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Abstract: The quality evaluation of the surrounding rock is the cornerstone of tunnel design and
construction. Previous studies have confirmed the existence of a relationship between drilling
parameters and the quality of surrounding rock. The application of drilling parameters to the
intelligent classification of surrounding rock has the natural advantages of automatic information
collection, real-time analysis, and no extra work. In this work, we attempt to establish the intelligent
surrounding rock classification model and software system driven by drilling parameters. We
collected 912 samples containing four drilling parameters (penetration velocity, hammer pressure,
rotation pressure, and feed pressure) and three surrounding rock (grade-III, grade-IV, and grade-V).
Based on the python machine learning toolkit (Scikit-learn), 10 types of supervised machine learning
algorithms were used to train the intelligent surrounding rock classification model with the model
parameter selection technology of grid search cross validation. The results show that the average
accuracy is 0.82, which proves the feasibility of this method. Finally, the tunnel surrounding rock
intelligent classification system was established based on three models with better comprehensive
performance among them. The classification accuracy of the system was 0.87 in the tunnel test section,
which indicates that the system has good generalization performance and practical value.

Keywords: drill and blast tunnel; machine learning; measure-while-drilling; drilling parameters;
intelligent surrounding rock classification model

1. Introduction

Unlike aboveground engineering, in tunnel engineering, tunnels are built under-
ground. Tunnel design and construction are closely related to the stratum where it is buried.
The quality evaluation of the surrounding rock is the cornerstone of tunnel design [1–3]
and construction. Surrounding rock classification is a main evaluation method for the
surrounding rock quality. It usually collects the information of surrounding rock by one or
more means, and finally gives a comprehensive evaluation index based on specific rule. It
can reflect the strength characteristics and deformation characteristics of the surrounding
rock and stability characteristics of the tunnel face, and can be directly used to guide the
tunnel design and construction. The classification of surrounding rock is a common method
for the surrounding rock quality evaluation of tunnels in various countries. This method
was started in Europe in 1774. After more than two hundred years of development, there
have been hundreds of methods employed for this purpose, such as the Q-value method [4],
the rock mass rating (RMR) method [5], and the surrounding rock basic quality index (BQ)
method [6].

At present, the methods used to classify the rock surrounding tunnels are mainly
qualitative, with quantitative verification using laboratory tests requiring extensive profes-
sional knowledge and engineering experience. Therefore, there is some randomness in the
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results. With the development of information technology, artificial intelligence, the Internet
of Things, big data, and other technologies, the trend of tunnel construction automation
and unmanned is becoming more and more obvious, and the intelligent classification of
surrounding rock is the most important part. Thus, an automatic, rapid and accurate
intelligent classification technology of surrounding rock is required for the construction of
tunnel with high quality and high efficiency.

Machine learning is an important method of artificial intelligence research [7–9] that
has been applied in many types of tunnel analyses, such as deformation prediction [10–14],
prediction of energy consumption of cutter head drives [15], rock burst prediction [16],
reliability analysis [17,18], stability analysis [19], optimization of blasting parameters [20],
support pattern selection [21], the prediction of blast-induced ground vibrations [22],
tunneling risk prediction and assessment [23,24], diagnosing tunnel collapse sections [25],
and TBM tunneling construction and management [26–30]. Machine learning is also an
important method in the intelligent classification of surrounding rock. The physical and
mechanical parameters of rock mass have been applied to the RMR value prediction using
a neural network [31,32]. These parameters include the bulk density, compressive strength,
ingress of water, rock quality designation (RQD), average distance between leak, and
seismic velocity. The prediction of RMR has also been realized by using a neuro-fuzzy
inference system based on the uniaxial compressive strength, RQD, joint or discontinuity
spacing, joint condition, and groundwater condition [33]. In addition, the geophysical
parameters, such as the seismic velocity and resistivity [34,35], have been used to classify
the surrounding rocks [36–38].

The machine learning algorithms used in these studies include a variety of single basic
algorithms, optimization algorithms, and integrated algorithms. These previous studies
all show that the appropriate machine learning algorithms have excellent performance
in different fields when there is an internal connection between input index and output
index and the number of samples is sufficient. Especially for the highly nonlinear problems,
the machine learning method often has better performance and higher computational
efficiency than traditional statistical analysis methods. More importantly, the machine
learning methods have the intelligent characteristics of automatic analysis and continuous
learning, which provides effective help for this study.

