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Abstract: In order to prevent joints from being damaged by impact force in a space robot capturing
satellite, a spring-damper device (SDD) is added between the joint motor and manipulator. The
device can not only absorb and attrition impact energy, but also limit impact force to a safe range
through reasonable design compliance control strategy. Firstly, the dynamic mode of the space
robot and target satellite systems before capture are established by using a Lagrange function based
on dissipation theory and Newton-Euler function, respectively. After that, the impact effect is
analyzed and the hybrid system dynamic equation is obtained by combining Newton’s third law,
momentum conservation, and a kinematic geometric relationship. To realize the buffer compliance
stability control of the hybrid system, a reinforcement learning (RL) control strategy based on a fuzzy
wavelet network is proposed. The controller consists of a performance measurement unit (PMU),
an associative search network (ASN), and an adaptive critic network (ACN). Finally, the stability of
system is proved by Lyapunov theorem, and both the impact resistance of SDD and the effectiveness
of buffer compliance control strategy are verified by numerical simulation.

Keywords: space robot; spring-damper device; buffer compliance control; fuzzy wavelet network;
reinforcement learning

1. Introduction

Space exploration is of great significance to the development of resources exploration,
meteorological observation, navigation, and positioning, so a large number of satellites
are launched into space every year. It is inevitable that a small part of satellites will fail
to enter the intended orbit or damage in orbit. If the satellites can be recovered, the cost
of space exploration will be greatly saved. At present, it is feasible to use a space robot
to complete the capture task. This has therefore become one of the research hot spots
of space exploration [1–8]. Generally, the process of capture operation can be divided
into four stages: (1) the space robot observes the target satellite; (2) a pre-operation stage
before capture operation, such as deceleration and detumbling control of the target satellite;
(3) contact and collision between the space robot and target satellite; and (4) the stabilization
control of the closed chain hybrid system. The impact force makes it easy to damage the
joints of space robot in the third stage, and the impact effect will make the hybrid system
unstable in the fourth stage. Therefore, these two stages represent the focus and challenges
of this study.

For the third stage, Cheng et al. [9] analyzed the dynamic evolution for dual-arm space
robot with capturing a spin satellite and calm control for unstable closed chain composite
system are discussed. Uyama et al. [10] presented the impedance-based contact control of
a free-flying space robot utilizing a compliant wrist for non-cooperative satellite capture
operation. An open loop impedance control law based on contact dynamics model is
introduced to realize the desired coefficient of restitution defined between the manipulator
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hand of a space robot and a contact point on a free-flying target. Dimitrov et al. [11]
established the contact dynamic model of a space robot capturing satellite and analyzed
the momentum exchange problem in the capture process. Yoshida et al. [12] studied the
collision dynamics and kinematics of a space robot capturing satellite based on momentum
conservation. Dong et al. [13] approximately described the elastic deformation of flexible
manipulator by using the assumed mode method, and then analyzed the collision dynamics
of space robot capturing satellite by combining the momentum impulse. It is worth noting
that scholars mainly focus on the analysis of collision dynamics, and they do not pay
attention to the protection of the joints. In fact, if the joints are not protected during the
capture operation, they will be damaged by impact force and could even cause damage to
the space robot.

A series elastic actuator (SEA) is usually added between the joint motor and manipu-
lator in the ground robot, which can avoid joint being damaged by impact force when the
robot collides with the external environment [14–21]. However, the space robot is a rootless
system, and it works in both microgravity and a vacuum. If the SEA is added in the joints of
space robot (refer to our published previously work [3,22]), the flexible vibration caused by
SEA will be difficult to suppress. Therefore, the controller was divided into a fast subsystem
controller and slow subsystem controller, wherein the slow subsystem controller realizes
trajectory tracking and the fast subsystem controller suppresses the flexible vibration. This
means that the controller becomes more complex, and the joint motor needs to provide
additional torque to suppress flexible vibration. Sometimes this torque will exceed the load
capacity of the motor. In order to cope with the problem, this paper adds a spring-damper
device (SDD) between the joint motor and manipulator. Compared with SEA, The SDD
can not only absorb and digest the impact energy, but also quickly attenuate the flexible
vibration to achieve the suppression of flexible vibration.

