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Abstract: Medical image classification plays an essential role in disease diagnosis and clinical treat-
ment. More and more research efforts have been dedicated to the design of effective methods for
medical image classification. As an effective framework, the capsule network (CapsNet) can realize
translation equivariance. Lots of current research applies capsule networks in medical image analysis.
In this paper, we propose an attentive octave convolutional capsule network (AOC-Caps) for medical
image classification. In AOC-Caps, an AOC module is used to replace the traditional convolution
operation. The purpose of the AOC module is to process and fuse the high- and low-frequency
information in the input image simultaneously, and weigh the important parts automatically. Fol-
lowing the AOC module, a matrix capsule is used and the expectation maximization (EM) algorithm
is applied to update the routing weights. The proposed AOC-Caps and comparative methods are
tested on seven datasets, including PathMNIST, DermaMNIST, OCTMNIST, PneumoniaMNIST,
OrganMNIST_Axial, OrganMNIST_Coronal, and OrganMNIST_Sagittal, which are from MedMNIST.
In the experiments, baselines include the traditional CNN models, automated machine learning
(AutoML) methods, and related capsule network methods. The experimental results demonstrate that
the proposed AOC-Caps achieves better performance on most of the seven medical image datasets.

Keywords: medical image classification; capsule network; octave convolution; attention mechanism

1. Introduction

As an interdisciplinary area, medical image classification is the foundation of automatic
disease diagnosis. With the development of deep learning technology, convolutional neural
networks (CNNs) [1–7] have been widely applied in computer vision tasks, such as image
classification [8,9], object detection [10], semantic segmentation [11], etc. The performance
of these tasks was greatly improved with the application of CNNs. However, CNNs have
limitations. Firstly, the pooling operation provides some transition invariance and results in
the loss of important location information. Secondly, CNNs struggle to learn the part–whole
relationship. To address these weaknesses, CapsNet [12] is proposed to replace the scalar
output with vector output for representing different properties, such as the orientation
and viewpoints of objects. Different from the translation invariance from the pooling
operation, CapsNet can provide translation equivariance. Equivariance is the detection
of objects that can transform into each other. Different from CNNs, the knowledge about
part–whole relationships is kept in the capsule network, as discussed in [12,13]. Capsule
networks recognize objects through both local features and part–whole knowledge. For
example, a bird, as an object, has several parts, including a head, a trunk, wings, claws,
and a tail. When these parts are disturbed, CNNs would still recognize the disturbed
object as a bird, while CapsNet can determine that it is not a bird through the part–whole
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relationship. In the original CapsNet [12], information is represented in vectorized format,
leading to costly calculation of the routing between capsules of different layers. In the
matrix CapsNet [13], vectorized information is replaced by matrix capsules, and routing
weights are updated by the expectation-maximization (EM) algorithm.

However, early CapsNets have their drawbacks. First, the low-level features that
consist of the capsule are extracted only by shallow convolutional operations. This results
in capsules containing very little semantic high-level information. Secondly, low-level
convolutional operations lack an attention mechanism, which may import meaningless
and redundant information into the capsules. One of the effective ways for performance
boosting is to employ a better feature extractor, which can capture richer and more semantic
contextual patterns to build capsules. Recent efforts focusing on the improvement of feature
extraction for CapsNets were extensively investigated, such as Multi-Scale CapsNet (MS-
CapsNet) [14] and RS-CapsNet [15].

In this paper, we propose a novel capsule network, named the attentive octave convolu-
tional capsule network (AOC-CapsNet) for medical image classification. In AOC-CapsNet,
the traditional convolution operation is replaced by an octave convolution operation. In [16],
the octave convolution operation is proposed to process both higher and lower frequencies
in the inputs at the same time. In natural images, higher frequencies correspond to the
detailed information that varies greatly in the images, and lower frequencies correspond
to the smoothly changing structure in the images. These two types of information are
also very important for medical image classification. It is critical to select which kind of
information is more important in medical image classification. However, the traditional
octave convolutional operation cannot enhance useful information and suppress useless
information. In AOC-CapsNet, we adopt a convolutional block attention module (CBAM)
to identify and select useful information. The CBAM allows AOC-CapsNet to highlight
critical local regions with rich semantic details utilized as distinguishable patterns, leading
to a performance gain in the medical image classification task.

