature of
200 ◦C. They noticed a considerable decrement in compressive strength and tensile

strength of dolostone by 27% and 25%, respectively.
[6]

4. Dynamic Fracture Toughness and Failure Modes

Rocks show a more sensitive response against dynamic loading than static loading [85].
The behavior of rocks or rock mass under dynamic loading is considered different as
compared to their behavior when subjected to static loading conditions. The high rate of
dynamic loading significantly affects the microstructural behavior of rocks [86]. Dynamic
loading of rock material can be referred to as destructive (dynamic compression test,
dynamic tension test, impact test, etc.) or nondestructive (transmission and attenuation
of stress waves). In the case of perfectly elastic conditions, materials regain their original
position after the removal of stress. However, rock is not a perfectly elastic material, which
is why induced strains are not 100% recoverable even in the elastic domain [87]. Rocks
experience a considerable alteration in their behavior when exposed to cyclic thermal
loading for a longer period. For example, a report published in the year 2000 revealed that
heatwaves through radioactive waste repositories may take 50 years to induce thermal
stresses of about 40 to 50 MPa in country rocks [88]. This implies that the integration of
microscopic deformations over time leads to macroscopic changes.

Researchers have studied the dynamic behavior of different rocks under destructive
and nondestructive dynamic loadings [8,89–99]. They found that an increasing loading
rate appreciably affects the dynamic response of rocks. At a high strain loading rate,
rock fracture toughness, internal defects, and other microstructural characteristics exhibit
different trends than their microscopic variations observed under quasi-static loading
conditions. The dynamic stiffness of different rocks has been reported to be four to eight
times higher than their static stiffness [100]. Several studies have been conducted to
ascertain the dynamic response of rocks at their ambient conditions, but there is limited
literature available that evaluates the dynamic behavior of thermally deteriorated rocks
or rock mass [101]. High-temperature rock dynamics is an important subclass of rock
mechanics, and it requires extensive experimental study. The ISRM has suggested using the
Split Hopkinson Pressure Bar (SHPB) testing apparatus to evaluate the dynamic behavior
of rocks. Still, some problems need to be addressed to ameliorate acquired testing results.
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These issues are as follows: rate-dependent constitutive modeling, validation of numerical
simulations, high-rate deformation measurements, etc. [86].

Under dynamic loading, microstructural variations in rocks are referred to as fracture
properties, including fracture initiation, fracture propagation, fracture velocity, and energy
absorption [96–98]. Zhang [86] performed a dynamic notched semi-circular bending (NSCB)
test on carbonate rock at room temperature to study the fracture initiation toughness.
Figure 7 shows a frame of four pictures captured by the high-speed camera at different
stages of the test. The first frame at 0 µs shows a zone of interest, the second frame displays
the crack initiation phenomenon at 40 µs, and the next frames demonstrate the crack
propagation phenomenon up to the last frame, where the crack is visible at 64 µs.

Figure 7. High-speed camera images show crack initiation and propagation under dynamic loading
adapted from Zhang [86].

To ascertain the dynamic behavior of thermally treated carbonate rocks, Ping et al. [89]
tested the limestone samples at the temperature window of 25 to 600 ◦C using the SHPB at
an impact pressure range of 0.4 to 0.9 Mpa. Figure 8 shows that the dynamic stress–strain
curves exhibited three stages, which include elastic phase, yielding phase, and failure
point. At a constant temperature, the slope of the linear relationship between dynamic
stress–strain increased with the increase in impact pressure. However, the increasing
temperature gradually depreciated the elastic phase and enhanced the yielding phase
up to the failure point under brittle–ductile transformation in which rock can withstand
greater strain at minimum stress. The same results were also reported by Yu et al. [91]
while testing thermally treated limestones (25–900 ◦C) under quasi-vacuum and air-filled
environments. The failure modes of limestone subjected to dynamic compression were
observed as chip-shaped fragmentation and axial splitting with shear cracks. The increasing
impact pressure with constant temperature broke the limestone into smaller fragments due
to the application of high incident energies. Similarly, increasing temperature with constant
impact pressure damaged the limestone with a greater degree of fragmentation because
of its internal thermal cracking. However, the degree of failure at ambient conditions was
quite low as compared to the provided elevated temperature (i.e., 600 ◦C).