For the fourth stage, Liu et al. [23] used impedance control to stabilize the hybrid
system after space robot captures satellite. Huang et al. [24] designed a reconfigurable con-
trol system for attitude takeover control of target spacecraft, which considers the changes
of mass properties and reaction wheels’ configuration. Luo et al. [25] proposed a robust
inertia free attitude takeover control scheme with guaranteed prescribed performance for
post capture combined spacecraft with consideration of unmeasurable states, unknown
inertial property, and external disturbance torque. Gangapersaud et al. [26] presented a
novel detumbling strategy for realizing detumbling of a non-cooperative, tumbling target
by a space robot without prior knowledge of the target’s inertial parameters (mass, inertia
tensor, location of center of mass). However, the impact effect is not considered in the
above control schemes. When the impact effect exceeds a certain value, the hybrid system
will lose stability, which makes it difficult to realize stability control.

In recent years, intelligent algorithms have been more and more applied to the control
of robot systems [27–29]. Since the target satellite has a large initial velocity, the hybrid
system after capture will be in a serious unstable state (e.g., involving overturning and
rotation) and the traditional control method will make it difficult to complete its calm
control. The actor-critic reinforcement learning (RL) control can optimize itself through
trial-and-error and interaction with dynamic environment, and has strong environmental
adaptability [30–34]. Therefore, an RL control scheme based on fuzzy wavelet network is
proposed to realize stabilization of the hybrid system. The controller consists of a perfor-
mance measurement unit (PMU), an associative search network (ASN) and an adaptive
critic network (ACN). The controller obtains the primary reinforcement signal through the
PMU, and then uses the ACN to collect the primary reinforcement signal for generating
the enhancement signal, which is used to adjust the ASN dominate strategy function to
realize the hybrid system stability control. The mechanism of the proposed reinforcement
learning can be found in [35]. The food is the primary reinforcement signal, and the bell is
the secondary reinforcement signal. In order to maintain a stronger effect, the food and the
bell are matched to generate the enhancement signal. Compared to RL in our published
previously work [3], this paper enhanced the primary reinforcement signal to become an
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enhancement signal containing more information (which ultimately makes the calm control
of the hybrid system more stable).

This paper is organized as follows. In Section 2, the structure of the SDD and the
buffer compliance strategy are described. In Section 3, the hybrid system dynamic model is
obtained, and the impact effect and force are analyzed. Furthermore, a RL control strategy
based on fuzzy wavelet network is designed in Section 4. The results of the simulation are
given in Section 5. Finally, the conclusion is summarized in Section 6.

2. Structure of the SDD and Buffer Compliance Strategy
2.1. Structure of the SDD

Compared with our published previously work [3], dampers are added. The structure
diagram of the SDD is shown in Figure 1. The spring is used to absorb impact energy, and
the damper provides damping force in real time to suppress flexible vibration. In order to
describe the resistance of motor and manipulator more realistically, the equivalent dampers
are added to them, respectively (in fact, there are no dampers), and the connection mode
of the SDD is shown in Figure 2. In Figure 1, Ksi, Dti(i = 1, 2, · · ·, n) are the stiffness of
torsion spring and the damping coefficient of rotary damper, Dmi, DLi(i = 1, 2, · · ·, n) are
the damping coefficient of equivalent damper at motor and manipulator.
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2.2. Buffer Compliance Strategy

In the third stage, the end-effector of space robot collides with the target satellite, and
the impact energy will be quickly buffered and consumed by SDD when it is transmitted
to the motor rotors so as to protect the joints. In the fourth stage, due to the impact effect,
the instantaneous impact torque will be generated when the motors are turned on. If the
instantaneous impact torque exceeds the limit of joint and the motor still turns on, the
joint will be damaged. Therefore, it is necessary to set a torque threshold according to
the ultimate torque value that the joints can withstand. When the instantaneous impact
torque is detected to exceed the set threshold, the motor will be turned off. At this time,
the spring will provide elasticity to mitigate the impact torque on joints, and the damper
will quickly dissipate energy to suppress the flexible vibration. However, if only set one
threshold is turned on, the motors will be frequently switched (which easily causes motor
damage). The buffer compliance strategy proposed in this paper set a threshold in order to
turn on and off at the same time. When the impact torques of the joints exceed the turn off
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torque threshold, the motor is turned off; when the impact torque is reduced to the turn on
threshold by SDD, the motor is turned on again.