However, such methods generally require manual field testing of classification indices,
such as rock strength and rock mass integrity, followed by manual input into the system.
None of these parameters applied to the intelligent classification of surrounding rocks can
achieve real-time automatic collection in the tunneling process.

The emergence of measure-while-drilling (MWD) technology provides a good solution
to this problem. The correlation between the drilling parameters and the surrounding
rock quality parameters was studied and explored by scholars as early as the 1960s and
1970s [39–43]. Using field experiments with statistical analysis, the correlations between
drilling parameters and surrounding rock quality parameters, such as the uniaxial com-
pressive strength [44–46], shear strength [47], Schmidt rebound hardness [48], cutting
performance (Kerf angle d and specific energy) [49,50], RQD [51], and zones of volcanic
weathering and decomposition grades [52] have been studied. In recent years, drilling
parameters have been used for surrounding rock classification based on the Q method [53]
or RMR method [54].

Although these previous studies have confirmed the existence of a relationship be-
tween drilling parameters and the quality of surrounding rock, the correlation based on
current research of the drilling parameters and the surrounding rock quality parameters
mostly refers to a certain lithology. Furthermore, the samples do not cover common rock
lithology and are not universal. This is mainly because the use of an intelligent drill jumbo
(which refers to a drill jumbo that can automatically collect and transmit drilling param-
eters) for tunnel construction is low, which makes it more difficult to collect sufficient
drilling parameter samples for the surrounding rock classification. Thus, the classification
method with more objective, intelligent, and efficient evaluation requires further study.
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The purpose of this research is to introduce 10 machine learning algorithms to predict
the quality of surrounding rock using MWD data (drilling parameters) obtained from
five tunnels of the Zhengzhou–Wanzhou line of the high-speed railway project in China.
Through comparative analysis, three machine learning models with better comprehensive
performance among them were selected to establish the tunnel surrounding rock intelligent
classification system by the drill and blast method. The results of this study lay a solid
foundation for the dynamic design and intelligent construction of tunnels.

2. Materials and Methods
2.1. Proposed Methods and Procedures

In this study, we firstly collected sample data, and then conducted a range of data
processing, including sample data cleaning, sample imbalance treatment, sample feature
analysis, and sample data splitting. Finally, we trained some intelligent classification
models of the surrounding rock, and selected the better of them.

The research flow chart about main procedures and proposed methods of this study is
shown in Figure 1.
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Figure 1. The research flow chart about main procedures and proposed methods.

2.2. Sample Collection

The sample of this study was obtained from some tunnels of the Zhengzhou–Wanzhou
line of the high-speed railway project in China. This railway line runs from Zhengzhou
East Railway Station to Wanzhou North Railway Station, with a total length of 818 km. It
has 18 stations and a designed speed of 350 km/h, which connects Henan province, Hubei
province, and Chongqing province. There are 32.5 tunnels in the Hubei province section,
with a total length of 167.6 km, and the lithologies of stratum exposed by these tunnels are
mainly dolomite, sandstone, limestone, shale, and mudstone. As shown in Figure 2, the
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sample collection was carried out in five tunnels in the Hubei province section. The New
Austrian Tunneling Method was employed in these tunnels.
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Figure 2. Locations of Zhengzhou–Wanzhou high-speed railway line and the tunnels where the
samples were collected.

The sample of intelligent surrounding rock classification is composed of the drilling
parameters and the surrounding rock grade of the tunnel face.

In this study, the drilling parameters were collected by using the intelligent drill jumbo
(Figure 3), which was made by China Railway Construction Heavy Industry Corpora-
tion Limited.
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Figure 3. Intelligent drill jumbo (made by China Railway Construction Heavy Industry Corpora-
tion Limited).

The intelligent drill jumbo has the functions of automatic positioning, automatic
drilling and automatic recording of log. It can complete the drilling operation of pipe
roof, anchor bolt and blast hole. In the process, the integrated sensors of the intelligent
drill jumbo are used to automatically collect the drilling parameters (penetration velocity,
hammer pressure, rotation pressure, and feed pressure) during the drilling of the borehole
in the tunnel face.