High-frequency stress waves through rocks induce low strain. They are unable to
exceed the threshold limit of static friction between the rock grain boundaries or weak
planes [102]. The attenuation of these waves provides valuable information about rock
internal defects or damage. Researchers have been using ultrasonic wave velocities to
ensure thermal damage in rocks after their heat treatment at various ranges of temperature.
Table 4 describes the major findings of past researchers regarding how thermally treated
carbonate rocks behave under destructive and nondestructive dynamic loading.
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Figure 8. Limestone specimens heated at (a) 25 ◦C, (b) 200 ◦C, (c) 400 ◦C, and (d) 600 ◦C show their
stress–strain curves under dynamic loading conditions adapted from Ping et al. [89].

Table 4. A brief description of major findings regarding the variations in dynamic properties of the
thermally damaged carbonate rocks.

Material Properties Major Findings Reference

Dynamic
Compressive

Strength

They studied the thermal effect on the dynamic behavior of carbonate rock in two different
scenarios. Firstly, they tested the heated rock specimens at a temperature above 300 ◦C.

Secondly, they tested the air-cooled thermally treated rock samples. They found very similar
results in both cases and concluded that, at this temperature range, thermal deterioration did

not affect the dynamic strength of rocks to a great extent.

[82]

Dynamic Elastic
Modulus

They noticed a linear change in the dynamic elastic modulus of porous carbonate rocks with
rising temperatures. They recorded decrements in limestones by 10%, 60%, and 75% at

200 ◦C, 400 ◦C, and 600 ◦C, respectively.
[83]

Dynamic
Compressive

Strength

They performed a uniaxial impact compressive load test on limestone samples to discern their
dynamic–mechanical behavior. The test results showed that the dynamic compressive strength
of limestone had an exponential rise with the strain rate under an increasing impact pressure.

[93]

Dynamic
Compressive

Strength & Dynamic
Elastic Modulus

He investigated the effect of temperature on the dynamic properties of carbonate rocks. He
tested limestone at undamaged, moderate damaged (heated at 450 ◦C), and high damaged
(heated at 800 ◦C) conditions under an increasing strain rate. He noted that, on account of
anisotropic effects, the dynamic strength of damaged samples was found greater than the

strength of undamaged samples. Furthermore, he found that the elastic modulus calculated
by using ultrasonic wave velocities was dropped to 92% at 800 ◦C.

[92]

Dynamic Elastic
Modulus

They heated the limestone from its ambient temperature to 900 ◦C and found a 70% reduction
in dynamic elastic modulus at 600 ◦C. This temperature was considered as a critical

temperature after which limestone started to change its behavior from brittle to ductile.
[91]

Damping Ratio,
Damping Capacity, &

Loss Factor

They studied the cyclic effect of temperature on the dynamic properties of selected carbonate
rocks. In the case of dolostone, they noticed a significant appreciation in its damping ratio,

specific damping capacity, and loss factor by 15%, 13%, and 12%, respectively.
[90]

Dynamic Elastic
Modulus

They observed that the thermal cycling effect significantly reduced the dynamic elastic
modulus of dolostone by 38% at 200 ◦C. [8]
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5. Thermal Deterioration of Porous Network

The physical properties of rocks greatly help to anticipate the behavior of carbon-
ate rocks under different loading conditions. The anisotropic character of such rocks is
attributed to their depositional environment, diagenesis conditions, past stress histories,
pressure, temperature, and chemistry of pore fluids. The heterogeneity in the physical
characteristics depends on the rock fabric and microstructures [103]. The microstructural
patterns are generally defined by the texture (size, shape, and sorting), density, cementa-
tion between the particles, the orientation of particles, and cracks under regional or local
stresses [104]. These microstructural variations immensely affect the porous network and
transport properties of carbonate rocks. The porosity, permeability, and acoustic waves
attenuation are the most widely studied physical parameters to evaluate the physical–
mechanical behavior of carbonate rocks and other materials under undamaged or damaged
conditions [7,12,13,87,104–111].