Studies on capsule networks [17,18] have focused on medical image analysis. A recent
benchmark, named MedMNIST [19], was proposed and used to validate the performance of
different models for medical image analysis. MedMNIST is composed of 10 pre-processed
open medical image datasets. Similar to the MNIST dataset [20], classification tasks in
MedMNIST are lightweight. The resolution of images in classification tasks is 28× 28.
Those tasks cover primary medical image modalities and diverse data scales. In this paper,
we design comparative experiments on seven datasets in MedMNIST. Through experiments,
ResNet [6], AutoML methods [21,22] and methods related to capsules [12–14] are compared
with the proposed AOC-Caps. In the ablation studies, matrix capsule networks with
different convolutional feature extraction layers are compared to determine which type of
convolution layer is more suitable for the application of capsule networks in the medical
image classification of MedMNIST.

The main contributions of this research are as follows:

• An attentive octave convolution operation is proposed. By combining the novel
operation with capsule networks, we design an effective classification framework
named AOC-CapsNet for medical image classification.

• The proposed AOC-CapsNet is validated via extensive experiments on the MedMNIST
benchmark and has achieved the state-of-the-art (SOTA) performance in two of the
seven tasks.

• The proposed method can serve as a credible benchmark for future reference. We
have made the code public at the following link, which was last accessed on 23
Feburary 2022, https://github.com/aszx87414/Attentive_Octave_Convolutional_
Capsule_Network.

The rest of this paper is organized as follows. Section 2 reviews the related research
work. Section 3 explains our proposed method. In Section 4, comprehensive experiments
are conducted to evaluate the effectiveness of the proposed method. Finally, in Section 5,
we conclude the paper.

https://github.com/aszx87414/Attentive_Octave_Convolutional_Capsule_Network
https://github.com/aszx87414/Attentive_Octave_Convolutional_Capsule_Network
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2. Related Work

Introduced by Hinton [23], the core idea of “capsule” is to group the neurons into a
vector, which is defined as a capsule. In CNNs, the activation of a neuron can be considered
the likelihood of detecting a specific feature. Different from feature invariance in CNN,
feature equivariance, which is considered the detection of features that can transform into
each other, is achieved in capsule networks.

In [12], the dynamic routing between capsules is applied in the proposed capsule
network. The pooling operation is abandoned in [12] for keeping the location information
of features. Although CapsNet with dynamic routing achieved SOTA performance in
MNIST and its variant, MultiMNIST, it still has drawbacks, such as huge computational
cost and the lack of high-level semantic information. In [13], the matrix capsule network is
constructed by transforming the capsule form from vector to matrix and changing the link
mode between capsules of different layers. The coupling coefficients between lower-layer
and higher-layer capsules are updated by the EM algorithm. In [12,13], all the features used
to construct capsules are extracted by a convolution layer. These features are low-level
information and cannot effectively recognize complex objects.

To handle the drawbacks explained above, there have been several studies [14,15,17,24,25]
focusing on applying more powerful feature extraction modules to improve the perfor-
mance of capsule networks. In [14], multiple convolutional kernels are used to extract
multi-scale features for constructing multi-dimension capsules, and a novel dropout for
capsules is proposed. In RS-Caps [15], the Res2Net block [26] is used to extract multi-scale
features and increase the size of receptive fields of each convolutional layer. What is more,
a new linear combination between capsules and routing process is proposed for construct-
ing more effective classification capsules. In HitNet [24], a new layer called hit-or-miss
and a centripetal loss function are designed. HitNet also introduces a data augmentation
method that can combine data space and feature space. The most straightforward idea to
improve the performance of capsule networks is to increase the number of intermediate
capsule layers to obtain deeper capsule networks. However, it was recently proven that
directly stacking fully connected capsule layers will result in a decline in performance [27].
In order to solve this problem, DeepCaps [25] uses a novel 3D convolution-based dynamic
routing algorithm. Furthermore, a class-independent decoder network is also proposed to
strengthen the use of reconstruction loss as a regularization term.