The drilling parameters are described below:

1. Penetration velocity (Vp, m/min): the rate of penetration of the drill bit through the
rock mass.
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2. Hammer pressure (Ph, bar): the measurement of the impact pressure of the bit against
the rock mass.

3. Rotation pressure (Pr, bar): the pressure of the bit against the rock to maintain the
required rotation.

4. Feed pressure (Pf, bar): the hydraulic pressure inside the cylinders required to keep
the bit in contact with the bottom of the hole.

All of these parameters are recorded at equal depth intervals of 20 mm by the help of
displacement transducer.

The drilling parameters data in this study were collected through the process of
blasting hole drilling in the tunnel face (Figure 4a), and the bit used was a cemented carbide
bit with a diamond content of 7%, spherical shape, and nine teeth (Figure 4b).
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The area of the tunnel face is about 150 m2, containing about 200~300 blasting holes.
The value of each drilling parameter for each sample is the average of all the drilling holes
in the tunnel face.

The typical layout of the blasting hole is shown in Figure 5.
The grade of the surrounding rock in this study is specified in the current Code for

Design of Railway Tunnel (TB10003-2016). According to the degree of hardness, integrity,
groundwater state, crustal stress state, and major weak structural surface, the surrounding
rocks are divided into Grades I~VI according to the quality.

The approximate correspondence between the surrounding rock grade in this study
and the indices of other classification methods, such as the Q method, RMR method, and
BQ method, is shown in Table 1 [55].

Table 1. Approximate correspondence between the surrounding rock grade in this study and other
indices (Q, RMR, and BQ).

Method
Surrounding Rock Grade

I II III IV V

Q value (10,000,40) (40,10) (10,1) (1,0.1) (0.1,0.001)
RMR value (100,80) (80,60) (60,40) (40,20) (20,0)
BQ value (700,550) (550,450) (450,350) (350,250) (250,0)

Note: Grade-VI generally refers to the special geology, such as the powdery fault fracture zone, aeolian sand, and
seriously collapsible loess.
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The geological sketch method is usually adopted to determine the grade of the sur-
rounding rock in the tunnel, which is analyzed and determined by professional geological
engineers. The geological sketch record card of the tunnel face is shown in Table 2.

Table 2. Geological sketch record card of the tunnel face.

The Geological Sketch Record Card of Tunnel Face

Project name: XXX Mileage: XXX
Date: XXX Construction unit: XXX

No. Item State description

1
Tunnel face and

support type
Width (m) Area (m2) Excavation

method
Depth

(m)
Advanced

support
Primary
support

Secondary
lining

2 Lithology

3 Weathering degree Slightly Weakly Strongly Totally

4 Degree of hardness
(Mpa) Extremely hard (>60) Hard

(30~60)
Relatively soft

(15~30)
Soft

(5~15)

Extremely
soft
(<5)

5 Number of structural
surfaces 1 2 3 >3

6 Average spacing of the
structural surface (m) >1 0.4~1 0.2~0.4 0~0.2

7 Degree of structural
surface development Not developed Relatively developed Developed Extremely

developed

8 Crack width (mm) 0~1 1~3 >3

9 Crack filling None Siliceous Calcium Argillaceous Rock debris
Mud

clamps rock
debris
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Table 2. Cont.

The Geological Sketch Record Card of Tunnel Face

10 Degree of structural
surface bonding Good Fair Poor Extremely

poor

11 Integrity Integrated Relatively
integrated

Relatively
broken Broken Extremely

broken

12 Groundwater state None Drip outflow Linear outflow Inrush
outflow

13 The major weak
structural surface

Occurrence Angle with tunnel axis

14 Crustal stress state Low High Extremely high

15 Surrounding rock
grade I II III IV V VI

Tabulator: XXX Reviewer: XXX

By the method discussed above, 912 intelligent surrounding rock classification samples
were collected in five tunnels of the Zhengzhou–Wanzhou high-speed railway. These
samples cover three surrounding rock grades (grade-III, grade-IV, and grade-V) and five
main lithologies (dolomite, sandstone, limestone, shale, and mudstone).

More details are shown in Table 3.

Table 3. Intelligent surrounding rock classification sample statistics.