The porosity of the limestone and dolostone mainly consists of two-pore systems:
primary pores and secondary pores. The natural fractures or breaks, cavities, organic
growth, and dissolution of material in the cracks due to fluid transportation are the main
factors that enhance the porosity to a large extent [104]. The size of the intergranular
and intragranular pores falls within the range of 30 to 50 µm, whereas secondary pores
include micro-fissuring, vugs, the disappearance of cementation, and the opening of grain
boundaries are typically in the range of 0.5 to 50 mm [112]. The aforementioned pore sizes
were measured at ambient conditions. These opening sizes can be considerably larger than
their documented values when rocks are subjected to high temperatures. The transport
properties of carbonate rocks depend on pore geometry, connectivity, and tortuosity. The
permeability is an important physical parameter that provides valuable information about
the connectivity of primary or secondary pores. The high porosity of a rock is not referred to
as its high permeability; rather, it is characterized by the connectivity of the pores [113]. Like
porosity and acoustic waves, permeability is also sensitive to temperature. Several studies
have been conducted to investigate the thermal weakening effect on the permeability of
carbonate rocks. Table 5 describes the major development in the evaluation of transport
properties of thermally exploited carbonate rocks.

Acoustic wave transmission through limestone is mainly governed by grain contact
and cementation. The strong bond or cementation between rock grains makes it stiff,
which favors wave propagation. The microcracks, vugs porosity, and pore aspect ratio
significantly affect the acoustic wave velocities [103]. The primary minerals in limestone
and dolostone have specific values of elastic bulk modulus and the coefficient of thermal ex-
pansion. The temperature beyond the threshold limit of these properties significantly alters
the physical–mechanical behavior of these rocks [114]. High temperature (>500 ◦C) en-
hances secondary porosity by developing micro-fissures, opening grain contact boundaries,
removing cementation between grains, and accelerating chemical reactions that ultimately
reduce physical characteristics and acoustic wave velocities to a minimum level [115–119].
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Table 5. Summary of major findings regarding the variations in physical properties of the thermally
damaged carbonate rocks.

Material Properties Major Findings Reference

Permeability

They noticed that, at a low temperature, crystalline limestone showed slight
variations in its permeability. Moreover, the thermal cracking of limestone at a

temperature above 400 ◦C produced an appreciable increment in
its permeability.

[115]

Porosity & Permeability
They studied the temperature effect on the hydraulic and poroelastic

properties of limestone. They found that the permeability of limestone was
increased by 3% and 8% at the temperatures of 150 ◦C and 250 ◦C, respectively.

[116]

P-wave Velocity
They investigated the thermo-physical behavior of limestones at varying

temperatures. They noticed slight variations in P-wave velocities at a
temperature of 150 ◦C and a linearly decreasing trend by 55% at 500 ◦C.

[13]

P-wave Velocity

He studied thermal effects on the physical properties of carbonate rocks. At
the initial temperature (i.e., 200 ◦C), only 4% depreciation was recorded in the

P-wave velocity. However, at a temperature of 600 ◦C, due to the
brittle–ductile transformation, its value reduced to 36%.

[12]

Porosity

They investigated the thermal damage effect on the porosity of air-cooled and
water-cooled limestone specimens. They found that, at 200 ◦C, both limestone

samples showed a very similar increase in porosity (i.e., 1–1.5%). At the
temperature of 300 ◦C, air-cooled and water-cooled limestone samples showed
a 3% and 6% rise in porosity, respectively. On further increase in temperature
of 600 ◦C, water-cooled limestone samples demonstrated slight variations in

their porosity, whereas air-cooled limestone samples followed a linear
increasing trend in porosity by 11%.

[83]

Porosity
They observed no significant variations in the total porosity of carbonate rocks

at ambient temperature. However, at 800 ◦C, ductile behavior considerably
changed the porosity by 13%.

[117]

Permeability

They found a reduction in the permeability of pre-heated fractured carbonate
rocks with a slight rise in temperature (i.e., 60 ◦C). The obvious reason for this
behavior is that, at a low temperature, rock dilates to enhance stiffness, which
ultimately reduces permeability. On the other hand, at higher temperatures,

fluid transport properties improve on account of thermal cracking and
brittle–ductile transformation.

[118]

Porosity

They evaluated the porosity of carbonate rocks under different conditions. For
porous dolostone, they found that the temperature effect was larger than the

pressure effect and the rate of dissolution was inversely proportional
to temperature.

[119]

Permeability

They observed no changes in the permeability of limestone at low temperature
and then recorded an increase in permeability by 2%, 10%, and 126% at the

temperatures of 600 ◦C, 700 ◦C, and 800 ◦C, respectively. Beyond the
temperature of 700 ◦C, limestone lost its integrity, which is why a sharp

increase was noted in its permeability.

