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Abstract: Objective: Converging evidence supporting an effect of transcranial direct current stim-
ulation (tDCS) on postural control and human verticality perception highlights this strategy as
promising for post-stroke rehabilitation. We have previously demonstrated polarity-dependent
effects of high-definition tDCS (HD-tDCS) on weight-bearing asymmetry. However, there is no inves-
tigation regarding the time-course of effects on postural control induced by HD-tDCS protocols. Thus,
we performed a nonlinear time series analysis focusing on the entropy of the ground reaction force as
a secondary investigation of our randomized, double-blind, placebo-controlled, crossover clinical
trial. Materials and Methods: Twenty healthy right-handed young adults received the following
conditions (random order, separate days); anode center HD-tDCS, cathode center HD-tDCS or sham
HD-tDCS at 1, 2, and 3 mA over the right temporo-parietal junction (TPJ). Using summarized time
series of transfer entropy, we evaluated the exchanging information (causal direction) between both
force plates and compared the dose-response across the healthy subjects with a Generalized Linear
Hierarchical/Mixed Model (GLMM). Results: We found significant variation during the dynamic
information flow (p < 0.001) among the dominant bodyside (and across time). A greater force transfer
entropy was observed from the right to the left side during the cathode-center HD-tDCS up to 2 mA,
with a causal relationship in the information flow (equilibrium force transfer) from right to left that
decreased over time. Conclusions: HD-tDCS intervention induced a dynamic influence over time
on postural control entropy. Right hemisphere TPJ stimulation using cathode-center HD-tDCS can
induce an asymmetry of body weight distribution towards the ipsilateral side of stimulation. These
results support the clinical potential of HD-tDCS for post-stroke rehabilitation.

Keywords: high-definition transcranial direct current stimulation; postural control; entropy; nonlinear
time series

1. Introduction

Stroke is a cerebrovascular disease, and is the second major cause of death and
disability worldwide [1]. About 30–50% of patients become dependent when it comes to
activities of daily living (ADL) [2]. The postural imbalance leads to functional deficits and
may occur due to changes in mechanical components such as muscle weakness, limitation
of joint movement, changes in muscle tone, as well as sensory damage and neuromuscular
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synergies [3]. The visual verticality perception (VV) disorder, the incapacity to judge the
orientation of the body or environment in relation to Earth vertical within normal limits,
is commonly observed after stroke and is associated with poor balance [4]. When in a
standing position, patients with VV disorder present a weight asymmetry towards the
opposite side of the VV tilt as a compensatory strategy to maintain their center of gravity
within the limits of stability [5–8].

Lesions of the temporo-parietal junction (TPJ), a hub area for multisensory integration,
can cause VV disorder and postural imbalance [9]. Non-invasive brain stimulation (NIBS)
techniques, such as conventional and high-definition transcranial direct current stimulation
(HD-tDCS) are current therapeutic resources with potential modulation over the patho-
physiology and behavior of brain mechanisms [10]. Recently, we have observed significant
effects of conventional non-invasive transcranial stimulation (tDCS) [11] and HD-tDCS [12]
applied over the TPJ in both healthy subjects and patients after stroke.

Clinical VV and weight-bearing asymmetry (WBA) disorders described in patients
after stroke [4,12,13] were reproduced in healthy individuals after using our stimulation
protocol. We found the effect was dependent on the cathode center condition with induction
of WBA towards the side of brain stimulation [12] with no dependency on the electrical
current intensity. Other studies evaluated electroencephalography (EEG) after our HD-
tDCS protocol in healthy subjects and suggested entropy (nonlinear outcome) of EEG as a
robust alternative for temporal data analysis complementing linear analysis [14].

We hypothesized that the HD-tDCS would induce a sequence of events on postural
control demonstrated by an influence in the WBA. Thus, we analyzed the ground reaction
force in each platform through the flow of information using transfer entropy. This type of
entropy was selected given the possibility of a causal interpretation, as well as the ability to
reduce the problematic complexity by incorporating time dependence with simplicity [15].

2. The Data

This study was conducted using experimental data collected according to the Helsinki
Declaration requirements for human investigation and was approved by the local ethics
committee. All twenty participants provided written informed consent. This article fol-
lowed the guidelines of the Checklist of Information to include when reporting a ran-
domized trial following the Consolidated Standards of Reporting Trials (CONSORT) for
randomized trials.