Surrounding Rock Grade Tunnel Lithology Sample Size Total

III

Luojiashan Tunnel Dolomite 110

325
Chufeng Tunnel Dolomite 28
Xinhua Tunnel Sandstone 31

Xiangjiawang Tunnel Limestone 156

IV

Gaojiaping Tunnel Shale/Sandstone 105

420

Luojiashan Tunnel Dolomite 75
Chufeng Tunnel Dolomite 44
Xinhua Tunnel Sandstone 125

Xiangjiawang Tunnel Limestone 30
Xiangluping Tunnel Mudstone/Sandstone 41

V

Gaojiaping Tunnel Shale 84

167
Luojiashan Tunnel Dolomite 62

Chufeng Tunnel Dolomite 4
Xinhua Tunnel Dolomite 15

Xiangjiawan Tunnel Limestone 2

Total 912

2.3. Sample Data Cleaning

To analyze the sample data outliers, four box diagrams are shown in Figure 6 according
to the drilling parameter class and surrounding rock grade.
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According to the box diagram method, when the value is not within the interval
represented by the following formula Equation (1), it is regarded as an outlier

[Q1 − 1.5 × IQR, Q3 + 1.5 × IQR] (1)

where Q1 is the first quartile, namely the equal to the 25th percentile of all values in the
sample from small to large, Q3 is the third quartile, namely the equal to the 75th percentile
of all values in the sample from small to large, IQR is the interquartile range, namely IQR is
equal to Q3 minus Q1.

In Figure 6, under different surrounding rock grades, all four drilling parameters
contained outliers. To eliminate the effects of the outliers, the average value of each
parameter was used to replace the outlier of each surrounding rock in this study.

The changes in data characteristics before and after cleaning are compared in Table 4.
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Table 4. Comparison of the data characteristics before and after cleaning.

Surrounding
Rock Grade Index

Vp Ph Pf Pr

Before After Before After Before After Before After

III

mean 2.35 2.04 144.32 148.85 66.95 67.69 91.91 92.18
std 0.97 0.51 12.59 5.98 8.02 5.91 10.29 9.69
min 1.08 1.08 99.95 132.88 29.05 53.70 46.94 67.27
max 5.56 3.39 165.41 165.41 91.45 81.44 112.97 112.97

IV

mean 3.19 3.19 135.06 135.06 63.17 62.86 79.68 79.25
std 1.03 1.03 14.00 14.00 13.21 12.67 11.24 9.59
min 0.66 0.66 89.79 89.79 35.97 35.97 48.84 55.38
max 5.49 5.49 161.38 161.38 107.41 97.95 113.53 102.29

V

mean 3.47 3.54 124.96 125.87 51.75 50.72 73.18 72.62
std 0.85 0.67 11.68 9.85 11.06 9.59 7.59 5.65
min 0.83 1.97 90.82 101.39 27.43 27.43 53.47 57.70
max 6.35 5.05 155.88 150.65 83.75 73.60 101.17 86.72

Note: The full name of each index and corresponding abbreviated in the table is the mean value (mean), the
standard deviations (std), the minimum value (min) and the maximum value (max).

In Table 4, after cleaning, under different surrounding rock grades, the distributions of
these drilling parameters are more centralized. Specifically, the maximum value is smaller,
the minimum value is larger, and the standard deviation is smaller.

2.4. Sample Imbalance Treatment

Referring to machine learning classification, when the difference in the number of
samples of all the classes is too large, the training model will pay too much attention to the
sample characteristics with a greater proportion, so the classification effect of the samples
with a smaller proportion is not ideal. This is called the problem of sample imbalance.

These data sets cover three classes of surrounding rock (namely, grade-III, -IV, and -V),
and each class contains 325, 420, and 167 samples belonging to the imbalance sample set.

There are three common approaches to deal with unbalanced samples in machine learning:

1. Over-sampling

The over-sampling method achieves sample balance by increasing the number of
minority samples in the classification. The most direct method is to simply copy the
minority samples to form multiple records. The improved over-sampling methods produce
new composite samples by adding random noise, interference data to a few classes, or
certain rules such as the synthetic minority over-sampling technique (SMOTE) and adaptive
synthetic sampling (ADASYN).

2. Under-sampling

The under-sampling method achieves sample balance by reducing the number of
majority samples in the classification. The most direct method is to randomly remove
some majority class samples. The disadvantage of this method is that some important
information from the majority class samples may be lost.