[106]

P-wave Velocity
They observed that thermal exploitation reduces the stiffness of porous rocks,
turns them into a more compressible state, and hinders wave propagation by

limiting their quality.
[90]

P-wave Velocity

They studied the coupling effect of high temperature and liquid nitrogen
quenching on the physical characteristics of limestones. They found an

appreciable reduction in P-wave velocities by 47% and 88% at a temperature of
400 ◦C and 600 ◦C, respectively.

[105]

Heat Transport Properties

Heat transport properties of carbonate rocks have great importance in many engineer-
ing applications. These thermal properties provide a good set of information to discern
the behavior of carbonate rocks under the thermal environment. The thermal response of
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materials subjected to thermal stresses can be ascertained in terms of their thermal conduc-
tivity (k), thermal diffusivity (D), coefficient of thermal expansion, heat transfer capacity
(Cp), and thermal damage factor [120]. The variations in thermal properties of rocks at
ambient temperature or beyond it have been studied by several past researchers [121–126].
However, the imperfection of the physical contact methods often underestimated or over-
estimated the thermal properties of various rocks and minerals. For example, Clark [127]
studied the effect of temperature on the coefficient of thermal expansion of granite and
limestone at a temperature range of 20 to 100 ◦C. He found that both rocks were expanded
at almost the same rate. Later on, limestone’s dilation was observed much lower than
the granite [128]. The application of non-physical contact methods, such as laser flash
analysis (LFA), in measuring the thermal transport properties of rocks has been reported by
many researchers [10,129–132]. They highlighted some problems of using the conventional
approaches and found that laser flash analysis has a competitive edge over other physical
contact methods. They proposed LFA as the best technique to accurately measure the
thermal properties of rocks.

Thermal diffusivity is the ratio of thermal conductivity to the product of density and
heat capacity. This property is the function of temperature, and its value decreases as the
temperature increases. Thermal diffusivity has a direct relationship with thermal conduc-
tivity and an inverse relationship with density and heat capacity. At a high temperature
(>500 ◦C), due to thermal cracking and microstructural variations in rocks, thermal conduc-
tivity starts to decline, which ultimately reduces thermal diffusivity. Conversely, in the case
of density and heat capacity, the increasing temperature slightly affects the density at the
macroscopic level as a result of the low dilation of minerals [133]. Therefore, small varia-
tions in density do not significantly affect thermal diffusivity. Because of intercrystalline
and intergranular thermal cracking, the rock begins to absorb more thermal energy, which
is why heat capacity increases and thermal diffusivity depreciates with the temperature.
When an intact and continuous rock specimen is heated, the initiated thermal cracking
event improves its porosity and, thus, the material shows a slightly larger volume than
that of an uncracked state. On reheating a thermally cracked rock specimen, expected
dilation does not happen and the material becomes comparatively stiffer because of mineral
expansion in the cracked spaces [124].

Unlike fluid transport properties for which connected pores are required, the thermal
conductivity of limestone is mainly governed by the mineral composition, porosity, and
grain contact surface area. High temperature deteriorates rock fabric, which leads to a
reduction in thermal conductivity and thermal diffusivity. Merriman et al. [10] discussed
the temperature-dependent thermal transport properties of carbonate rocks. At a tem-
perature range of 27 to 327 ◦C, calcite-rich limestone showed lower thermal diffusivity
than the thermal diffusivity of its primary mineral (calcite). Furthermore, they found that
thermal conductivity dropped to 50% at 327 ◦C. Shen et al. [134] studied the thermophys-
ical characteristics of limestones and sandstones at a temperature of −30 to 1000 ◦C. In
the case of limestone, they observed that, at stage 1 (−30–20 ◦C), the thermal properties
were slightly improved by 8% due to freezing of pore fluids, at stage 2 (20–600 ◦C), an
increasing temperature up to the 600 ◦C induced thermal tension cracks within the rock
matrix that linearly reduced the thermal properties, and, at stage 3 (600–1000 ◦C), the
ductile behavior of the rock sharply decreased the thermal properties. Miao and Zhou [135]
investigated the temperature dependence on thermal transport properties of carbonate
rocks at a temperature range of 25 to 700 ◦C. They noticed a linear decrement in thermal
conductivity and thermal diffusivity by 61% and 78%, respectively, from ambient temper-
ature to critical temperature. Khan et al. [136] recorded a similar depreciation trend in
the thermal properties of carbonate rocks, as reported in previous studies. They found a
reduction of 36% in thermal conductivity and a decrement of 52% in the thermal diffusivity
of post-heated samples tested at the low-temperature range of 20 to 170 ◦C. Increasing
temperature reduces the thermal transport properties of rocks, whereas increasing pressure
enhances the thermophysical properties of rocks. The coupling effect of temperature and
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pressure at a very high level starts to counter each other and does not follow the linear
trend [137–139]. The variations in the thermal transport properties of heated carbonates
reported by past researchers have been displayed in Figure 9.