2.1. Participants

The study included a distinct sample population blinded to the HD-tDCS approach
for assessing ground reaction force. The study candidates were healthy subjects aged
between 20 to 28 years, male and female, right-handed, non-smokers, with no evidence of
brain, vestibular or orthopedic dysfunction, with normal or corrected vision. To ensure the
absence of vestibular deficits, oculomotor tests, the head shake, and head thrust, tests were
accomplished. The assessment period was 10 months.

2.2. Intervention

We used the HD-tDCS protocol organized in the 3 × 1 standard. The assembly was
composed of a central electrode on the right cerebral hemisphere TPJ and three peripheral
electrodes located at EEG coordinates P4, C4, and T8. We used a Soterix HD-tDCS device
(Soterix Medical®, New York, NY, USA). During and after the application of the electric
current, we assessed the body movement kinetics measured by two force plates (Bertec
4060-NC, Columbus, OH, USA) in the static orthostatic posture of each individual, verified
by the WBA (Figure 1).
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Figure 1. Illustration of the WBA study protocol. The left-hand side figure exhibits the platforms. In
the middle, an illustration of a participant positioned on this equipment. The right-hand side shows
the position of the high definition transcranial stimulation (HD-tDCS) electrodes.

2.3. Outcome Measure

Each volunteer underwent three different randomized HD-tDCS conditions (cathode-
central, anode-central, and sham) on three different days. Each HD-tDCS condition was
applied in a sequence of three stimulation intensities (1, 2, and 3 mA) repeated three
times. Each stimulation intensity was conducted for 2 min with a rest interval of 5 min.
The intervention performed on this study followed the stimulation protocol previously
validated and published by our group [12]. Detailed analysis of the stimulation protocol,
as well as dose calculation for each stimulation session, HD-tDCS computational modeling,
induced current flow, safety and tolerability criteria, randomization protocol, and allocation
concealment of this study were published elsewhere [12].

The experiment consisted of ten blocks of tasks (baseline and three replicas of each
condition), and data were collected during and after each one (online and offline). For
each condition (cathode-central, anode-central, and sham), we acquired the vertical force
component (Fz), after baseline and each stimulation period, in real-time for the two plat-
forms (Right-side and Left-), with a resolution of 100 Hz, for 2 min. That returns a time
series Fz of 24,000 records (12,000 online and 12,000 offline) per block, for each platform.
The full protocol resulted in 28,800,000 observations, given that we observed 20 subjects
and each one of them holds three trials, returning a total of 30 blocks of tasks per partic-
ipant. That is, a single individual had 1,440,000 observations (720,000 observations per
platform). Later, we quantified the Fz component information flux across the platforms
(Right-side→ Left-, and Left-side→ Right-) using the transfer entropy (TE). Then, our
final database was reduced to 2400 observations (120 records per individual, originated
form the 30 tasks × 2 moments [on- & off-line] × 2 sides [R→ L & L→ R]).

2.4. Statistical Analyses

In the statistical context, entropy measures complexity between signal data or time
series (TS) that links the amount of information to a probability distribution [16,17]. One
option for analyzing and modeling the entire TS is to apply summary statistics, for example,
the processor average.

We have previously outlined a dose-response model testing the intensity and polarity-
dependent effect of HD-tDCS, and compared the effect of anodal and cathodal stimulation
polarity at different intensities (1 mA, 2 mA, and 3 mA) in VV, electroencephalogram
(EEG), and WBA [12]. Furthermore, an entropy-based study was performed and discussed
following the same protocol using only the EEG results in a deeper discussion, whereas
significant statistical results comparing Cathodal vs. Anodal montage in the intensity of
2 mA was noticeable [14]. Nonetheless, a discussion about the different responses across
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the Sham-Cathodal and Sham-Anodal continues to be a gap when it comes to tDCS clinical
studies [18].

We adopted the Transfer Entropy (TE) in the data, which considers a measurement of
directional information transfer among two random processes, and it is always positive.
For instance, considering two random processes, W1t and W2t, indexed in the time t ∈ N.
Through the Shannon entropy, H(.), and considering L the length of an embedded vector or
history length (underlying state of the Markov process, further information, please see [19]),
the TE is calculated as:

TEW1→W2 = H(W2t|W2t−1:t−L)− H(W2t|W2t−1:t−L, W1t−1:t−L). (1)

The time series process was analyzed using entropy index for all data acquired towards
the complexity of the Fz component of the platforms after baseline or the stimulation
protocol application, as shown in the data pre-processing procedure in Figure 2.

