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Abstract: Skin lesion classification has recently attracted significant attention. Regularly, physicians
take much time to analyze the skin lesions because of the high similarity between these skin lesions.
An automated classification system using deep learning can assist physicians in detecting the skin
lesion type and enhance the patient’s health. The skin lesion classification has become a hot research
area with the evolution of deep learning architecture. In this study, we propose a novel method
using a new segmentation approach and wide-ShuffleNet for skin lesion classification. First, we
calculate the entropy-based weighting and first-order cumulative moment (EW-FCM) of the skin
image. These values are used to separate the lesion from the background. Then, we input the
segmentation result into a new deep learning structure wide-ShuffleNet and determine the skin
lesion type. We evaluated the proposed method on two large datasets: HAM10000 and ISIC2019.
Based on our numerical results, EW-FCM and wide-ShuffleNet achieve more accuracy than state-of-
the-art approaches. Additionally, the proposed method is superior lightweight and suitable with a
small system like a mobile healthcare system.

Keywords: skin lesion classification; medical image processing; deep learning; artificial intelligence;
big data; wide-ShuffleNet; mobile healthcare system

1. Introduction

Skin lesions, which are irregular skin changes compared to the neighboring tissue,
can evolve into skin cancer, one of the most dangerous cancers. There are two main
types of skin cancer: nonmelanoma and melanoma. Melanoma lesions are responsible
for the significant increase in mortality and morbidity in recent years; they are the most
destructive and dangerous among various lesion types [1]. If the physicians detect the
lesions earlier, they can increase the curing rate to 90% [2]. Moreover, visual inspection
for skin cancer is complex because of high similarity among different skin lesion types
(e.g., nonmelanoma and melanoma), leading to misdiagnosis. A solution for healthcare
systems [3] and image inspection [4] is using the automatic classification of lesion pictures
by machine learning (ML).

Presently, 132,000 melanoma skin lesion cases and approximately three million non-
melanoma skin lesion cases occur yearly in the world. Furthermore, 60,000 people died
due to prolonged sun exposure (12,000 nonmelanoma and 48,000 melanoma), according
to the World Health Organization. Approximately 80% of skin cancer mortalities occur
with melanoma lesions [5]. Besides long sun exposure, a record of sunburn has been
linked to the development of skin cancer, especially melanoma. In the beginning grades,
patient survival rates can be improved if melanoma is identified correctly [6]. To handle
the interobservation differences, technicians are guided to recognize melanoma manually.
Consequently, an automatic classification system can enhance the precision and efficiency
of the early discovery of this cancer type.
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Melanoma is similar to benign moles in their early stages of development; thus, it
is not easy to distinguish malignant and benign (even for qualified dermatologists [7]).
Several methods have been proposed to solve these problems, including handcrafted and
artificial intelligence (AI) approaches.

First, low-level properties, such as border, color, and visual texture features. were used
to separate melanoma and nonmelanoma lesions [8]. Celebi et al. [9] used shape, color,
and texture features, but experiences with huge observed intraclass similarity led to low
results. Segmentation is another approach to drop unwanted features and background,
as presented in [10]. Tommasi et al. [10] used a binary mask to segment the images and
a support vector machine (SVM) to classify the segmented images. The segmentation
process in [11] calculates the thresholding values using Gabor filter masks, which yields
poor outcomes.

The second approach is AI, an area with numerous possible utilizations, such as
mining, ecology, urban planning. AI is subdivided into ML and deep learning (DL) [12].
ML builds algorithms to identify data and obtain predictions [13–15]. DL can study
related features of images and extract the features with various architectures. Additionally,
DL is highly efficient for big data investigation [16–22]. One of the DL prototypes is a
convolutional neural network (CNN), which has presented an excellent performance in
video and images processing with the development of graphics processing unit (GPU)
computing systems. CNN is a powerful mechanism for bioimage examination based on a
recent study [23–25]. Hence, it allows the high potential in melanoma classification [26,27].
Moreover, CNN ensemble approaches have shown success for this classification task [28].

Skin cancer is extremely common, and early detection is crucial. Although computer-
aided diagnostic tools have been extensively studied, they still lack clinical practice.
ML (and particularly DL) models have demonstrated great promise in skin lesion clas-
sification tasks; however, some challenges limit their adoption: data availability for
some lesion categories and the requirement of trained professionals handling equipment
(e.g., dermatoscopy to collect and annotate the data). Thus, developing powerful but
efficient models that can run in decentralized devices (e.g., smartphones) is critical.

Conventional DL methods require high parameters and are not suitable for a portable
system. Therefore, creating a framework for a mobile system is a challenging task. Unlike
previous methods, we propose a novel approach for skin lesion classification that uses low
parameters while keeping high accuracy. The proposed method is appropriate for a portable
system like a mobile healthcare system. Our framework combines a novel segmentation
technique and a new wide-ShuffleNet to classify skin lesions. The proposed segmentation
method increases the segmentation accuracy compared with previous methods and helps
the network detect the skin lesion object better boost the classification process.

The contributions of this study are as follows:

• We propose a novel method to segment the skin image using the entropy-based
weighting (EW) and first-order cumulative moment (FCM) of the skin image.

• A two-dimensional wide-ShuffleNet network is applied to classify the segmented
image after applying EW-FCM. To the best of our knowledge, EW-FCM and wide-
ShuffleNet are novel approaches.