3. Sample weight adjustment

This method is used to guide models to learn more features of the minority samples in
the classification by assigning higher weights to them during the machine learning model
training. Generally, the weights of various samples are set to be inversely proportional to
the sample size.

Considering the small size of the sample data set, to sufficiently learn the characteristics
of all types of samples during the machine learning model training and to improve the
universality of the model, the SMOTE over-samples to replenish samples in grade-III and
grade-V of the surrounding rock.

The scatter diagram of the data set after over-sampling is shown in Figure 7.
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2.5. Sample Feature Analysis

Figure 6 shows that all median, mean, and upper and lower quartile values of each
drilling parameter in the box diagram monotonically change with the surrounding rock
grade, which preliminarily indicates a correlation between the drilling parameters and the
surrounding rock grade.
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Pearson correlation coefficient [56] was used to analyze the correlations between the
surrounding rock grade and the drilling parameters in 1260 samples, and the correlation
coefficients are shown in Table 5.

Table 5. Correlation coefficients between the surrounding rock grade and each drilling parameter.

Index Vp Ph Pf Pr

R 0.59 −0.64 −0.52 −0.65

In Table 5, all the absolute value of the correlation coefficients between the four drilling
parameters and the surrounding rock grades are above 0.5, which is a weak correlation,
and the correlation coefficients are close to each other. Therefore, these four indices were
selected for the surrounding rock classification.

2.6. Sample Data Splitting

According to the above 1260 data samples, the intelligent surrounding rock classifica-
tion sample database was established.

In order that the selected parameters can represent the majority of samples, the
majority samples are selected for training and the minority samples for prediction in
the parameter optimization stage (validation process). As to the model evaluation stage
(testing process), we selected more samples for prediction than the previous stage so that
the performance evaluation of the model is more convincingly.

Thus, the sample database after random sequencing was divided into the training set
and prediction set using the five-fold cross verification method in the validation process,
and as to the testing process, the ratio is three-fold.

The specific distribution is shown in Table 6.

Table 6. Intelligent surrounding rock classification sample database distribution.

Item
Surrounding Rock

III IV V Total

Validation
process

Training set 336 336 336 1008
Prediction set

(Validation set) 84 84 84 252

Testing
process

Training set 280 280 280 840
Prediction set
(Testing set) 140 140 140 420

In the field of machine learning, different evaluation indexes (that is, different features
in feature vectors are described as different evaluation indexes) often have different di-
mensional and dimensional units, which will affect the results of data analysis. In order to
eliminate the dimensional influence between indexes, data normalization is required.

Normalization means that the input data are limited to a certain range, and this time
the data are limited 0 to 1. The data are normalized using the min–max normalization
method, as defined in Equation (2).

x′ =
x− xmin

xmax − xmin
(2)

where x is the value of the original data, xmax is the max value of the original data, xmin is
the min value of the original data, x’ is the normalized value.

The normalization needs to be carried out in the training set in Table 6 first, and then
the normalization of the prediction set is completed by taking the normalization parameters
(xmax and xmin) of the training set.
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2.7. Model Parameter Optimization and Evaluation

Based on the python machine learning toolkit (Scikit-learn), 10 types of supervised ma-
chine learning algorithms were used to train the intelligent surrounding rock classification
model: the support vector machine (SVM), back propagation neural network (BP) [55,56],
radial basis function neural network (RBF), K-nearest neighbor (KNN), Gaussian naive
Bayes (GNB), decision tree (DT), random forest (RF), extra trees (ET), bootstrap aggregating
(Bagging) and gradient boosting (GB) algorithms.

The model parameters were optimized and evaluated by the grid search K-flod cross
validation method (k = 5), and the model performance was externally unbiased when using
the method of K-flod cross validation (k = 3).

In the model performance optimization process, the average accuracy was adopted
to determine the optimum hyperparameter combinations. The average accuracy was
calculated by first averaging the accuracy of each validation set over the three surrounding
rock grades, and then averaging the averages over the five validation sets.

In the final evaluation of the model performance, the precision, recall, F1 score, and
accuracy were adopted for a comprehensive evaluation. And these indexes are the average
of the results of the three test sets.

The process is shown in Figure 8.
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Table 7. Performance of the intelligent surrounding rock models.