Figure 2. Visual representation of the data transformation method in which fixing a time window t,
the impact of one time series into the other, represented by (X(t)), is summarized into entropy index
(Y(t)). For each experiment period, the transfer entropy calculation was done per segmentation (time
window), which transformed the exchanged information (causal direction) between one platform
into a complexity measure value (entropy index). The entropy index calculated the causal effect from
the right-side to the left-side of a time segment, as well the effect of the same time segment from the
left-side to the right.

We evaluated the effect of HD-tDCS applied in the TPJ on postural control, observing
the intensity for each combination of condition and intensity. Thus, using the transfer
entropy [15,20] as an entropy measure has enabled to encompass whether the past state of
one Fz signal could improve the prediction of the other Fz signal on each platform (right-
side to the left, and vice-versa), addressing the causal inference among the Fz components.
Moreover, with the transfer entropy, one measures the causal direction and enables to test
such statement, and if existent, one can compare whether a dominant side impacts the
other or reverse.

Therefore, we sought to compare the TS causality summarized across the different
moments, using Mixed-Effect Models (considering random intercept for each individual
that can present a personal characteristic). Furthermore, as a Longitudinal study (in which
the same individual is observed multiple times and on different days), to distinguish
between stimulus types versus intensity and to quantify the differences in regularity
between the platforms.

As the hypotheses were defined in advance, we used a global test between comparison
treatments complexity. A significance level of 5% was considered in all tests. Statistical
analyses were performed using R software for Statistical Computing and Analysis. The
descriptive results of the figures were presented as the difference from the baseline. We
described Transfer Entropy (TE) and Generalized Linear Mixed-Effect Models (GLMM).

This study adopted the implemented TE function from the RTransferEntropy package,
and the implemented GLMM from the lme4 and lmerTest packages to test the linear contrasts
of fixed effects (estimate the p-values), all in R software [21].
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Additionally, the Kruskal–Wallis test was adopted in order to check the statistical
significance between Sham-Anodal versus Sham-Cathodal stimulation, to test the difference,
in each time period, across their information flux between the force places (that is, observing
the Left→Right, and also the Right→Left), further information [22,23]. Moreover, given
the open gap in the literature on the different biological effects concerning the sham
condition [18], in this study we highlighted this comparison in each time period block.
Furthermore, the discussion on these findings is related to the existence of a carryover
effect between pre/post stimulation versus baseline [24].

For better understanding, Figure 3 visually represents the present methodology frame-
work, from importing data to extracting its information.

Figure 3. Visual summary of the methodological framework. Acquired data transformation was
obtained by using the bi-dimensional time series related to the vertical platform (Fz) from the right
and left side, then summarizing each piece of transference information as a complexity measure
(using the transfer entropy). After summarizing these data into single values, they were compared
using a Mixed-Effect Model (GLMM, Gamma Regression), as a longitudinal study. Then, analysis
and conclusions were drawn.

3. Results

A total of 20 consecutive healthy subjects were included in the study, in mean age
of 24.2 ± 4.1 years. There were 13 women and eight men, all right-handed. All volun-
teers accomplished the three days of HD-tDCS stimulation protocol with posturography
evaluations.

In the literature, it is often common to find only discussions towards functional con-
nectivity. This limits inferences to the ones related to the statistical covariation of signals,
typically revealed by cross-correlograms or coherence measures. Therefore, effective con-
nectivity is more suitable for explaining causal relationships, that is, the time dependence
across the platform signals.

As for the HD-tDCS dose-response analysis of WBA, we found a decrease in entropy
on each platform (with suggestion to add determinism in the system, creating a pattern
among the post-stimulation period), as shown in Figure 4C. Moreover, visually, there is an
increase in the variability (across the montages) on 2 mA (Figure 4B), as well as a causal
effect from the right side on the left (Figure 4A).

The robustness in the dominant side (causal effect from the right-side to the left-) is
also observed (Figure 4B), in which the right-hand panel presents shorter transfer entropy
variation on the dose-response.