3. Dynamic Modeling and Impact Analysis

The structure of a space robot with SDD and target satellite systems is shown in
Figure 3. The O0, Os and Oi(i = 1, 2, · · ·, n) are the centroids of carrier, satellite, and joints
respectively. P and P′ are the acquisition point of space manipulator and the acquisition
point of satellite, respectively. xOy is the inertial coordinate system moving with orbit,
x0O0y0 and xsOsys are the coordinate systems fixed on the centroids of carrier and satellite,
respectively, xiOiyi(i = 1, 2, · · ·, n) is the coordinate system fixed at the centre of ith joint.
The parameters of space robot and satellite are defined as follows: m0, mi(i = 1, 2, · · ·, n)
and ms are the mass of space robot carrier, manipulator, and satellite, respectively, Ii,
Imi(i = 1, 2, · · ·, n) and Is are the moment of inertia of manipulator, motor rotor and satellite
respectively, d0, di(i = 1, 2, · · ·, n) and ds are the distance from O0 to O1, from the centre of
joint to manipulator and from satellite centroid to the end, respectively. Li(i = 1, 2, · · ·, n) is
the length of the manipulator, and θ0, θi, θs, and θmi(i = 1, 2, · · ·, n) are the angle of carrier
attitude, manipulator, satellite attitude, and motor rotor, respectively.
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As the system of space robot with SDD (see Figure 3), the total kinetic energy of space
robot in the pre-contact phase is as follows:

Tr =
1
2

n

∑
i=0

(
mi

.
rT

i
.
ri + Iiω

2
i

)
+

1
2

n

∑
j=1

(
Imjω

2
mj

)
(1)

where ri is the position vector of manipulator’s mass centre, and ωi and ωmj are the angular
velocity of manipulator and motor rotor, respectively.

If the microgravity is ignored, the potential energy of space robot comes from the
spring in SDD:

Ur =
1
2

n

∑
i=1

[
ksi(θmi − θi)

2
]

(2)

Due to the addition of SDD in the joints of space robot, the space robot is a nonpotential
system, the dissipation function should be added:

ϑr =
n

∑
i=1

[
Dmi

.
θ

2
mi + Dti(

.
θmi −

.
θi)

2
+ DLi

.
θ

2
i

]
(3)
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Reference [36], the Lagrange equation of dissipative system is as follows:

d
dt

(
∂Lr

∂
.
qr

)
− ∂Lr

∂qr
+

∂ϑr

∂
.
qr

= Q (4)

Combined Equations (1)–(4), the model of space robot system before capture is ob-
tained as follows: 

Mr(qr)
..
qr +

(
Hr(qr,

.
qr) + DL

) .
qr = τr + JT

r FP
Im

..
qm + Dmc

.
qm + τc = τm

Ks(qm − qc) + Dtc(
.
qm −

.
qc) = τc

(5)

where Mr ∈ R(n+3)×(n+3) is the symmetric positive definite inertia matrix of space robot,
Hr ∈ R(n+3)×(n+3) is the matrix containing Coriolis force and centrifugal force,
DL ∈ R(n+3)×(n+3) is the augmented equivalent damper coefficient matrix of manipu-
lator, Dmc ∈ Rn×n is the equivalent damper coefficient matrix of motor, Dtc ∈ Rn×n is the
damper coefficient matrix in SDD. qr = [x0, y0, θ0, qT

c ]
T is the generalized coordinate of

space robot system, and qc = [θ1, θ2, · · ·, θn]
T, qm = [θm1, θm2, · · ·, θmn]

T. τr = [τT
B , τ0, τT

c ]
T,

τB = [0, 0]T, τ0 is the input torque of carrier, τc = [τ1, τ2, · · ·, τn]
T is the joint input torque,

τmc = [τm1, τm2, · · ·, τmn]
T is the motor output torque.Im = [Im1, Im2, · · ·, Imn]

T is the
inertia matrix of motor rotor, Ks = [ks1, ks2, · · ·, ksn]

T is the stiffness matrix of spring.
Jr ∈ R3×(n+3) is the Jacobian matrix of space robot, FP ∈ R3×1 is the force acting on the
end-effector of space robot.

The model of satellite system before capture is obtained by the Newton–Euler equation:

Ms
..
qs = JT

s Fp′ (6)

where Ms ∈ R3×3 is the symmetric positive definite inertia matrix of satellite,
qs = [xs, ys, θs]

T is the generalized coordinate of satellite system, xs and ys are the satellite
centroid coordinates, Js ∈ R3×3 is the Jacobian matrix for satellite,FP′ ∈ R3×1 is the force
acting on the satellite, and FP + FP′ = 0.