• Based on our numerical results on HAM10000 and ISIC2019 datasets, the proposed
framework is more efficient and accurate than state-of-the-art methods.

The remainder of the paper is organized as follows. We explore the related works in
Section 2. In Section 3, we present the proposed method. Section 4 presents the numerical
results and analysis. Finally, Section 5 presents the conclusion and future studies.
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2. Related Works

There are two strategies of skin classification: ML and DL methods [29].

2.1. ML Approaches

K-nearest neighbor (KNN) is a supervised ML algorithm used in predictive and
forecasting models [30]. The accuracy of the KNN algorithm is considerably good [31].
Sajid et al. [32] proposed another KNN-based automated skin cancer diagnostic system.
Their proposed system employed a median filter to remove the image noise using a
collection of statistical and textural features. Textural features were extracted from a curvelet
domain, whereas statistical features were extracted from lesion images. Furthermore, the
proposed framework classified the input images into noncancerous or cancerous. The
KNN model requires a long time to perform the output predictions, and it is unsuitable
for a big dataset. Moreover, the KNN algorithm operates worst with improper feature
information of high dimensional input data, making the algorithm unsuitable for the skin
lesion classification [33].

Alam et al. [34] applied SVM to discover eczema. The approach in [35] manipulates
several steps: image segmentation, feature determination applying texture-based data, and
finally deciding the type of eczema with SVM. Upadhyay et al. [36] extracted orientation
histogram, gradient, and location of skin lesion features. These features were fused and
classified as malignant or benign using an SVM algorithm. The SVM algorithm is unsuitable
for managing the noisy input image [37]. If the number of training samples is less than the
number of feature vector parameters, SVM gives a lower performance.

The Bayesian algorithm is another approach used in skin lesion classification with
multiple trained skin image databases [38]. Performing the Naïve Bayes algorithm for mul-
tiobjective areas is not easy [39]. The decision tree [40] model has been widely used for skin
lesion classification, forecast of under limbs lesions, and cervical disease. Arasi et al. [41]
presented intelligence techniques, decision tree, and Naïve Bayes to diagnose malignant
melanoma. The extracted features are based on principle component analysis and hybrid
discrete wavelet transform. These features become the input to different classification
methods, such as decision tree and Naïve Bayes, for classifying the lesions as benign or ma-
lignant. The decision tree algorithm demands big training data for achieving considerable
accuracy. Moreover, the decision tree model requires a large amount of memory and more
computational time [42].

2.2. DL Approaches

There are two DL classification strategies for skin classification: non-segmentation [43]
and segmentation approaches.

2.2.1. Non-Segmentation DL Approaches

Menegola et al. [44] applied six open datasets for lesion image classification. They used
Google Inception-v4 and ResNet-101 architectures to detect seborrheic keratosis, malignant
melanoma, and nevus. They also confirmed that combined datasets increase training data
and improve classification accuracy. Han et al. [45] introduced Resnet-152 for the lesions
image classification. The lesions include squamous cell carcinoma, basal cell carcinoma,
actinic keratosis, intraepithelial carcinoma, and malignant melanoma. The factors that
reduce the recognition accuracy of skin lesions are image contrast and ethnicity.

Esteva et al. [46] used Inception v3 architecture to classify the lesion into three
groups. The method first distinguishes between benign and malignant and then sepa-
rates seborrheic keratoses and keratinocyte carcinoma types. It also recognizes nevi and
malignant melanomas.

Fujisawa et al. [47] classified skin lesions into 21 classes and introduced a four-level
lesion identify method. Skin pictures are arranged in four levels using the GoogleLeNet
model. Benign and malignant samples are classified first, followed by recognition of
melanocytic and epithelial. The method also identified seborrheic keratosis, actinic kerato-
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sis, Bowen, and basal cell carcinoma lesions. Zhang et al. [18] inserted an attention layer at
the end of ResNet architecture and created new attention residual network. They classified
seborrheic keratosis, melanoma, and nevus lesion.

Mahbod et al. [48] introduced a new method to recognize skin lesions using the fine-
tuned pretrained network. They first applied AlexNet, VGG16, and ResNet to extract skin
image features from the last fully connected layers. Then, they applied SVM to fuse these
extracted features. Harangi [49] presented a method that fuses the outcome probabilities of
the four CNN models: AlexNet, GoogLeNet, VGGNet, and ResNet. The study proposed
the four fusion techniques to identify skin lesions: seborrheic keratosis, melanoma, and
nevus. The sum fusion provides better results than other rules (simple majority voting,
product fusion, and the maximal probability).

Nyiri and Kiss [50] presented the classification of the dermatological picture using
various CNN models, such as VGG19, VGG16, Inception, Xception, DenseNet, and ResNet.
They applied these models to extract features of two different inputs: the original skin and
segmented images. The proposed method combined these two extracted features to predict
skin lesions. Numerical results confirm that ensemble CNN has a better performance
than single CNN in skin classification. Consequently, ensemble architecture outperforms
individual architecture.