Deep learning technology has also been applied in medical image analysis. In [28],
U-Net architecture, which consists of a contracting path to capture context information
and an expanding path that enables precise localization, is proposed for biomedical image
segmentation. In [29], an approach based on a volumetric, fully convolutional neural
network is proposed for 3D image segmentation. USE-Net [30], which incorporates squeeze-
and-excitation (SE) modules into U-Net, is proposed for magnetic resonance imaging (MRI)
segmentation. In [31], SegNet [32], which consists of an encoder network, a decoder
network followed by a pixel-wise classification layer, U-Net and pix2pix are compared in
the experiments on two multi-centric MRI prostate datasets.

3. Attentive Octave Convolutional Capsule Network

In this section, we introduce our proposed AOC-Caps in detail. As shown in Figure 1b,
input images are fed into a traditional convolution layer followed by batch normalization
and RELU operation. The feature maps generated by this convolutional layer are then fed
into the attentive octave convolution layer (AOC-Layer). In the AOC-Layer, the higher- and
lower-frequencies are processed simultaneously. The useful information is enhanced, and
useless information is suppressed in the AOC-Layer. The enhanced feature maps generated
by the AOC-Layer are then reshaped into a pose matrix and an activation following the
matrix capsule network [13]. In Section 3.1, the details of the AOC-Layer are provided.
The process of routing and updating in capsule layers is introduced in Section 3.2. The loss
function of the proposed AOC-Caps is described in Section 3.3.
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(a)

(b)

Figure 1. Attentive octave convolution capsule network. (a) Attentive octave convolution layer.
(b) Main framework of AOC-Caps.

3.1. Attentive Octave Convolution Layer

In the traditional convolution operation, the input information is processed by convo-
lutional kernels of certain sizes. Convolution operations of different convolutional kernels
can obtain information of different frequencies, and there is no effective fusion process
between frequencies. The octave convolution operation [16] is proposed to process different
frequencies simultaneously. In octave convolution, the convolution and fusion of two fre-
quencies with a difference of an octave are performed simultaneously without an attention
mechanism module. It is very important to select useful information in medical image
classification. In order to select information of different frequencies, we add a CBAM [33]
in the AOC-Layer.

Suppose the input is defined as I ∈ R3×h×w, where h and w are defined as the height
and width of the image. The feature maps obtained by the first convolution layer are
defined as F ∈ Rc×h×w, where c is the channel of the feature maps. In the AOC-Layer,
the feature map F is first divided into two parts

{
FH

1 , FL
1
}

by a convolution operation (H-H
Conv in Figure 1a) and pooling and a convolution operation (H-L Pooling and Conv in
Figure 1a), where FH

1 is higher frequency and FL
1 is lower frequency. The channels of the

feature maps are divided by ratio α. The size of the higher frequency is Rαc×h×w and that
of the lower frequency is R(1−α)c× h

2×
w
2 . In order to obtain lower-frequency information,

two pooling operations (average and maximum) are used in the AOC-Layer. Their effects
are discussed in detail in Section 4.5. In order to convert lower-frequency information into
higher-frequency information, bilinear interpolation is used to convert lower-resolution
feature maps into higher-resolution feature maps. Then, the higher- and lower-frequency
communicate with each other by summation, as shown in Formulas (1) and (2):

FH
2 = ConvH−H(FH

1 ) + UpsampleL−H(ConvL−H(FL
1 )) (1)

FL
2 = PoolingH−L(ConvH−L(FH

1 )) + ConvL−L(FL
1 ) (2)
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As shown in Figure 1a, the attention modules are added to the intermediate feature
maps with different frequencies to enhance useful information and suppress useless in-
formation. Without losing particularity, an intermediate feature map in the AOC-Layer is

defined as F
′ ∈ RC

′×H
′×W

′
, where C

′
is the number of channels of both higher- and lower-

frequency parts, and H
′

and W
′

are the height and width of higher- and lower-frequency

parts. The attention module sequentially infers a 1D channel attention map F
′
c ∈ RC

′×1×1

and a 2D spatial attention map F
′
s ∈ R1×H

′×W
′
. The selections of channel and spatial

information are based on Formulas (3) and (4):

Fatt
c = F

′
c(F

′
)⊗ F

′
(3)

Fatt
s,c = F

′
s(Fatt

c )⊗ Fatt
c (4)

where ⊗ denotes the element-wise multiplication. The intermediate feature map F
′ ∈