Considering a possible accumulated effect of the stimulation over our behavioral
measure [25], we observed the mean response of the entropy for the baseline and each
pre/post-stimulation condition to analyze the carryover effect of our HD-tDCS protocol.
Visually, we show a similar mean response independent of the conditions (baseline, Anodal
(AC), Sham-AC, Cathodal (CC), Sham-CC) and the side of the platform (Figure 5), which
suggests that our 5 min interval between each HD-tDCS stimulation was enough to avoid
a carryover effect over the entropy.
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Figure 4. Comparison across the Fz measurements from the platforms and dose-response on each
montage. Panel A represents the mean causal entropy from the left side to the right (L) and from the
right side to the left (R). The black lines represent one standard error. Panel B shows the transfer
entropy of each platform per montage across the dose-response, time-invariant. Panel C displays
the nonlinear dynamic and complexity of each platform across time, smoothing the entropy trials
evolution through a generalized additive model (GAM) and considering a confidence interval of 95%.

Figure 5. The left-hand plot shows the baseline entropy. The other plots show the time-varying
pre/post stimulation entropy responses (off-line) across different montages, per side. The visual-
ization adopted the LOESS smoothness, which shows that all montage presents equivalent mean
entropy response regardless of its side (Left → Right represented by L, and Right → Left by R),
therefore, showing no carryover effect.

In order to keep the participants blinded to the interventions [18], we used a sham
protocol, as described in details elsewhere [12]. In a few words, the sham condition
consisted of nine repetitions per block, starting with a Ramp-Up of 30 s for each current
intensity block (1 mA, 2 mA e 3 mA), immediately followed by a Ramp-Down of 30 s and
2 min with no current intensity (0 mA), in which our outcome variable (Fz component of
each platform) was acquired, then transformed into TE complex measure. The first point
to be analyzed consisted of comparing the Sham-Anodal versus Sham-Cathodal across
replicas within distinct trials phases (whereas their descriptions are presented in Table 1).
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Table 1. Descriptive comparison between Sham-Anodal and Sham-Cathodal.

Stimuli Moment Sham-Anodal Sham-Cathodal
Median [Range] Median [Range]

PRE or POST (OFF) 0.0397 [0.02, 0.10] 0.0438 [0.02, 0.10]
Right→ Left 1 mA (ON) 0.0314 [0.01, 0.10] 0.0429 [0.01, 0.13]

2 mA (ON) 0.0433 [0.02, 0.12] 0.052 [0.01, 0.10]
3 mA (ON) 0.0373 [0.02, 0.10] 0.0481 [0.01, 0.09]

PRE or POST (OFF) 0.0266 [0.01, 0.12] 0.0396 [0.01, 0.12]
Left→ Right 1 mA (ON) 0.0225 [0.01, 0.13] 0.0393 [0.00, 0.16]

2 mA (ON) 0.0205 [0.01, 0.15] 0.0667 [0.01, 0.13]
3 mA (ON) 0.0206 [0.01, 0.11] 0.0469 [0.00, 0.11]

Table 2 shows the Kruskal–Wallis tests’ p-values across the Sham montages comparison
(Anodal, AC, versus Cathodal, CC), for each TE response, within stimuli off (pre/post-
stimulation) or during stimuli (1, 2, or 3 mA), in which none of them presented statistically
different patterns within the observed group (limited to the sample size observed in
this protocol study). It is noteworthy that Sham-AC shows an equivalent pattern to the
Sham-CC.

Table 2. Kruskal–Wallis tests considering each force place (information flux comes from the Left-
side, Left→ Right, or Right-side, Right→ Left) across the difference between Sham-Anodal versus
Sham-Cathodal stimulation observation per period.

p-Value

Stimuli Moment Left-Side Right-Side

PRE or POST (OFF) 0.529 0.505
1 mA (ON) 0.791 0.375
2 mA (ON) 0.099 0.214
3 mA (ON) 0.255 0.408

A theoretical GLMM was adopted to explain the Transfer Entropy dynamic through a
combination of montages and intensity, the variables time and platform side (if the transfer
information is from the Right-side or the Left-side to the other), and also considering that
each participant shows a personal response (that is, as a latent effect). Moreover, this
regression structure is explained with multiplicative error, then as a GLMM with Gamma
distribution considering a logarithmic link, and the stochastic component is described by a
Gamma model with scale parameter ν, observation of k participants in groups i -Montages-
and j -Doses-, for k = {1, . . . , 20}, i = {“Baseline”, “Sham-Cathodal”, “Sham-Anodal”,
“Cathodal”, “Anodal”} and j = {“0 mA (Pre- or Post-Stimulation)”, “1 mA”, “2 mA”,
“3 mA”}. That is,

Transfer entropy response (Yijk) ∼ Gamma(yijkµijk, ν) (2)

µijk := E[YijXij] = eXij β+Zijkγk (3)

whereas Xijβ = β
(i)
1 Montage + β

(j)
2 Dose + β

(ij)
3 Montage ∗ Dose + β4Time+ (4)

β5Side + β6Time ∗ Side (5)

in which Xij is the described array of known fixed effects explanatory variables, β is the p-
dimensional vector of fixed effects coefficients, Zijk is the array of known personal random
effects explanatory variables and γk is the q-dimensional vector of personal random effects
(normally distributed with mean equal to zero).