After the capture operation, the velocity on end-effector of space robot and satellite
meets the following requirements:

SP(t0 + ∆t) = SP′(t0 + ∆t) (7)

where ∆t is the length of collision time, and SP = [
.
xp,

.
yp, ω2]

T, SP′ = [
.
xp′ ,

.
yp′ ,

.
θs]

T
. Through

Equation (7), the acceleration of satellite after collision:

..
qs(t0 + ∆t) = J−1

s Jr
..
qr(t0 + ∆t) + J−1

s (
.
Jr −

.
JsJ−1

s Jr)
.
qr(t0 + ∆t) (8)

Combining the law of momentum conservation with Equations (5) and (6), we can get
the following equation: {

Mr
[ .
qr(t0 + ∆t)− .

qr(t0)
]
= JT

r fP
Ms
[ .
qs(t0 + ∆t)− .

qs(t0)
]
= JT

s fP′
(9)

where fP =
∫ t0+∆t

t0
FPdt and fP′ =

∫ t0+∆t
t0

FP′dt are the impact impulse, and fP + fP′ = 0.
The impact effect can be obtained by Equations (7) and (9):

.
qr(t0 + ∆t) = A−1[Mr

.
qr(t0) + B

.
qs(t0)] (10)
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where A = Mr +BJ−1
s Jr, B = JT

r (J
T
s )
−1Ms. The impact force can be obtained by Equations (9)

and (10)

FP =
(JT

r )
+Mr

[
(A−1Mr − E5×1)

.
qr(t0) + B

.
qs(t0)

]
∆t

(11)

The hybrid system dynamic model can be obtained by Equations (5), (6) and (8) and
FP + FP′ = 0:[

Mrs11 Mrs12
Mrs21 Mrs22

][ ..
X
..
qh

]
+

[
Hrs11 + DL11 Hrs12 + DL12
Hrs21 + DL21 Hrs22 + DL22

][ .
X
.
qh

]
=

[
τB
τh

]
(12)

where Mrs = Mr + BJ−1
s Jr, Hrs = Hr + BJ−1

s (
.
Jr −

.
JsJ−1

s Jr), qh = [θ0, qT
c ]

T, X = [x0, y0]
T,

τh = [τ0, τT
c ]

T.
The dynamic model of fully controllable hybrid system can be obtained from Equation (12):

Mh
..
qh + Hh

.
qh + DLh

.
qh = τh

Im
..
qm + Dmc

.
qm + τc = τm

Ks(qm − qc) + Dtc(
.
qm −

.
qc) = τc

(13)

where DLh = DL22, Mh = Mrs22 −Mrs21M−1
rs11Mrs12, Hh = Hrs22 −Mrs21M−1

rs11Hrs12.

4. Design of Controller

The controller consists of a PMU, an ASN, and an ACN. Since the primary reinforce-
ment signal is used to design the control torque directly, it easily leads to failure of stability
control. Therefore, the controller obtains the primary reinforcement signal through the
PMU, in turn using the ACN to construct a more informative signal than the primary
reinforcement alone in order to tune the ASN realize stability control of the hybrid system.
The control based on fuzzy logic RL is shown in Figure 4.

Property 1. The matrix
.

Mh(qh) and Hh(qh,
.
qh) are skew symmetric matrix such that 1

2zT
.

Mh(qh)z =
zTHh(qh,

.
qh)z, where z ∈ Rn+1 is the arbitrary column vector.

Assumption 1. The matrix Mh(qh) and Hh(qh,
.
qh) are bounded such that

∥∥Hh(qh,
.
qh)

.
qh
∥∥ ≤

λH
∥∥ .

qh
∥∥, λm ≤ ‖Mh(qh)‖ ≤ λM, where λm, λM and λH are positive constants.

The position error and performance measurement signal are defined as follows:

e = qd − qh (14)

S =
.
e + Λe (15)

where Λ = diag(Λ1, Λ2, · · ·, Λn+1) is a diagonal matrix.
The primary reinforcement signal can be obtained from Equations (14) and (15):

r(t) = Lσ(t) (16)

where L = diag( 1
ρ1

, 1
ρ2

, · · ·, 1
ρn+1

), ρi > 0, (i = 1, 2, · · ·, n + 1), σ(t) = [σ1(s1(t)), σ2(s2(t)),

· · ·, σn+1(sn+1(t))]T, σi(si(t)) = eρi si(t)−e−ρi si(t)

eρi si(t)+e−ρi si(t)
, (i = 1, 2, · · ·, n + 1). Then,

Mh
.
r = −(Hh + DLh)r− τh + χ(x) (17)

where χ(x) = Mh[
..
qd +Λ

.
e−diag(σ2)(

..
e+Λ

.
e)]+Hh(

.
qd−

.
e+ r), x = [qh,

.
qh,

..
qh, qd,

.
qd,

..
qd]

T

is the uncertain item in system.
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In order to eliminate the influence of uncertain item on control accuracy, ASN is used
to estimate the controller of wavelet neural network. It is assumed that the estimation of
uncertain item by wavelet neural network is as follows:

χ̂ = ŴT
S ψ(x, l̂, v̂) (18)

where ŴS = [ŵS1, ŵS2, · · ·, ŵSm] is the estimates of the weight matrix.
Based on this, the control signals are designed as follow:

τh = Krr + χ̂ + τH (19)

where Kr ∈ R(n+1)×(n+1) is a positive definite diagonal matrix, τH = 1
kd

r, kd > 0.
Combine Equations (17) and (19) to get:

Mh
.
r = −(Kr + Hh + DLh)r + χ̃(x)− τH (20)

where χ̃ = χ− χ̂.
The primary reinforcement signal can be enhanced as follows:

rs(t) = r(t) + ΓW∗TC (t)ψ∗(t) (21)

where W∗C is the ideal weight matrix, ψ∗ is the ideal regression matrix, Γ = diag(rs1, rs2, · ·
·, rs,n+1) and rsi is the element in rs.

It is assumed that the enhancement signal can be approximated by ACN as follows:

r̂s(t) = r(t) + ΓŴT
C(t)ψ̂(t) (22)
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where ŴC = [ŵC1, ŵC2, · · ·, ŵCm] is the estimated value of weight matrix, and ψ̂ is the
estimated value of regression matrix. Expand ψ̃ = ψ∗ − ψ̂ by Taylor as follows:

ψ̃ =


(

∂ψ1
∂v

)T

...(
∂ψN
∂v

)T


∣∣∣∣∣∣∣∣∣∣
v=v̂

ṽ +


(

∂ψ1
∂l

)T

...(
∂ψN

∂l

)T


∣∣∣∣∣∣∣∣∣∣
l=l̂

l̃ + ξ (23)

where ṽ = v∗ − v̂, l̃ = l∗ − l̂. The Equation (23) can be rewritten as:

ψ̃ = αTṽ + βTl̃ + ξ (24)

Assumption 2. The ideal weight w∗Ck and v∗j , centre value l∗j , and width v∗j of fuzzy wavelet

neural network are bounded such that 0 <
∥∥w∗Ck

∥∥ ≤ bwck, 0 <
∥∥w∗Sk

∥∥ ≤ bsck, 0 <
∥∥∥v∗j

∥∥∥ ≤ bωj,

0 <
∥∥∥l∗j
∥∥∥ ≤ bl j, k = 1, 2, · · ·, m, j = 1, 2, · · ·, N.

Assumption 3. The Taylor remainder ξ, ∂ψj/∂v and ∂ψj/∂l are bounded such that ‖ξ‖ ≤ bξ ,
∂ψj/∂v ≤bη j, ∂ψj/∂v ≤bκ j.

Combined with Equation (24), the output of ACN can be expressed as follows:

ŴT
Cψ̂ = −W̃

T
C(ψ̂−αTv̂−βTl̂)− ŴT

C(α
Tṽ +βT l̃)− υ1 (25)

where υ1 = W∗TC (ψ∗ −αTv∗ − βTl∗ − ξ)− ŴT
C(α

Tv∗ + βTl∗), W̃C = W∗C − ŴC. Then:

χ− ŴT
Cψ̂ = Ξχ + W∗TS ψ̃ + W̃

T
S ψ̂ (26)

where W̃S = W∗S − ŴS, Ξχ = χ−W∗TS ψ∗.
Combined with Equation (26), the Equation (20) can be rewrite:

Mh
.
r = −(Kr + Hh + DLh)r + Ξχ + W∗TS ψ̃ + W̃

T
S ψ̂− τH (27)

The adaptive rate of ASN and ACN are designed as follows:

.
ŵSk = kwsk(r̂sk + r̂skŵT

Ckψ̂)

(
ψ̂− Isk

ŵSkŵT
Skψ̂

‖ŵSk‖2

)
(28)

.
ŵCk = −kwck r̂sk(ŵ

T
Skψ̂)

(
(ψ̂−αTv̂− βT l̂)− Ick

ŵCkŵT
Ck(ψ̂−αTv̂− βT l̂)

‖ŵCk‖2

)
(29)

.
v̂ = −kω

(
AŴCΓŴT

S ψ̂− Iω
ω̂ω̂T(AŴCΓŴT

S ψ̂)

‖v̂‖2

)
(30)

.
l̂ = −kl

(
BŴCΓŴT

S ψ̂− Il
l̂l̂T

(BŴCΓŴT
S ψ̂)∥∥l̂

∥∥2

)
(31)

where kwsk, kwck, kω and kl are positive constants, and the value of Isk, Ick, Iω and Il are
as follows:

Isk =

{
0 if (‖ŵSk‖ < bwsk) or

(
‖ŵSk‖ = bwsk, (r̂sk + r̂skŵT

Ckψ̂
)
ŵT

Skψ̂ ≤ 0)
1 if

(
‖ŵSk‖ = bwsk, (r̂sk + r̂skŵT

Ckψ̂
)