Performance
Index

Rock Grade
Supervised Learning Algorithm

Average
SVM BP RBF KNN GNB DT RT ET Bag-ging GB

Precision
III 0.81 0.79 0.73 0.77 0.75 0.75 0.81 0.80 0.80 0.81 0.78
IV 0.90 0.87 0.76 0.84 0.75 0.59 0.85 0.88 0.83 0.87 0.81
V 0.86 0.88 0.87 0.90 0.82 0.84 0.90 0.92 0.91 0.88 0.88

Recall
III 0.96 0.97 0.94 0.93 0.91 0.73 0.92 0.94 0.93 0.96 0.92
IV 0.62 0.61 0.52 0.63 0.50 0.60 0.67 0.67 0.67 0.65 0.61
V 0.97 0.94 0.89 0.94 0.92 0.86 0.96 0.96 0.93 0.94 0.93

F1 score
III 0.88 0.87 0.82 0.84 0.82 0.74 0.86 0.87 0.86 0.88 0.84
IV 0.73 0.72 0.62 0.72 0.60 0.59 0.75 0.76 0.74 0.75 0.70
V 0.91 0.91 0.88 0.92 0.87 0.85 0.93 0.94 0.92 0.91 0.90

Accuracy - 0.85 0.84 0.78 0.84 0.78 0.73 0.85 0.86 0.84 0.85 0.82

The following conclusions can be drawn from Figure 9 and Table 7.
Among 10 machine learning algorithm models, the average precision, recall, F1 score

and accuracy were above 0.7, except for the recall of grade-IV surrounding rock. In
particular, the average recalls of grade-III and -V were greater than 0.90.

Thus, these machine learning models established by the drilling parameters are feasible
and reliable in the intelligent classification of surrounding rocks.
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2.8. Model Selection and Recommendation

When comprehensively considering the precision, recall, F1 score, and accuracy, three
types of models (SVM, RT, and ET) had better performance among the 10 machine learning
algorithm models. Their average precision, recall, F1 score, and accuracy were above 0.8,
except for the recall of grade-IV surrounding rock. In particular, the recall of the grade-V
surrounding rock, which has a great influence on the safety of the tunnel, was above 0.95.

Thus, these machine learning models based on SVM, RT, and ET have some degree of
safety and high practical value.

3. Case Study
3.1. Intelligent Surrounding Rock Classification System Software

The tunnel surrounding rock intelligent classification system by the drill and blast
method was established based on the intelligent surrounding rock classification models
based on SVM, RT, and ET. It can automatically record and transmit the drilling parameters
and intelligently classify the surrounding rock with carriers of the intelligent drill jumbo.

Specifically, the surrounding rock grade of the tunnel face is determined by the votes
of three models (SVM, RT, and ET). When all types of the surrounding rock levels are not
superior, the higher grade is taken as the surrounding rock grade of the tunnel face in
consideration of safety.

In addition, these samples for the models do not require consideration of the modifica-
tion conditions (i.e., low crustal stress, without groundwater or drip outflow of ground-
water, and without a main weak structure surface). Therefore, in consideration of safety
and popularization, the grade determined from these models is the basic surrounding rock
grade; the grade amended by the groundwater state, major weak structural surface, and
crustal stress state is the final surrounding rock grade.

The specific process is shown in Figure 10.
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Figure 11. Interface of the ‘tunnel surrounding rock intelligent classification system by the drill and
blast method’.

3.2. Project Overview of Test Tunnel

The Gaojiaping Tunnel of the Zhengzhou–Wanzhou high-speed railway is located in
Nanzhang county, Xiangyang city, Hubei province, China. The tunnel is 5498 m in length
with a maximum buried depth of 320 m. The main lithologies of the surrounding rock are
limestone and shale, and the grades of the surrounding rocks are III (1493 m), IV (1050 m),
and V (720 m).

The method of construction of this tunnel is the full-section method with large ma-
chinery, i.e., the tunnel face (150 m2) is excavated and formed by blasting once, and the
primary support is closed once. With this method, the circular footage is 2–4.8 m, and the
monthly progress is 60–150 m in this tunnel.

The tunnel position is shown in Figure 12.
This test section is DK450 + 834~DK451 + 126, which is 292 m in total length. The

excavation revealed that the surrounding rock was grade-III; the lithology was bluish grey,
a massive structure, and hard limestone rock. The stability of the tunnel face was good
without developed joints, fractures, or groundwater.