The GLMM brings the results related to montage, intensity, time, and side (complete
table in Appendix A, and its Bayesian version, which also contains the effective sample
size estimate in Appendix B). Fixing each intensity and observing the interaction among
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montages, cathodal condition up to 2 mA presented statistically different against Sham
(Figure 6). The decrease in the entropy on the left platform was influenced by the flow of
information from the right side. Furthermore, the time of the stimulation (duration and
repetition) appeared to be an influential factor in the changes in the entropy signal.

Figure 6. Comparison of the entropy measurements across the different brain stimulation conditions,
and the interaction effects between categorical predictors from the adjusted GLMM [26]. The results
indicate that our sham protocol would not yield effects in our variable of interest and that the cathode
center condition induced a significant effect on the postural control.

4. Discussion

The transfer entropy (TE) analysis presented here contributes to the findings reported
by our group that described the effects of HD-tDCS on postural control. Here we evaluated
predictive information between the right and left sides of the WBA, showing a causal
relationship from the right side to the left side. Moreover, we showed an effect of the
intensity up to 2 mA with the cathodal condition. Therefore, empirical evidence related to
the HD-tDCS on postural control over right-hemisphere TPJ is statistically noticeable, as a
modulator, in healthy subjects.

Previous studies indicate that, with a disturbed bipedal stance in healthy partici-
pants [27,28], as well as in post-stroke participants [29], greater WBA is observed. The
findings of Genthon and Rougier [27] showed an increase in the mediolateral amplitude
of the CoP, more evident for the unloaded foot. Following similar directions but without
an effect of side, L.C. Anker et al. [28] highlighted that the mediolateral velocity of the
CoP had a linear increase with the WBA. Both studies suggest a decrease in postural sta-
bility with more WBA in healthy participants. In people after stroke, Marigold and Eng
[30,31] reported a moderate association between WBA and large CoP velocities, whereas
Manfield et al. [32] showed an association between WBA and between-limb synchroniza-
tion. We have confirmed, in this study, that our HD-tDCS protocol over the right TPJ in
healthy individuals is capable of replicating the behavior of post-stroke VV misperception.
The cathodal 2 mA stimulation yields less weight discharge to the left leg, resulting in a
loss of complexity of the force plate signal caused by a greater discharge in the right leg,
i.e., flow of information (Transfer Entropy) from the right side to the left.

Several previous studies explored some of the various physiological rhythms of the
human body [33–36]. Among them, we can describe the system responsible for postu-
ral control, in which the oscillations in a temporal series of postural stability establish
the physiological rhythm relative to this system. Previously, postural oscillations were
believed to comprise static and stationary order [37,38]. However, more recent research
has proven the nonlinear characteristics of the human posture stability time series [39–42].
The discriminatory capacity of various entropy methods in the differentiation of two COP
paradigms was confronted in falling and non-falling elderly. They evaluated postural con-
trol in both groups of elderly with eyes open (EO) and eyes closed (EC). The authors found
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that Multiscale Entropy (MSE) and Composite Multiscale Entropy (CompMSE) presented
the best ability to discriminate between falling and non-falling [43]. The structure of COP
trajectories under stroke patients’ paretic and non-paretic foot was examined and showed
that the COP profiles under the non-paretic foot were the most regular, showing lower
sample entropy [44]. When it comes to using nonlinear measures, there is some consensus
in the literature showing a decrease in the complexity of the CoP signals in people with
diseases [45]. This is suggested by the “loss of complexity hypothesis” pointed by Lipsitz
and Goldberg, showing a less capable system to adapt to situations in order to execute
tasks because of deterioration in health [46,47]. The literature confirms the entropy analysis
as a promising tool to evaluate the postural control of health and individuals with specific
conditions. However, none of them analyzed the causal relationships between time series
in postural control.