ŵT
Skψ̂ >> 0

) (32)
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Ick =

 0 if (‖ŵCk‖ << bwck) or
(
‖ŵCk‖ = bwck, r̂sk(ŵT

Skψ̂)ŵT
Ck((ψ̂−αTv̂− βT l̂)

)
≥ 0)

1 if
(
‖ŵSk‖ = bwck, r̂sk(ŵT

Skψ̂)ŵT
Ck((ψ̂−αTv̂− βT l̂)

)
<< 0)

(33)

Iω =

 0 if (‖v̂‖ << bv) or
(
‖v̂‖ = bv, v̂T

(
AŴCΓŴT

S ψ̂
)
≥ 0)

1 if ‖v̂‖ = bv, v̂T
(

AŴCΓŴT
S ψ̂)<< 0)

(34)

Il =

 0 if
(∥∥l̂
∥∥ << bl

)
or
(∥∥l̂
∥∥ = bl , l̂T

(
BŴCΓŴT

S ψ̂
)
≥ 0)

1 if
∥∥l̂
∥∥ = bl , l̂T

(
BŴCΓŴT

S ψ̂
)
<< 0)

(35)

Theorem 1. For the hybrid system dynamic mode of the Equation (13), supposing that Assumptions
1 to 3 hold and adopting the error evaluation signal shown in Equation (15), the control signal
shown in Equation (19), the reinforcement signal shown in Equations (16) and (21), and the update
rate of fuzzy wavelet neural network shown in Equations (28)–(31) can ensure that the trajectory
tracking error e converges to zero asymptotically.

Proof of Theorem 1. Introducing the Lyapunov function:

V =
1
2

rTMhr +
1
2

m

∑
k=1

1
kwsk

w̃T
Skw̃Sk +

1
2

m

∑
k=1

1
kwck

w̃T
Ckw̃Ck +

1
2kω

ω̃Tω̃ +
1

2kl
l̃
T

l̃ (36)

Then, derivative of the Equation (36)

.
V = rTMh

.
r +

1
2

rT .
Mhr−

m

∑
k=1

1
kwsk

w̃T
Sk

.
ŵSk −

m

∑
k=1

1
kwck

w̃T
Ck

.
ŵCk −

1
kω

ω̃T .
ω̂− 1

kl
l̃
T .

l̂ (37)

Combined with Property 1 and Equations (27)–(29), the Equation (37) can be rewrite:

.
V = rT(Ξχ + W∗TS ψ̃)− rTτH − (W∗TS ψ̂)

T
ΓŴT

Cψ̂ + (ŴT
S ψ̂)

T
ΓŴT

Cψ̂−
m
∑

k=1
(rsk + rskŵT

Ckψ̂)Isk
w̃T

SkŵSkŵT
Skψ̂

‖ŵSk‖2 − rTKDLrr− 1
kω

ω̃T
.

ω̂− 1
kl

l̃
T .

l̂+

m
∑

k=1
rsk(ŵT

Skψ̂)

(
w̃T

Ck(ψ̂−αTv̂− βT l̂)− Ick
w̃T

CkŵCkŵT
Ck(ψ̂−α

Tv̂−βT l̂)

‖ŵCk‖2

) (38)

where KDLr = Kr + DLc. Substituting Equations (26), (30) and (31) into Equation (38)
can obtain:

.
V = −(W∗TS ψ̂)

T
ΓŴT

Cψ̂− (ŴT
S ψ̂)

T
Γ
[
W̃

T
C(ψ̂− αTv̂− βT l̂) + ŴT

C(α
Tṽ + βT l̃) + Ξχ

]
−

rTKDLrr + rT(Ξχ + W∗TS ψ̃)− rTτH +
m
∑

k=1
(rsk + rskŵT

Ckψ̂)Isk
w̃T

SkŵSkŵT
Skψ̂

‖ŵSk‖2 +

m
∑

k=1
rsk(ŵT

Skψ̂)

(
w̃T

Ck(ψ̂−αTv̂− βT l̂)− Ick
w̃T

CkŵCkŵT
Ck(ψ̂−α

Tv̂−βT l̂)

‖ŵCk‖2

)
+

ṽT(

(
AŴCΓŴT

S ψ̂− Iω
ω̂ω̂T(AŴCΓŴT

S ψ̂)

‖v̂‖2

)
+ l̃

T
(

BŴCΓŴT
S ψ̂− Il

l̂l̂T
(BŴCΓŴT

S ψ̂)

‖l̂‖2

)
(39)

Based on Assumption 2, Assumption 3 and Equations (32)–(35) to obtain:

Isk(rsk + rskŵT
Ckψ̂)w̃T

SkŵSkŵT
Skψ̂/‖ŵSk‖2 ≤ 0

rsk(ŵT
Skψ̂)

(
Ickw̃T

CkŵCkŵT
Ck(ψ̂−αTv̂− βT l̂)/‖ŵCk‖2

)
≥ 0

Iω

(
ṽTω̂ω̂T(AŴCΓŴT

S ψ̂)/‖v̂‖2
)
≥ 0

Il

(̃
l
T

l̂l̂T
(BŴCΓŴT

S ψ̂)/
∥∥l̂
∥∥2
)
≥ 0
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Then

.
V ≤ −rTKDLrr + rT(Ξχ + W∗TS ψ̃)− rTτH + (W∗TS ψ̂)

T
ΓŴT

Cψ̂− (ŴT
S ψ̂)

T
Γυ1

≤ −rTKDLrr + rTυ− rTτH
(40)

where υ = Ξχ + W∗TS ψ̃ + diag(W∗TS ψ̂)ŴT
Cψ̂− diag(ŴT

S ψ̂)υ1.
The Equation (40) can be rewrite:

.
V ≤ − 1

2 rT
[
2KDLr + ( 2

kd
− 1

γ2 )E
]
r− 1

2 (
1
γ r− γυ)

T
( 1

γ r− γυ) + 1
2 γ2υTυ

≤ − 1
2 rTQr + 1

2 γ2υTυ
(41)

where Q = 2KDLr +(2/kd− 1/γ2)E is a positive definite diagonal matrix, E is a unit matrix.
By integrating Equation (41) to obtain:

V(T)−V(0) ≤ 1
2

∫ T

0
rTQrdt +

1
2

γ2
∫ T

0
υTυdt (42)

Then∫ T
0 rTQrdt ≤ r(0)TMcr(0) +

m
∑

k=1

1
kwsk

w̃T
Sk(0)w̃Sk(0) +

m
∑

k=1

1
kwck

w̃T
Ck(0)w̃Ck(0)+

1
kω

ω̃T(0)ω̃(0) + 1
kl

l̃
T
(0)̃l(0) + γ2

∫ T
0 υTυdt

(43)

Equation (43) can be written in the following form through references [37,38].∫ T

0
‖r‖2Qdt ≤ γ2

∫ T

0
‖υ‖2dt + βH (44)

where βH = r(0)TMcr(0)+
m
∑

k=1

1
kwsk

w̃T
Sk(0)w̃Sk(0)+

m
∑

k=1

1
kwck

w̃T
Ck(0)w̃Ck(0)+ 1

kω
ω̃T(0)ω̃(0)+

1
kl

l̃
T
(0)̃l(0).
Through references [37,38], It can be known that υ is bounded by Assumption 1 and

Assumption 2, further sup
υ∈L2[0,T]

∥∥∥Q1/2r
∥∥∥

L2T
/‖υ‖L2T ≤ γ when the initial states of the hybrid

system are all zero. According to the definition of Q in Equation (41), it can be explained
that the system is stable according to the H∞ control theory when kd = 2γ2, and it can be
seen that with the decrease of γ, ‖r‖ will also decrease. �

5. Simulation Results
5.1. Simulation of Impact Resistance of the SDD

Using the two-link space robot (n = 2) and satellite systems in Figure 3 for simulation
analysis. The initial position and velocity of space robot are q(0) = [1.75, 0.52, 1.05]T rad,
.
q(0) = [0, 0, 0]T rad/s. The actual parameters of space robot and satellite systems are
as follow: m0 = 100 kg, m1 = m2 = 10 kg, ms = 50 kg, L0 = 1 m, L1 = L2 = 2 m,
d1 = d2 = 1 m, ds = 0.5 m, I0 = 64 kg ·m2, I1 = I2 = 3.5 kg ·m2, Im1 = Im2 = 0.05 kg ·m2,
Is = 12.5 kg ·m2, ks1 = ks2 = 1000 N/rad, Dm1 = Dm2 = 28.65 N · s/rad, Dt1 = Dt2 =
1146 N · s/rad, DL1 = DL2 = 28.65 N · s/rad.

In order to verify the impact resistance of the SDD during the third stage, the space
robot system with/without SDD was used to carry out acquisition simulation tests on
spacecraft with different velocity. The simulation results are shown in Table 1.



Appl. Sci. 2022, 12, 2662 11 of 17

Table 1. SDD impact resistance at different initial velocities of spacecraft.