The test section of this tunnel is shown in Figure 13, and the tunnel face is shown in
Figure 14.
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speed railway.
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3.3. Intelligent Surrounding Rock Classification in Test Tunnel

Among the test section, drilling parameter information from 30 tunnel faces was col-
lected by the intelligent surrounding rock classification system. The intelligent classification
results of the surrounding rock on each tunnel face are shown in Table 8.

Table 8. Intelligent classification of surrounding rock on each tunnel face.

Number Mileage Predicted
Results Actual Results Right/Error

1 DK450+834 III III Right
2 DK450+837 III III Right
3 DK450+840 III III Right
4 DK450+916 III III Right
5 DK450+919 III III Right
6 DK450+922 III III Right
7 DK450+926 III III Right
8 DK451+014 III III Right
9 DK451+017 III III Right
10 DK451+021 III III Right
11 DK451+024 III III Right
12 DK451+027 III III Right
13 DK451+030 III III Right
14 DK451+034 III III Right
15 DK451+037 III III Right
16 DK451+042 III III Right
17 DK451+046 III III Right
18 DK451+051 III III Right
19 DK451+055 III III Right
20 DK451+060 III III Right
21 DK451+064 III III Right
22 DK451+100 III III Right
23 DK451+103 III III Right
24 DK451+106 III III Right
25 DK451+109 III III Right
26 DK451+113 IV III Error
27 DK451+116 IV III Error
28 DK451+119 IV III Error
29 DK451+123 IV III Error
30 DK451+126 III III Right

Accuracy 86.7%
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In Table 8, the classification accuracy of the surrounding rock intelligent classification
system on-site is 86.7%, which indicates that the system has good generalization.

However, due to the single lithology and surrounding rocks (limestone, grade-III) in
the field test section, its generalization performance must be further verified.

4. Conclusions

Based on 912 drilling parameters of the Zhengzhou–Wanzhou high-speed railway
tunnel project, 10 intelligent surrounding rock classification models were established using
multiple machine learning algorithms. With three models (SVM, RT, and ET), an intelligent
surrounding rock classification system was established and verified by the field test section.

The main conclusions of this study are:

1. All the absolute values of the correlation coefficients between the four drilling pa-
rameters (Vp, Ph, Pr, and Pf) and the surrounding rock grades (III, IV, and V) are
above 0.5.

Thus, there is a correlation between the drilling parameters and the surrounding rock
grade, so the method of surrounding rock classification by drilling parameters is feasible.

2. The 10 models based on supervised machine learning algorithms all have good
performance. The average accuracy of them is 0.82. In particular, the average recalls
of grades-III and -V were greater than 0.90.

Thus, these machine learning models established by drilling parameters are feasible
and reliable in the intelligent classification of surrounding rocks.

3. By comprehensively considering precision, recall, F1 score, and accuracy, we observe
that three types of models containing SVM, RT, and ET have better performance among
10 machine learning algorithm models. In particular, the recall of grade-V surrounding
rock, which has great influence on the safety of the tunnel, was above 0.95.

Thus, these three machine learning models have a degree of safety and high practi-
cal value.

4. The classification accuracy of the surrounding rock intelligent classification system
on-site is 86.7%, which indicates that these models have good generalization.

This study found that the drilling parameters Vp, Ph, Pf, and Pr can be used to grade
the surrounding rock directly by training the machine learning model. Compared with the
traditional manual method, the proposed method is faster and has fewer indices, higher
classification accuracy, and better stability. When carried on an intelligent jumbo, it can
realize automatic recording and transmission of drilling parameters and intelligent classifi-
cation of surrounding rock grade by using the intelligent surrounding rock classification
system established in this study. This is what most previous studies have failed to do.

However, there is still room to improve the classification accuracy of this system.
In this study, three models have been used to determine the most unfavorable results to
ensure the safety of site construction, and its essence is a management means. Therefore,
the research on data preprocessing and algorithm optimization should be strengthened to
further improve the reliability of the technology. In addition, the samples collected in this
study only covered five lithologies and three surrounding rock grades. Thus, the sample
types and numbers should be further expanded in the future to improve the application
range of the technique.
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