RC
′×H

′×W
′

is firstly processed by a channel attention module. The feature map F
′

is pooled
along the spatial dimension through average and maximum operations. The average-
pooled features and max-pooled features are processed by a multi-layer perception (MLP),

with one hidden layer for producing the channel attention vector F
′
c ∈ RC

′×1×1. The channel
attention enhanced feature map Fatt

c is then processed by a spatial attention module. Feature
map Fatt

c is pooled along the channel dimension by both average and maximum operations.
The average-pooled and max-pooled feature maps are concatenated along the channel

dimension to produce F
′
s ∈ R2×H

′×W
′
. F

′
s is processed by a convolution operation with

kernel size 7 followed by a sigmoid function. In the AOC-Layer, the attention modules are
plugged into FH

1 , FL
1 , FH

2 , and FL
2 . The role of attention modules is also discussed in detail

in Section 4.5.

3.2. Capsule Layer

The two commonly used capsule networks are CapsNet with dynamic routing and
matrix CapsNet with EM routing. In CapsNet with dynamic routing, the capsule vector
is constructed by stacking the neurons with scalar values. In CapsNet with EM routing,
the capsule contains a pose matrix and an activation.

The output feature maps of the AOC-Layer are first reshaped into a series of capsules
sj, j = 1, 2, · · · . For one capsule sj, its input is the weighted sum of all the prediction vectors
ûj|i generated by the previous layers. It can be defined as Formulas (5) and (6).

sj = ∑
i

cijûj|i (5)

ûj|i = Wijui (6)

where cij is the routing coefficient, Wij is the matrix used for voting, and ui is the output
vector of the previous capsule layer. The routing coefficients should be computed in
dynamic routing [12] or EM routing [13]. In dynamic routing, ui is a vector.

The process of dynamic routing is shown as follows:

1. The prior probability bij between capsule j and capsule i in the previous layer is
initialized to be 0;

2. The routing coefficients cij can be computed through the softmax function cij =
exp(bij))

∑k exp(bik)
;

3. The input to capsule j is computed by Formula (5) and then it is squeezed by vj =

‖sj‖2

1+‖sj‖2
sj

‖sj‖ ;

4. The bij is updated by bij ← bij + ûj|i · vj;
5. Repeat steps 2 to 4 r times. The value of r is set empirically, usually from 1 to 3.
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Different from capsule networks with dynamic routing, capsules in the matrix capsule
with EM routing consist of a pose matrix and an activation. A pose matrix defines the
translation and the rotation of the objects. The aim of the EM algorithm is to cluster
datapoints into different Gaussian distributions. Suppose the pose matrix is a 4 × 4 matrix,
i.e., 16 components. Let vij be the vote from capsule i to capsule j, and vh

ij be its h-th
component. The probability density function of a Gaussian is defined as Formula (7):

P(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (7)

It can be applied to compute the probability of vh
ij belonging to the capsule j’s Gaussian

model:

Ph
i|j =

1√
2π
(

σh
j

)2
e

−

(
vh

ij−µh
j

)2

2
(

σh
j

)2

(8)

Let costh
ij = −ln

(
Ph

i|j

)
be the cost to activate the h-th component of capsule j by the

h-th component of capsule i, where

ln
(

Ph
i|j

)
= −ln(σh

j ))−
ln(2π)

2
−

(
vh

ij − µh
j

)2

2
(

σh
j

)2 (9)

Whether the capsule j is activated is determined by the following equation:

aj = sigmoid(λ(bj −∑
h

costh
j )) (10)

where
costh

j = ∑
i

rijcosth
ij (11)

rij is the assignment probability of each datapoint to a capsule. rij, µ, σ, and aj are computed
iteratively using the EM algorithm.

3.3. Loss Function

In AOC-Caps, if the dynamic routing is applied, the loss function is defined as

Lc = Tcmax(0, m+ − ‖vc‖)2 + λ(1− Tc)max(0, ‖vc‖ −m−)2 (12)

where Tc = 1 if the class c is present, m+ is set to be 0.9 and m− is set to be 0.1.
If the matrix capsule with EM routing is applied, the loss function has a similar design

as in [13]. The spread loss is used to directly maximize the gap between the activation
of the target class and the activation of other classes. The loss function is formed as
Formulas (13) and (14):

Lw = max(0, m− (ar − aw))
2 (13)

L = ∑
w 6=r

Lw (14)

where aw is the wrong class and at is the target class.