Matsunaga et al. [51] proposed an aggregate DL technique to match three lesion classes:
seborrheic keratosis, melanoma, and nevus. They used two binary classifiers on the basis
of ResNet-50 architecture. The first classifier distinguishes between melanoma and another
lesion. Meanwhile, the second classifier identifies the relationship between seborrheic
keratosis and another lesion. The proposed method recognizes the skin lesion images
by combining the output probabilities of these two binary classifiers. Li and Shen [52]
combined two ResNet architectures and obtained the features at the fully connected layer
of each ResNet model. They combined the extracted features to classify skin lesions into
seborrheic keratosis, melanoma, and nevus.

2.2.2. Segmentation DL Approaches

Gonzalez–Diaz [53] introduced three architectures to identify skin lesions: segmenta-
tion, structure segmentation, and diagnosis stages. First, the skin picture is segmented; then,
the output of this stage is used as the input of the structure segmentation stage. Finally, the
diagnosis stage links the outputs of the two previous steps and forecasts the skin lesion
type. The generation of a labeled training database is the main challenge to creating a
structure segmentation network in which each picture has an associated ground truth. This
annotation is usually hard to obtain, as it demands a massive effort of the dermatologists
to outline the segmentations manually.

The study in [54] employed a DL segmentation model (U-Net) to create a segmented
map of the lesion image, cluster sections of abnormal skin, and give the output to a
classification network. Meanwhile, Son et al. [54] drew contours of each cluster with the
output mask created by U-Net and applied a convex hull algorithm to crop each cluster.
Each cluster was applied as input to the EfficientNet to predict the lesion type.

Al-Masni et al. [55] presented an integrated framework that combines skin lesion
boundary segmentation and classification steps. First, the study used DL full-resolution
convolutional network (FrCN) to segment the skin lesion boundaries. Then, a CNN
classifier (ResNet-50, Inception-v3, DenseNet-201, and InceptionResNet-v2) was used to
classify the segmented skin lesions. The segmentation step is a crucial prerequisite for skin
lesion diagnosis because it extracts principal features of different skin lesions.

Table 1 presents the datasets of all DL methods mentioned in the related work section,
including the number of images and classes. Three approaches test with the extensive
databases (more than 10,000 images).
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Table 1. Datasets of all DL methods.

Methods Dataset Number of Images Number of Classes

Menegola et al. [44] ISIC 2017 2000 2
Han et al. [45] Asan 17,125 12

Esteva et al. [46] DERMOFIT 1300 10
Fujisawa et al. [47] University of Tsukuba Hospital 6009 21
Mahbod et al. [48] ISIC 2017 2000 2

Harangi [49] ISIC 2017 2000 2
Nyiri and Kiss [50] ISIC 2017 2000 2

Matsunaga et al. [51] ISIC 2017 2000 2
Li and Shen [52] ISIC 2017 2000 2

Gonzalez-Diaz [53] ISIC 2017 2000 2
Unet [54] DERMNET 15,851 18
Frcn [55] HAM10000 10,015 7

Besides DL, other segmentation approaches achieved good results for different fields,
such as surface defect detection and mineral separation. Truong et al. [56] presented an
automatic thresholding approach that improves Otsu’s method by applying an entropy
weighting scheme and overcoming the weakness of Otsu’s technique in defect detection.
Zhan et al. [57] presented an ore image segmentation algorithm using a histogram accu-
mulation moment applied to multiscenario ore object recognition. Ore pictures in three
separate scenarios are used to demonstrate the effectiveness and accuracy of the proposed
approach. It is reasonable to inherit these ideas into bioimage fields.

There are many methods for skin lesion classification in the literature review, including
ML and DL frameworks. However, these methods suffer from one of the following draw-
backs: (1) missing test results with big data, (2) having insufficiently good performance,
and (3) heavy-weight model. In this study, we present a novel approach to overcome these
limitations.

3. Methodology

We introduce the novel EW-FCM segmentation technique and a new wide-ShuffleNet
for skin lesion classification. The segmentation step helps the network separate between the
skin lesion object and background and boosts the recognition process. The segmentation
results (full lesion image, including background and foreground) were used as the input
of wide-ShuffleNet for feature extraction and classification. Figure 1 shows the structures
of the proposed method. We explain how the EW and the first-order cumulative moment
were combined to form the new EW-FCM segmentation technique and maintain their good
characteristics in Section 3.1. Section 3.2 introduces the wide-ShuffleNet.
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3.1. EW-FCM Segmentation Technique

In this section, we first present a short analysis of the Otsu technique. Then, we
introduce EW and histogram accumulation moment, including FCM. Finally, the new
image threshold technique for image segmentation is presented.

Otsu is one of the most commonly referenced thresholding methods. Let I = g(x,y)
be an image with the gray value belonging to the interval [0, 1, . . . , L − 1]. Assign ni as
the pixel numbers with the gray value i and the total pixel numbers in g(x,y) as N. The
existence probability of the gray level i is given by

Pi =
ni
N

. (1)

Assume the threshold th (0 ≤ th ≤ L− 1) divides g(x,y) into two classes: background
CO = {(x, y)|0 ≤ g(x, y) ≤ th} and object CB = {(x, y)|th + 1 ≤ g(x, y) ≤ L− 1}.

The medium gray level of individual class and the probability of category occurrence,
respectively, are calculated as follows:

µo(th) =
th

∑
i=0

iPi
ωO(th)

, µB(th) =
L−1

∑
i=th+1

iPi
ωB(th)

, (2)

where

ωO(th) =
th

∑
i=0

Pi, ωB(th) =
L−1

∑
i=th+1

Pi. (3)

In Otsu’s technique, the resulting threshold performance is measured by analyzing
the difference between the background and foreground. The optimal threshold th∗ when
applying this criterion must maximize between-class variance as follows:

th∗ = argmax
{

ωO(th)µ2
O(th) + ωB(th)µ2

B(th)
}

.