Initial Velocity
of Satellite/

(m/s, m/s, rad/s)

Max Impact Torque
without SDD/

(N·m)

Max Impact Torque
with SDD/

(N·m)

Percentage
Reduction/

(%)

[0.1, 0.1, 0.15]T 226.68 133.27 41.21
[0.1, 0, 0]T 78.38 38.78 50.52
[0, 0.1, 0]T

[0, 0, 0.15]T
34.17

117.33
15.67
66.09

54.14
43.67

As can be seen from Table 1, given different satellite velocities the SDD can signifi-
cantly reduce the impact torque of joints, and the maximum can be reduced by 54.14%.
Therefore, the SDD can be considered that it plays a good role in protecting joints during
the third stage.

5.2. Buffer Compliance Control Strategy Performance Simulation

To show the buffer compliance control performance of the proposed controller, sim-
ulations are carried out for stable control phase. The actual parameters of the system
are as follows:Λ = diag(2, 2, 2), ρi = 1.5(i = 1, 2, 3), Kr = diag(150, 150, 150), γ = 0.03,
kwck = 3, kwsk = 3, kv = 2, kl = 2. The position of hybrid system after capture is
q(t0) = [84.61o, 11.10o, 25.65o]T, The initial position and velocity of space robot are the
same as 5.1, the satellite initial velocity is

.
qs(t0) = [0.1 m/s, 0.1 m/s, 0.15 rad/s]T, and the

expected state of hybrid system is qd = [100o, 30o, 60o]T.
In order to highlight the advantages of SDD on SEA, the SEA structure of reference [3]

is used for comparative analysis. In reference [3], to suppress the flexible vibration intro-
duced by SEA, the controller is divided into a fast subsystem controller and slow subsystem
controller, wherein the slow subsystem controller realizes trajectory tracking and the fast
subsystem controller suppresses the flexible vibration. The simulation results are shown in
Figures 5–7.

It can be seen from Figures 5 and 6 that under the same control parameters, whether
in regards joint 1 or joint 2, adding SEA requires greater output torque than adding SDD,
which means adding SEA will make the joint motor need more load capacity. Figure 7
shows that without the fast subsystem controller, the joint flexible vibration will be difficult
to suppress and the joint angle fails to reach the desired state.
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Figure 7. Joint angle trajectory of without the fast subsystem controller.

Assume that when the joint actuators run, the limit of the impact torque it can bear is
150 N ·m. In order to protect the joint actuators, the buffer compliance control strategy of
active opening and closing actuators (named switching strategy) is adopted. The shutdown
torque threshold is 120 N ·m, and the startup torque threshold is 10N·m. The simulation
results are shown in Figures 8–11.
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It can be seen from Figure 8 that the joint motor enters the stable output state after four
shutdowns. Figure 9 shows that the RL controller can continuously output reinforcement
signals when the base attitude angle and joint angle do not reach the desired position and
reinforcement signal will to zero when they reach the desired position. Figure 10 shows that
the ACN and ASN are optimized through the interaction with the environment and finally
make the hybrid system reach a stable state. Figure 11 shows that the joint impact is limited
to the bear torque well, and the buffer compliance strategy can realize the compliance of
capture operation well.

Considering that the impact torque that the joint can bear will decrease with the
increase of the space robot service years, the second group of simulation sets the shutdown
torque threshold is 80 N ·m, and the startup torque threshold is 10 N ·m. The simulation
results are shown in Figures 12–15.
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Figure 12 shows the joint motor enters the stable output state after seven shutdowns.
As can be seen from Figures 12–15, even if the shutdown torque threshold is lowered, the
joint impact torque can be limited well within a safe range, and the RL controller can still
complete the calm control of the unstable hybrid system by outputting the reinforcement
signal. This means that the SDD has excellent protection performance for space robot joints,
and it plays an important role in prolonging the service life of space robot.
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6. Conclusions

In this paper, in order to protect the joints of a space robot from impact damage in
the process of capturing satellite operation, an SDD is added between joint motor and
manipulator, and a buffer compliance strategy that matches the SDD is given. The dynamic
model of hybrid system is derived, and the impact effect and impact force are calculated
during the third stage. For the purpose of realizing the stabilization control of the system,
an RL control based on fuzzy wavelet neural network is proposed.

In the third stage of capture operation, a huge impact torque will be generated at the
motor joint. Adding SDD between the motor and the manipulator can realize the rapid
unloading of impact force, and the maximum value can be reduced by 54.14%.

In the fourth stage of capture operation (i.e., matching with the buffer compliance
strategy designed by SDD), the joints’ impact torque can be limited to a safe range. The
shutdown threshold of buffer compliance strategy can be set flexibly, which can protect the
joints of space robot with different service years.
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