4. Experiments
4.1. Datasets

MedMNIST consists of 10 pre-processed datasets. It contains 10 open medical image
datasets covering multiple tasks, including multi-class, binary classification, sequential
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regression, and multi-label. In our experiments, we focus on the multi-class tasks, such as
PathMNIST, DermaMNIST, OCTMNIST, PneumoniaMNIST, OrganMNIST_Axial, Organ-
MNIST_Coronal, and OrganMNIST_Sagittal. In these seven datasets, the height and width
of the images are resized to 28. Figure 2 demonstrates an overview of the seven datasets
with samples.

Figure 2. An Overview of the Datasets: PathMNIST, DermaMNIST, OCTMNIST, PneumoniaMNIST,
OrganMNIST_Axial, OrganMNIST_Coronal, and OrganMNIST_ Sagittal.

All datasets are divided into a training set, a validation set, and a test set. The number
of images in each set is detailed in Table 1. The models are trained on the training sets,
validated on the validation sets after each epoch during training, and finally evaluated on
the test sets.

Table 1. Datasets in MedMNIST used in our experiments.

Name Data
Modality Tasks #Training #Validation #Test

PathMNIST Pathology Multi-Class 89,996 10,004 7180

DermaMNIST Dermatoscope Multi-Class 7007 1003 2005

OCTMNIST OCT Multi-Class 97,477 10,832 1000

PneumoniaMNIST Chest X-ray Binary-Class 4708 524 624

OrganMNIST_Axial Abdominal CT Multi-Class 34,581 6491 17,778

OrganMNIST_Coronal Abdominal CT Multi-Class 13,000 2392 8268

OrganMNIST_Sagittal Abdominal CT Multi-Class 13,940 2452 8829

PathMNIST. It is based on a prior study [34] for predicting survival from colorectal
cancer histology slides, which provides a dataset of 100,000 non-overlapping image patches
from hematoxylin and eosin-stained histological images, and a test dataset of 7180 images
patches from a different clinical center. Nine types of tissues are involved, resulting in a
multi-class classification task. The details of these nine categories are introduced in Table 2.



Appl. Sci. 2022, 12, 2634 8 of 16

Table 2. Details of PathMNIST dataset.

Name #Training #Validation #Testing

adipose 9366 1041 1338

background 9509 1057 847

debris 10,360 1152 339

lymphocytes 10,401 1156 634

mucus 8006 890 1035

smooth muscle 12,182 1354 592

normal colon mucosa 7886 877 741

cancer-associated stroma 9401 1045 421

colorectal adenocarcinoma epithelium 12,885 1432 1233

DermaMNIST. It is based on HAM10000 [35], a large collection of multi-source der-
matoscopic images of common pigmented skin lesions. The dataset consists of 10,015 images
labeled as seven different categories, as a multi-class classification task. These seven cate-
gories are introduced in Table 3.

Table 3. Details of DermaMNIST dataset.

Name #Training #Validation #Testing

Actinic Keratoses and Intraepithelial Carcinoma 228 33 66

Basal Cell Carcinoma 359 52 103

Benign Keratosis-like Lesions 769 110 220

Dermatofibroma 80 12 23

Melanoma 779 111 223

Melanocytic Nevi 4693 671 1341

Vascular Lesions 99 14 29

OctMNIST. It is based on a prior dataset [36] of 109,309 valid optical coherence
tomography images for retinal diseases. Four types are involved in this dataset, leading to
a multi-class classification task. These four categories are introduced in Table 4.

Table 4. Details of OctMNIST dataset.

Name #Training #Validation #Testing

Choroidal Neovascularization 33,484 3721 250

Diabetic Macular Edema 10,213 1135 250

Drusen 7754 862 250

Normal 46,026 5114 250

PneumoniaMNIST. It is based on a prior dataset [36] of 5856 pediatric chest X-ray
images. This task is a binary class of pneumonia and normal. The source training set is
split into training and validation sets with a ratio of 9:1, and its source validation set is used
as the test set. These two categories are introduced in Table 5.
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Table 5. Details of PneumoniaMNIST dataset.