0 ≤ th ≤ L− 1
(4)

The basic idea to improve Otsu’s technique is the addition of a weight W to the
objective function in Equation (4) to regulate the output threshold, given as follows:

th∗ = argmax
{

W
(
ωO(th)µ2

O(th) + ωB(th)µ2
B(th)

)}
.

0 ≤ th ≤ L− 1
(5)

Image entropy describes the properties of an image; it is a mathematical measure of
randomness. Images with low entropy values possess minimal information and hold many
pixels with similar intensity values. An image with zero entropy means that all pixels hold
the same gray value. Reference [56] suggested an EW scheme by substituting weight W
with the entropy objective function ψ(th) in Equation (5) to create a new objective function

th∗ = argmax
{

ψ(th)
(
ωO(th)µ2

O(th) + ωB(th)µ2
B(th)

)}
.

0 ≤ th ≤ L− 1
(6)

The entropy objective function is defined as follows:

ψ(th) = ln(ωO(th)ωB(th)) +
Hth

ωO(th)
+

Hn

ωB(th)
, (7)

where

Hth = −
th

∑
i=0

Pi ln(Pi), Hn = −
L−1

∑
i=0

Pi ln(Pi). (8)
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Next, we discuss the first order of the cumulative moment. Let MO(th) denotes the
FCM of the gray histogram, which is the mean gray value from 0 to th given by

MO(th) =
th

∑
i=0

iPi. (9)

The mean gray of the entire image is MT , defined by

MT =
L−1

∑
i=0

iPi. (10)

The FCM MT helps the optimal threshold avoid dropping into the local optimum [57].
We combine the EW ψ(th) and FCM to obtain the optimal threshold and create a new

objective function for image segmentation as follows:

th∗ = argmax{ψ(th)(MT)}.
0 ≤ th ≤ L− 1

(11)

We adopt the segmentation process in reference [58], including texture filtering, thresh-
old and binarize, and plot the boundaries. Zade [58] uses the Otsu method to calculate the
threshold; meanwhile, our framework uses the new objective function in Equation (11) to
determine the threshold. Our objective function provides a better segmentation technique
due to the reservation of all properties of EW-FCM. Figure 2 shows the segmentation results
of the original Otsu technique, EW scheme [56], and the proposed EW-FCM segmentation
method. As seen in Figure 2, the proposed EW-FCM approach provides better segmentation
accuracy than the original Otsu and EW scheme EWS.
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3.2. Wide-ShuffleNet

We provide a brief analysis of ShuffleNet inventing for portable devices. Several terms
are reviewed, including efficient model designs, group convolution, channel shuffle for
group convolutions, and ShuffleNet unit. We also introduce a new variant of ShuffleNet,
called wide-ShuffleNet, that has been developed for skin classification.

Efficient model designs: Recently, efficient model designs played an essential role
in achieving DL networks in many computer vision tasks [59–61]. The growing de-
mand for streaming high-quality DL architectures on embedded systems boosts the re-
search of effective model designs [62]. For instance, instead of assembling convolution
layers, GoogLeNet [63] expands the network depth with sufficient lower complexity.
ResNet in [64,65] achieves remarkable performance using the effective bottleneck archi-
tecture. SqueezeNet [66] preserves accuracy; however, it decreases computation and
parameters significantly.

Group convolution: AlexNet [59] is the first model using the idea of group convolution
and spreading the network across two GPUs, and ResNeXt [67] confirms the efficacy of
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group convolution. MobileNet [68] applies the depthwise separable convolution (DWConv)
and achieves the best results between lightweight networks. ShuffleNet performs DWConv
and group convolution (GConv) in a new style.

Channel shuffle operation: In the early studies on efficient network layout, the opera-
tion of channel shuffle is seldom noticed. Lately, another study [69] applied this concept for
a two-stage convolution. However, the study [69] did not examine the efficacy of channel
shuffle and its application in light network layout.

Channel shuffle for group convolutions: New DL architectures [63–65] consist of dupli-
cated structure blocks with identical designs. Among these architectures, ResNeXt [67] and
Xception [70] offer an effective GConv or DWConv toward the structure blocks to discover
an outstanding trade-off among computational cost and representation capacity. However,
both architectures do not use pointwise convolutions [68] (or one-by-one convolutions),
which require significant complexity. Increasing the number of one-by-one convolutions,
we must restrict the number of channels to meet the complexity constraint in a small
network. One possible approach is using the channel links with GConv on the one-by-one
layers to handle the limitation. GConv remarkably decreases computation cost by assuring
that individual convolution runs on the relative input channel group.

ShuffleNet unit was invented for the light model, benefiting from channel shuffle
functioning. ShuffleNet unit gets the ideal from bottleneck unit [64] (see Figure 2a in
reference [61]). Building a ShuffleNet unit, the first one-by-one layer in the bottleneck
unit is replaced by pointwise GConv accompanied by a channel shuffle functioning (see
Figure 2b in reference [61]). The second pointwise GConv retrieves the dimension of the
channel to match with the shortcut pathway.