Figure 9. Effect of temperature on thermal conductivity and thermal diffusivity of carbonate
rocks tested at various temperatures. TC and TD represent the thermal conductivity and thermal
diffusivity, respectively.

6. Conclusions

This paper investigates the effect of thermal damage on the behavior of carbonate
rocks in terms of their mineralogical, mechanical, dynamic, physical, and thermal prop-
erties. It covers the literature review of more than 50 years of research work to highlight
the advancements in high-temperature rock mechanics to ascertain the behavior of car-
bonate rocks under the thermal environment. The full understanding of the engineering
characteristics of rocks under varying temperature and loading conditions depends upon
the theoretical framework, experimental approaches, reliable instrumentation, constitutive
modeling, and numerical simulations.

Temperature significantly affects the mineralogical properties of porous rocks. It alters
their mineral composition, mineral strength, physical structures, textural characteristics,
and bonding agents by initiating some processes, such as hydration or dehydration, red-
ox reactions, deionization, mineral phase transformation, melting, microcracking, and
deterioration of bonding agents. Unlike crystalline rocks, carbonate rocks degrade at com-
paratively low temperatures. At a temperature window of 400 to 500 ◦C, their primary and
secondary minerals decompose, whereas clay minerals and other materials start to decay
beyond the critical temperature. A high temperature (>600 ◦C) breaks the calcium car-
bonate, calcium bicarbonate, and magnesium carbonate; thus, emission of carbon dioxide
weakens the limestone and dolostone.

Under static loading conditions, the stress–strain curves of thermally deteriorated
limestone describe its deformation behavior in five stages, including (1) compaction phase,
(2) elastic deformation phase, (3) microcracking phase, (4) peak strength phase, and (5) post-
failure phase. An increasing temperature considerably decreases the peak compressive
strength and static elastic modulus. Carbonate rocks show brittle behavior above a tem-
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perature of 400 ◦C. The brittle–ductile transformation phase begins at a temperature range
of 400 to 500 ◦C, and, beyond this critical temperature, their ductile behavior becomes
dominant because of the slippage–twining effect in the crystal lattice.

High-temperature rock dynamics provides a solid base to discern the dynamic behav-
ior of carbonate rocks subjected to varying temperatures. The variations in their dynamic
properties at the macroscopic level are referred to as their fracture characteristics, including
fracture initiation, fracture propagation, fracture density, fracture velocity, and energy
absorption. Recent and past studies show that an increasing impact pressure and strain
rate ameliorate dynamic compressive strength and elastic modulus; however, the devel-
opment of thermal tension cracks at elevated temperatures appreciably reduces these
dynamic properties.

The variations in rocks’ transport properties are mainly governed by texture (size,
shape, and sorting), cementation between the particles, the orientation of particles, and
natural cracks under regional or local stresses. Carbonate rocks exposed to high temper-
atures experience an expressive alteration in their physical response on account of the
reduction in grain contact surface area, disappearance of cementation, micro-fissuring,
internal defects, and intercrystalline cracking. At a temperature above 500 ◦C, the porosity
and permeability of carbonate rocks improve sharply, whereas P-wave velocities decline
nonlinearly. Unlike fluid transport properties for which connectivity of pores is mandatory,
their thermal properties depend upon the mineral composition and grain contact surface
area. Thermal transport properties (thermal conductivity and thermal diffusivity) are
sensitive to temperature. At elevated temperatures (>500 ◦C), the relaxation at grain bound-
aries and intercrystalline thermal cracking are the results of minerals’ expansion beyond
the threshold limit of their coefficient of thermal expansion. These factors considerably
depreciate the thermal transport properties of carbonate rocks.

7. Recommendations

This review comprehensively describes the experimental findings of the damage
characteristics of carbonate rocks subjected to gradually increasing temperature. However,
in future research work, the damage mechanism of carbonate rocks will be studied under
the thermal shock effect and thermal cyclic loading. This will help to achieve deep insight
and anticipate the rock behavior under different states of stress. Furthermore, this study can
be recommended as a reference in material stability analysis, infrastructure development,
site characterization, rock mass classification, and subsurface investigations.
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