Name #Training #Validation #Testing

Normal 1214 135 234

Pneumonia 3494 389 390

OrganMNIST_(Axial, Coronal, and Sagittal). These three datasets are based on 3D
computed tomography (CT) images from the Liver Tumor Segmentation Benchmark [37].
Bounding-box annotations of 11 body organs from another study are used for obtaining
the organ labels. The only differences of OrganMNIST_(Axial, Coronal, and Sagittal) are
the views. The 11 categories of each of the three datasets are introduced in Tables 6–8.

Table 6. Details of OrganMNIST_Axial dataset.

Name #Training #Validation #Testing

Bladder 1956 321 1036

Femur-left 1408 233 784

Femur-right 1359 225 793

Heart 1474 392 785

Kidney-left 3963 568 2064

Kidney-right 3817 637 1965

Liver 6164 1033 3285

Lung-left 3919 1033 1747

Lung-right 3929 1009 1813

Pancreas 3031 529 1622

Spleen 3561 511 1884

Table 7. Details of OrganMNIST_Coronal dataset.

Name #Training #Validation #Testing

Bladder 1153 191 833

Femur-left 626 102 442

Femur-right 608 96 441

Heart 600 202 421

Kidney-left 1088 132 732

Kidney-right 1170 157 737

Liver 2986 429 1836

Lung-left 1002 347 550

Lung-right 1022 352 558

Pancreas 1173 179 750

Spleen 1572 205 968
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Table 8. Details of OrganMNIST_Sagittal dataset.

Name #Training #Validation #Testing

Bladder 1148 188 811

Femur-left 637 104 439

Femur-right 615 95 447

Heart 721 246 510

Kidney-left 1132 140 704

Kidney-right 1119 159 693

Liver 3464 491 2078

Lung-left 741 261 397

Lung-right 803 275 439

Pancreas 2004 280 1343

Spleen 1556 213 968

4.2. Evaluation Metrics

In our experiments, we use accuracy (ACC), area under ROC curve (AUC), precision
(PRE), recall (REC) and F1-score (F1) as the evaluation metrics. The formulas of these
metrics are shown below:

Accurary =
∑N

i=1 f (xi) = yi

N
(15)

precision =
∑c

i=1 precisioni

C
(16)

precisioni =
TPi

TPi + FPi
, i = 1, 2, . . . , C (17)

recall =
∑C

i=1 recalli
C

(18)

recalli =
TPi

TPi + FNi
, i = 1, 2, . . . , C (19)

F1 =
2 ∗ precision ∗ recall

precision + recall
(20)

where C is the number of classes and N is the number of total samples. TP, TN, FP, and FN
refer to true positive, true negative, false positive, and false negative.

Accuracy (ACC) is the most commonly used metric among these performance metrics,
but it does not indicate the true model performance when the classes are imbalanced. Area
under the ROC curve (AUC) is less sensitive to class imbalance than ACC. Precision (PRE)
and recall (REC) are related to the positive prediction. In our experiments, we use macro-
precision and macro-recall, which are defined by Formulas (16) and (18). The F1-score (F1)
is a metric that combines both precision and recall.

4.3. Baselines

In our experiments, we use the same baselines as in [19]. In addition, several meth-
ods related to capsule networks are used in the classification tasks of the seven datasets
mentioned above.

ResNet18 and ResNet50 [6]. These two models are trained for 100 epochs, using a
cross-entropy loss function and an SGD optimizer with a bath size of 128 and an initial
learning rate 10−3.
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AutoML Methods. Several AutoML methods [21,22] were applied on MedMNIST
classification. The experimental settings of three AutoML methods (auto-sklearn [21],
AutoKeras [22] and Google AutoML Vision) are the same as in [19]. AutoML methods
are designed to search for the optimal hyper-parameter setting or neural architecture to
maximize the predictive ability. For example, Auto-sklearn and autoKeras are open-source
AutoML tools for both statistical machine learning and deep learning. On the other hand,
Google AutoML Vision offers commercial black-box AutoML tools. In this study, the results
of AutoML methods in our experiments are directly referenced from [19].