There are two types of ShuffleNet units: nonstride and stride. Two modifications are
made to create ShuffleNet with stride (see Figure 2c in reference [61]). First, a three-by-three
average pooling is added to the shortcut path. Then, the elementwise addition is altered
by channel concatenation, and it is simple to expand the channel dimension with a small
additional computational cost. The ShuffleNet model is formed by the ShuffleNet units.
The ShuffleNet architecture is made by stacking ShuffleNet units together and classified
into three stages. The first block in every stage is implemented with a stride equal to two.
Other parameters in the same stage stay identical, and the number of output channels
doubled for the following stage.

The proposed wide-ShuffleNet develops from ShuffleNet units and the idea of skip
connections. Now, we explore the skip connections. He et al. [64] introduced skip connec-
tions that bypass one or many layers (see Figure 2 in reference [64]). Skip connections create
the fundamental unit of the residual network, which is considered a residual module [71].
It maintains the feature data over all layers, having longer networks while preserving
low parameter numbers. Alternately of getting a desired mapping (indicated as H(x)),
the network with skip connection gets a residual mapping (indicated as F(x) + x, with
F(x) = H(x) − x). Skip connections make identity mapping and add the result to the output
of the two convolutional layers (see Figure 2 in reference [64]).

Next, we apply the long variant of the skip connections to extend the width of the
DL architecture. An architecture with a long residual connection converges more quickly
and offers excellent performance (see reference [72]). A long residual connection helps the
network increase the accuracy as it enhances reused features through the entire network.
It also helps the network to get the detailed and general characteristics of objects. A one-
by-one convolution layer is inserted in the shortcut connection to create a long residual
connection between different sized layers, making the size of two inputs of the additional
layer equal.

Figure 3 shows the final architecture of the proposed wide-ShuffleNet. ShuffleNet 1, 5,
and 13 are stride units, whereas the others are the nonstride units. In three skip connections,
we use three skip convolution layers at the same kernel size of 1 × 1 to connect the input
layers of ShuffleNet units: 1, 5, 13, and an output layer of the ShuffleNet units: 4, 12, 16.
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Skip convolution layers: 1, 2, 3, 4, and 5 have 136, 272, 544, 544, and 544 filters, respectively.
The stride for all skip convolution layers is equal to 2.
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Additionally, we insert the batch normalization (BN) layer after every skip convolu-
tion layer due to some reasons. DL training process becomes quick when applying BN.
Increasing the deep of the network means that the training process gets more challenging
because of many problems faced while training. The architecture provides greater test data
precision with the BN layer than the original model (without this layer). BN decreases the
internal covariate shift; thus, improving the performance of the network. The classification
accuracy significantly increases when applying BN. The position of the BN layer is after the
convolutional layer and before the leaky ReLU layer. This structure speeds up the training
and decreases testing and training time [73]. Furthermore, we replace all ReLU layers in
all ShuffleNet units with the leaky ReLU layers. Leaky ReLU gives better results than the
ReLU activation function (see reference [74]).

4. Experiment

In this section, we present the numerical results.

4.1. Datasets

The dataset plays an essential role in evaluating the performance of the proposed
framework. We test the proposed method on the two datasets: HAM10000 and ISIC 2019.

HAM10000 is the dermatoscopic database, which uses a benchmark dataset [75]. This
database comprises more than 10,000 dermatoscopic pictures obtained from many people
worldwide. The HAM10000 database also holds metadata formats like comma-separated-
values data (.CSV), containing gender, age, and cell class. This dataset consists of seven
different types of skin diseases: actinic keratoses and intraepithelial carcinoma (AKIEC),
basal cell carcinoma (BCC), benign keratosis-like lesions (BKL), dermatofibroma (DF),
melanoma (MEL), melanocytic Nevi (NV), and vascular lesions (VASC). The principal
problem of the HAM10000 database is classes imbalance and the irregular distribution
of skin disease numbers. NV class exceeds 70% of the total image numbers. This factor
influences the training and creates an extreme imbalance database. The second large class
is BKL, with approximately 13% of the pictures. The other classes contribute a minority
number of the images. Especially, less than 2% of the total images belong to the DF class,
which is the most difficult class for prediction. Figure 4 shows some sample images from
the HAM10000 dataset. HAM10000 dataset is a part of the ISIC 2018 challenge with three
tasks: lesion boundary segmentation (task 1), lesion attribute detection (task 2), disease
classification (task 3).
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The second dataset is the ISIC-2019 [76], consisting of 25,331 dermoscopic pictures
belonging to eight categories: AKIEC, BCC, BKL, DF, MEL, NV, VASC, and squamous
cell carcinoma (SCC). ISIC-2019 data are obtained from the following sources: BCN_20000
Dataset, HAM10000 Dataset, and MSK Dataset. The ISIC-2019 challenge has only one task:
disease classification. Table 2 gives the class distribution of the two datasets, HAM10000
and ISIC-2019.

Table 2. Class distribution in the HAM10000 and ISIC 2019 datasets.

Class Name HAM10000
Number of Images

ISIC2019
Number of Images

AKIEC 327 867
BCC 514 3323
BKL 1099 2624
DF 115 239

MEL 1113 4522
NV 6705 12,875
SCC - 628

VASC 142 253
Total 10,015 25,331

4.2. Evaluation

We apply the following metrics to evaluate the performance of the proposed method.