Approximate entropy (ApEn) is a measure of system complexity initially applied to
cardiovascular physiological data. It measures how similar two sequences of a specific
length in the next point of a TS are. A new entropy algorithm was developed to reduce the
bias of ApEn, i.e., counting self-matched sequences. Sample entropy (SampEn) does not
count self-matches and has more relative consistency than ApEn [17]. Another technique,
multiscale entropy (MSE), proposed to use SampEn to calculate entropy in different time
scales. It can be applied to investigate physiological deficits at each time scale that can be
related to postural fluctuations [48]. The aforementioned entropy families have been used
to measure fluctuations in sequences of a TS but are not able to infer causality between
these sequences of points or two different sources of TS. Based on Information Theory, TE is
used to measure dependency between two TS and is capable to detect effective connectivity
based on interaction delays between the signals [15,20]. Additionally, our methodology
with GLMM was able to show elements in favor, for the first time, the dynamics of the
TE between the two Fz components of the platforms with a causal relationship from the
right to the left side. The time (duration and repetition) of stimulation also shows an effect
over the TE, showing that our specific protocol of HD-tDCS over the TPJ is able to promote
changes in WBA.

Future studies are necessary to explore random effects related to personal charac-
teristics to promote a broader knowledge involving causality on dynamic entropy data.
Moreover, each person shows a particular baseline towards the central (spatial) force-
displacement, and a more complex statistical structure can be accommodated, such as
spatial-domain in this data-driven modeling [49].

As a natural evolution of this study, we shall explore spatial dynamic responses, which
will shed light on the postural control task, and stimulation timing. This can be added in
further statistical modeling and can be incorporated as latent effect information. This can
be explained by the upright quiet standing postural control being an unstable condition
involving the body counteracting the force of gravity. In order to keep the center of mass
within the base of support, the individuals depend on somatosensory information that
comes from body segments organization, muscular activity, body orientation, and vertical
perception. Therefore, postural control is a complex system being affected differently by
each individual and population under investigation [50].

5. Conclusions

This study supports our previous research showing that transfer entropy analyses can
be used to explore the effects of dynamic time-variable parameters of stimulus (at discrete
intensities) versus condition (polarity). Here we addressed the causal inference between
WBA in two separate platforms in healthy subjects. We complemented the evidence of the
effects elucidated by our stimulation protocol [12] with a nonlinear time-series analysis.
Thus, we showed that past states of the right Fz component can improve the prediction of
the left Fz component. The effects induced a WBA with a decrease in entropy over time.
That is, the process, becoming more deterministic, was influenced by electrical stimulation.
The visually observed greater variability of the entropy on the left side and the results of the
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interaction between montage and intensity confirm that our HD-tDCS montage with the
cathodal polarity and intensity of 2 mA promoted a greater effect on the postural control.
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Appendix A

The Appendix Section shows the complete table holding the fixed effect estimations,
and their p-values associated, considering the GLMM gamma regression, adopting a
logarithm link function.

Table A1. Mixed model—Fixed effects estimations.

Estimate Std. Error t Value Pr(>|z|)

baseline −2.8219 0.1203 −23.46 <2 × 10−16 ***

Anodal (AC) −3.1613 0.1068 −29.59 <2 × 10−16 ***

Cathodal (CC) −3.1495 0.1068 −29.48 <2 × 10−16 ***

SHAM-AC −3.1958 0.1107 −28.86 <2 × 10−16 ***

SHAM-CC −3.0344 0.1094 −27.74 <2 × 10−16 ***

1 mA vs. 0 mA −0.1088 0.0649 −1.68 0.0934 .

2 mA vs. 0 mA 0.1073 0.0545 1.97 0.0490 *

3 mA vs. 0 mA −0.0899 0.0597 −1.51 0.1321

https://github.com/ProfNascimento/WBA
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Table A1. Cont.

Estimate Std. Error t Value Pr(>|z|)

Time −0.0034 0.0006 −6.13 8.6 × 10−10 ***

Right-side vs. Left- 0.1457 0.041 3.55 0.0004 ***

AC vs. SHAM-CC: 1 mA 0.1142 0.0809 1.41 0.1579

CC vs. SHAM-CC: 1 mA 0.1813 0.0804 2.25 0.0242 *

SHAM-AC vs. SHAM-CC: 1 mA 0.02619 0.0968 0.27 0.7867

AC vs. SHAM-CC: 2 mA −0.0299 0.0678 −0.44 0.6592

CC vs. SHAM-CC: 2 mA −0.1483 0.0679 −2.18 0.0289 *

SHAM-AC vs. SHAM-CC: 2 mA −0.158 0.0811 −1.95 0.0515 .

AC vs. SHAM-CC: 3 mA 0.0303 0.0743 0.41 0.6839

CC vs. SHAM-CC: 3 mA −0.0033 0.0744 −0.04 0.9646

SHAM-AC vs. SHAM-CC: 3 mA 0.0584 0.0891 0.66 0.5124

Right-side vs. Left-: Time 0.0017 0.0008 2.17 0.0299 *

−−−
Signif. codes: ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Appendix B

The Appendix Section shows the complete Bayesian version of the previous GLMM,
considering the GLMM gamma regression, adopting a logarithm link function. We adopted
the brms package [51], implemented in R [52], and used as interface to Stan [53] for full
Bayesian inference. By default, the Stan inference engine uses the No-U-Turn sampler
(NUTS) as an adaptive form of Hamiltonian Monte Carlo (HMC) sampling for numerical
approximation. We considered draws from 4 chains, each with a number of total iterations
of 15,000, considering a warmup of 5000 and a thinning rate of 10. The adopted priors was
non-informative for the fixed effects (β) and random effects (γ), such as,

β ∼ Normal(0, 10) (A1)

γ ∼ Cauchy(0, 2) (A2)

Table A2 shows all estimations (fixed and random effects), Rhat as a metric for the
chain convergence diagnostic, and also presents Bulk ESS and TailESS as the effective
sample size for inference validations.

Table A2. Bayesian GLMM—Fixed & Random effects estimations.

Estimate Std. Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS

baseline −2.463 3.638 −9.658 4.671 1.001 3438 3764

Anodal (AC) −3.157 0.115 −3.380 −2.925 1.000 2128 3039

Cathodal (CC) −3.146 0.114 −3.368 −2.912 1.001 2138 2968

SHAM-AC −3.189 0.118 −3.423 −2.956 1.000 2204 2932

SHAM-CC −3.028 0.116 −3.253 −2.794 1.001 2081 3043

1 mA vs. 0 mA 0.076 4.543 −8.888 9.022 1.000 3560 3726

2 mA vs. 0 mA 0.435 4.318 −8.009 8.579 1.000 3394 3553

3 mA vs. 0 mA −0.274 4.337 −8.635 8.395 1.000 3142 3523
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Table A2. Cont.

Estimate Std. Error l-95% CI u-95% CI Rhat Bulk ESS Tail ESS

Time −0.003 0.001 −0.005 −0.002 1.000 4073 3580

Right-side vs. Left- 0.146 0.041 0.064 0.227 1.000 3899 3913

AC vs. baseline: 1 mA −0.071 4.543 −9.004 8.854 1.000 3542 3663

CC vs. baseline: 1 mA −0.004 4.542 −8.956 9.027 1.000 3562 3682

SHAM-AC vs. baseline: 1 mA −0.157 4.543 −9.086 8.816 1.000 3555 3700

SHAM-CC vs. baseline: 1 mA −0.185 4.540 −9.130 8.746 1.000 3545 3668

AC vs. baseline: 2 mA −0.358 4.318 −8.493 8.080 1.000 3392 3520

CC vs. baseline: 2 mA −0.476 4.317 −8.660 7.978 1.000 3398 3587

SHAM-AC vs. baseline: 2 mA −0.485 4.318 −8.684 8.021 1.000 3392 3520

SHAM-CC vs. baseline: 2 mA −0.328 4.318 −8.480 8.128 1.000 3392 3553

AC vs. baseline: 3 mA 0.214 4.337 −8.458 8.524 1.000 3147 3537

CC vs. baseline: 3 mA 0.181 4.338 −8.502 8.534 1.000 3143 3524

SHAM-AC vs. baseline: 3 mA 0.242 4.336 −8.421 8.583 1.000 3146 3460

SHAM-CC vs. baseline: 3 mA 0.183 4.337 −8.485 8.534 1.000 3146 3538

Right-side vs. Left-: Time 0.002 0.001 0.000 0.003 1.000 4098 3929

—

shape parameter 3.460 0.097 3.274 3.653 1.000 4261 4043

—

sd(Intercept) 0.473 0.084 0.346 0.673 1.000 3286 3929
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