Precision =
TP

TP + FP
, (12)

Sensitivity =
TP

TP + FN
, (13)

Speci f icity =
TN

TN + FP
,

F1− score = 2× Precision× Sensitivity
Precision + Sensitivity

, (14)

Accuracy =
TP + TN

TP + FP + TN + FN
, (15)

where TN is the true negative, TP is the true positive, FN is the false negative, and FP is
the false positive.

4.3. Implementation Details

The original HAM10000 and ISIC-2019 databases can be downloaded from the link in
the Data Availability Statement. All tests were conducted on the i7 8700 PC, with 32 GB
memory, GPU NVIDIA 1070, MATLAB (9.8 (R2020a), Natick, MA, USA). We apply the
initial learning rate at 0.001, the mini-batch at 32, and the momentum at 0.9 for SGD for
network training. After every 20 epochs, we divide the learning rate by half.

4.4. Comparison of the HAM10000 and ISIC 2019 Datasets

We evaluate the proposed method with two big datasets, HAM10000 and ISIC 2019.
Then, we compare the performance of the proposed framework and that of state-of-the-
art approaches for the skin lesion classification task, including non-segmentation and
segmentation approaches. We split two datasets into training and testing parts with the
same amount mentioned in references [23,29,76]. The HAM10000 dataset is used in the
first and second experiments, with the percentages of the testing parts being 20% and
10%, respectively. The third experiment utilizes the ISCI2019 dataset, with 10% of the total
images belonging to the testing part. We implemented three different experiments to make
a fair comparison between the proposed EW-FCM framework and other methods. The
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reason is that each method uses a different dataset and a different proportion of the testing
data from the whole dataset. For example, Thurnhofer-Hemsi et al. [23] use 20% of the
dataset as the testing data, while Srinivasu et al. [29] use only 10% for the testing data on
the same dataset HAM10000.

4.4.1. Comparison with Non-Segmentation Methods

Table 3 presents the classification results of all approaches in three experiments.

Table 3. Comparison with different methods on the HAM10000 and ISIC2019 datasets.

Experiment Method ACC

Experiment 1
HAM10000

(80% training, 20% testing)

PNASNet [77] 76.00%
ResNet-50 + gcForest [78] 80.04%

VGG-16 + GoogLeNet
Ensemble [79] 81.50%

Densenet-121 with SVM [80] 82.70%
DenseNet-169 [80] 81.35%

Bayesian DenseNet-169 [81] 83.59%
Shifted MobileNetV2 [23] 81.90%
Shifted GoogLeNet [23] 80.50%

Shifted 2-Nets [23] 83.20%

The proposed method 84.80%

Experiment 2
HAM 10000

(90% training, 10% testing)

HARTS [82] 77.00%
FTNN [83] 79.00%
CNN [84] 80.00%

VGG19 [85] 81.00%
MobileNet V1 [68] 82.00%
MobileNet V2 [86] 84.00%

MobileNet V2-LSTM [29] 85.34%

The proposed method 86.33%

Experiment 3
ISIC 2019

(90% training, 10% testing)

VGG19 [85] 80.17%
ResNet-152 [64] 84.15%
Efficient-B0 [87] 81.75%
Efficient-B7 [87] 84.87%

The proposed method 82.56%

In the first experiment, the HAM10000 database is divided into two parts: one part
with 8008 training images and the other part with 2007 testing images. Four methods in
Table 3 provide the confusion matrix of the HAM10000 classification, including Shifted
MobileNetV2, Shifted GoogLeNet, Shifted 2-Nets, and the proposed method. Shifted 2-Nets
introduces an aggregate of enhanced CNN joined (ensemble of the DL approach) with a
test-time regularly spaced shifting method for skin recognition. Shifted 2-Nets reached
83.20% accuracy (10.4 M parameters), whereas our framework produced 84.80% accuracy
(1.8 M parameters). The proposed framework is more efficient than Shifted GoogLeNet,
MobileNetV2, and Shifted 2-Nets. Figure 5 shows the confusion matrix of the four methods.

The first note is that the proposed method has a lower wrong classification than other
methods. Additionally, the number of right predictions has improved for most categories:
AKIEC, BCC, DF, and MEL categories. BKL, NV, and VASC are three experiments that
our framework ranks as the third, second, and third positions among four approaches,
respectively. We calculate the following metrics from the obtained confusion matrix:
specificity, sensitivity, precision, and F1 score. Table 4, which is visualized in Figure 6,
presents our proposed framework’s performance and various approaches with five metrics:
accuracy, specificity, sensitivity, precision, and F1 score (macro-average).
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Table 4. Comparison with different methods on the HAM10000 dataset in the first experiment
(macro-average).

Methods

Shifted MobileNetV2 Shifted GoogLeNet Shifted 2-Nets The Proposed Method

Specificity 95.20% 94.70% 95.30% 96.03%
Sensitivity 65.90% 58.10% 64.40% 70.71%
Precision 71.40% 68.50% 76.10% 75.15%
F1 score 67.00% 60.80% 67.80% 72.61%

Accuracy 81.90% 80.50% 83.20% 84.80%
Parameters 3.4 M 7 M 10.4 M 1.8 M

In the second experiment, the HAM10000 database is split into two parts: 90% of the
total images are the training part, and the rest are the testing part. None of the methods
in Table 3 in the second experiment yield the precision, F1 score, and confusion matrix
(micro-average metric). We use three metrics to evaluate the performance of various meth-
ods: accuracy, sensitivity, and specificity. Table 5 presents the outcomes of all approaches.
Figure 7 visualizes the results of Table 5. Our framework achieves the highest performance
in terms of accuracy and specificity. Meanwhile, the MobileNet V2 with long short-term
memory (LSTM) [29] component has the highest sensitivity. MobileNet V2 improves effi-
ciency more than the first version MobileNet V1. Consequently, the number of parameters
decreases 19% from 4.2 to 3.4 M. MobileNet V2 is approximately two times the parameters
of our framework (1.8 M), even with lower parameters. Additionally, VGG19 has the
highest number of parameters with about 143 M (79 times the proposed method). This
comparison confirms the efficiency of the proposed framework.
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Table 5. Comparison with different methods on the HAM10000 dataset in the second experiment
(micro-average).

Method Accuracy Specificity Sensitivity Parameters

HARTS [82] 77.00% 83.00% 78.21% -
FTNN [83] 79.00% 84.00% 79.54% -
VGG19 [85] 81.00% 87.00% 82.46% 143 M

MobileNet V1 [68] 82.00% 89.00% 84.04% 4.2 M
MobileNet V2 [86] 84.00% 90.00% 86.41% 3.4 M

MobileNet V2-LSTM [29] 85.34% 92.00% 88.24% ≈3.4 M

The proposed method 86.33% 97.72% 86.33% 1.8 M

In the third experiment, we follow the dataset divided according to the previous
study [76]. The authors in reference [76] tested the skin classification on the ISIC-2019
dataset with different transfer learning models, such as state-of-the-art architecture Effi-
cientNet. EfficientNet has eight models that start from B0 to B7 and achieve better efficiency
and accuracy than earlier ConvNets. EfficientNet employs swish activation instead of
applying the ReLU function (see reference [76]).

Table 6 compares all approaches. All methods provide only the accuracy metric,
except the proposed methods. EfficientNetB0 uses a small number of parameters. It is
the simplest of all eight architectures in EfficientNet. However, the total parameters of
EfficientNet-B0 are approximately three times that of our method (5 M compared with
1.8 M), whereas the accuracy is lower (81.75% compared with 82.56%). EfficientNet-B7
and ResNet-152 are the first and second rank in terms of accuracy, respectively. Both
architectures have high parameters (66 and 50 M, respectively) and achieved a better result
than our method (the proposed network uses less than 4% of the parameters compared to
these two models). VGG19 is the worst method with the highest parameters (143 M) and
the lowest accuracy (80.17%).
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Table 6. Comparison with different methods on the ISIC2019 dataset in the third experiment
(micro-average).

Method Accuracy Specificity Sensitivity Parameters

VGG19 [85] 80.17% - - 143 M
ResNet-152 [64] 84.15% - - 50 M
Efficient-B0 [87] 81.75% - - 5 M
Efficient-B7 [87] 84.87% 66 M

The proposed method 82.56% 97.51% 82.56% 1.8 M

We have already compared different methods in three experiments. Even with the
highest efficiency result, our method has a weakness that could not control the imbalanced
classes of two datasets: HAM10000 and ISIC2019. Data sampling methods, which are the
future research work, can balance the classes distribution.

4.4.2. Comparison with Segmentation Methods

The proposed method has higher accuracy and is more efficient than other non-
segmentation approaches. In this section, we compare the proposed EW-FCM with other
segmentation techniques, such as non-DL and DL segmentation methods. All segmentation
methods use the full lesion image (background and foreground) as the input image for the
classification network.

First, we compare the proposed EW-FCM with other non-DL methods, such as the
original Otsu, Otsu momentum, an EW scheme. Table 7 presents the results. EW-FCM
achieved the highest accuracy among non-DL segmentation approaches. Figure 8 shows
the segmentation results of various segmentation methods.
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Table 7. Comparison with segmentation methods on the HAM10000 and ISIC2019 datasets
(micro-average).

Experiment Method ACC Sensitivity Specificity

Experiment 1
HAM10000

(80% training, 20% testing)

Original Otsu + wide-ShuffleNet 79.62% 79.62% 96.60%
Otsu Momentum [57] + wide-ShuffleNet 81.51% 81.51% 96.92%
Image Entropy [56] + wide-ShuffleNet 83.91% 83.91% 97.32%

U-Net + wide-ShuffleNet 85.10% 85.10% 97.52%
U-Net + EfficientNet-B0 [54] 85.65% 85.65% 97.61%

FrCN + Inception-ResNet-v2 [55] 87.74% - -
FrCN + Inception-v3 [55] 88.05% - -

FrCN + DenseNet-201 [55] 88.70% - -

EW-FCM + wide-ShuffleNet 84.80% 84.80% 97.48%

Experiment 2
HAM 10000

(90% training, 10% testing)

Original Otsu + wide-ShuffleNet 80.14% 80.14% 96.69%
Otsu Momentum [57] + wide-ShuffleNet 82.54% 82.54% 97.09%
Image Entropy [56] + wide-ShuffleNet 84.83% 84.83% 97.47%

EW-FCM + wide-ShuffleNet 86.33% 86.33% 97.72%

Experiment 3
ISIC 2019

(90% training, 10% testing)

Original Otsu + wide-ShuffleNet 78.55% 78.55% 96.94%
Otsu Momentum [57] + wide-ShuffleNet 80.34% 80.34% 97.19%
Image Entropy [56] + wide-ShuffleNet 81.20% 81.20% 97.31%

EW-FCM + wide-ShuffleNet 82.56% 82.56% 97.51%
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Second, we compare the proposed EW-FCM with DL segmentation methods. Al-Masni
et al. [55] provides only the accuracy of the training of the ISIC 2018 task 3 (HAM10000
dataset). Moreover, Al-Masni et al. [55] uses DL FrCN to segment the skin lesion and
classify full lesion images with various networks, such as Inception-ResNet-v2, DenseNet-
201, and Inception-v3. Meanwhile, Son et al. [54] crop the segmented image with U-Net and
input the result to Efficient-B0 for classification. We adopt the idea of U-Net and Efficient-
B0 in [54] to evaluate the HAM10000 dataset using the U-Net as a segmentation method
with full lesion image (background and foreground). EW-FCM achieved a lower accuracy
than the DL segmentation methods (see Table 7); it also achieved higher results than
non-DL segmentation methods. There are two main drawbacks of the DL segmentation
methods. First, creating a labeled training database is the primary challenge to creating
a DL segmentation network in which each picture has an associated ground truth. A
massive effort of dermatologists is used to obtain this ground truth pixel-wise segmentation.
Meanwhile, the proposed EW-FCM uses a threshold technique for image segmentation
and does not depend on the ground truth. As a result, we cannot calculate the quantitative
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analysis with the EW-FCM segmentation technique (such as using the Jaccard index).
Second, the complexity increases when using DL for segmentation and classification. For
instance, the total parameters of the DL segmentation U-Net and DL classification Efficient-
B0 are 12.7 M (7.7 M + 5 M = 12.7 M). EW-FCM uses DL only for the classification state,
thus decreasing the complexity and being suitable with a portable system.

Next, we evaluate the performance of the skin classification with various classifiers
and present the results in Table 8. The proposed method improves the skin classification
for two reasons: wide-ShuffleNet is better than ShuffleNet, and the new segmentation
technique is better than the original image. Efficient-B0 has the highest accuracy, but
its parameters increase approximately three times compared to wide-ShuffleNet. In fu-
ture studies, we will investigate the performance of EW-FCM with ShuffleNet V2 (2.4 M
parameters) and compare it with the proposed wide-ShuffleNet (1.8 M parameters).

Table 8. Comparison with different networks on the HAM10000 and ISIC2019 datasets
(micro-average).

Experiment Method ACC Sensitivity Specificity

Experiment 1
HAM10000

(80% training, 20% testing)

Original Image + ShuffleNet 76.83% 76.83% 96.14%
Original Image + wide-ShuffleNet 77.88% 77.88% 96.31%

EW-FCM + ShuffleNet 83.66% 83.66% 97.28%
EW-FCM + wide-ShuffleNet 84.80% 84.80% 97.48%
EW-FCM + EfficientNet-B0 85.50% 85.50% 97.58%

Experiment 2
HAM 10000

(90% training, 10% testing)

Original Image + ShuffleNet 77.25% 77.25% 96.21%
Original Image + wide-ShuffleNet 78.64% 78.64% 96.44%

EW-FCM + ShuffleNet 84.43% 84.43% 97.41%
EW-FCM + wide-ShuffleNet 86.33% 86.33% 97.72%
EW-FCM + EfficientNet-B0 87.23% 87.23% 97.87%

Experiment 3
ISIC 2019

(90% training, 10% testing)

Original Image + ShuffleNet 74.23% 74.23% 96.32%
Original Image + wide-ShuffleNet 75.73% 75.73% 96.53%

EW-FCM + ShuffleNet 81.62% 81.62% 97.38%
EW-FCM + wide-ShuffleNet 82.56% 82.56% 97.51%
EW-FCM + EfficientNet-B0 84.66% 84.66% 97.81%

5. Conclusions

Skin cancer is one of the most dangerous diseases in humans. The automated classifi-
cation of skin lesions using DL will save time for physicians and increase the curing rate.
Typical DL frameworks require high parameters and cannot work on the mobile system.
Hence, developing the lightweight DL framework for skin lesion classification is essential.

In this paper, we propose a novel method for skin lesion classification. Our lightweight
method improves the limitation of evaluating a small number of skin lesion images in
the past. The numerical results show that the proposed framework is more efficient and
accurate than the 20 other approaches (see Table 3). The proposed method reduces the
number of the parameters to approximately 79 times that of another method (VGG19) while
maintaining higher accuracy. Additionally, the proposed method achieves higher accuracy
than other non-segmentation and non-DL segmentation methods and the approximate
results at the level of the DL segmentation methods while reducing the complexity of
the DL segmentation methods. Our framework does not require ground truth for image
segmentation, whereas DL segmentation methods cannot work without ground truth. Thus,
the proposed method decreases the effort of the dermatologists to manually outline the
ground truth pixel-wise segmentation. We create an accurate and efficient framework by
combining the new EW-FCM segmentation technique and wide-ShuffleNet.

We will compare the proposed framework with more networks in future work. An-
other future direction for research and development is to integrate the proposed method
into real-world problems like the mobile healthcare system.
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