CapsNet (Dynamic routing) [12]. In [12], the output feature maps of the convolutional
layer with kernel size 9 × 9 and a stride 2 are reshaped into primary capsules. The capsules
of the previous layer are routed to classification capsules by agreement. Different from the
original setting, we set the iteration number to be 2 instead of 3 for the best performance.

CapsNet (EM routing) [13]. In [13], the capsule contains a 4 × 4 pose matrix and an
activation. The vote for capsules in the next layer is computed by the matrix multiplication
between the pose matrix and the trainable transformation matrix. The routing coefficients
between capsules and classification capsules are updated through the EM algorithms.
Different from the original setting, the kernel size of the first convolutional layer is set to be
3 × 3 for detailed feature representation.

MS-Caps [14]. In [14], hierarchical features are extracted and reshaped into capsules of
different dimensions. The capsules cascade together for the dropout operation. Following
the original experimental setting, the Adam optimizing method [38] is used as the gradient
descent algorithm to perform the training. The weight decay factor is set to be 0.00001.
The initial learning rate is 0.001 and 0.0001, and the number of iterations is 25 and 50 for
converging to the optimal solution quickly.

DeepCaps [25]. In [25], the Adam optimizer is used with an initial learning rate of
0.001, which is reduced by half after every 20 epochs.

4.4. Implementation Details

In this paper, experiments are implemented by PyTorch on a PC with four GPUs of
TITAN X. Different from the experiments in [19], we conduct experiments only with images
of size 28 × 28.

In the experiments, the kernel size of the first convolution layer is set to be 3 × 3
and the stride is set to be 2. In the AOC-Layer, ratios for the split of higher- and lower-
frequencies are set to be 0.5. The convolutional kernel size is set to be 3 in the AOC-Layer.
In the attention modules, the reduction ratio is set to be 8, and the convolutional kernel size
is set to be 3. When the capsule with a dynamic routing framework is applied, the vector
dimension of the capsule is set to be 8 and the iteration number is set to be 2. When the
matrix capsule with the EM routing framework is applied, the pose matrix is set to be
a 4 × 4 matrix. The batch size is set to be 96 and the initial learning rate is 3 × 10−3.
The training epoch is set to be 120.

In our experiments, all metrics are implemented by a python module called Torchmetrics.

4.5. Ablation Study

To verify the effectiveness of each design in AOC-Caps, we conduct experiments
for the ablation study. The ablation study focuses on (1) different forms of capsules and
different routing methods; (2) types of pooling operations in the AOC-Layer; (3) the effect
of attention modules.

To test different forms of capsules and different routing methods, we choose the pool-
ing operation type to be maximal and plug attention modules as introduced in Section 3.1.
It should be noted that in dynamic routing, we do not add the decode term. As shown in
Table 9, the AOC-Caps with matrix and EM routing outperforms the one with dynamic
routing. It can be seen from Table 9 that different routing methods have a great impact on
the results. For example, in the OrganMNIST_Axial dataset, the accuracy with EM routing
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is 93.1%, while the accuracy with dynamic routing is 80.2%. The AOC-Caps with EM
routing also achieves better precision and recall, both of which are more than 10% higher.

Table 9. Performance of different capsule forms and routing.

Dataset Names
AOC-Caps (Dynamic Routing) AOC-Caps (EM Routing)

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.794 0.790 0.782 0.783 0.952 0.859 0.840 0.837 0.845 0.960

DermaMNIST 0.732 0.420 0.368 0.390 0.883 0.786 0.485 0.417 0.447 0.890

OCTMNIST 0.707 0.788 0.760 0.773 0.950 0.750 0.820 0.802 0.819 0.955

PneumoniaMNIST 0.859 0.862 0.843 0.847 0.985 0.931 0.914 0.893 0.895 0.990

OrganMNIST_Axial 0.802 0.799 0.773 0.785 0.950 0.931 0.920 0.903 0.919 0.973

OrganMNIST_Coronal 0.794 0.803 0.892 0.899 0.940 0.907 0.911 0.904 0.904 0.965

OrganMNIST_Sagittal 0.739 0.680 0.665 0.669 0.967 0.783 0.731 0.717 0.723 0.980

To test the effectiveness of different pooling operations, such as average and maximum,
we keep the capsule form to matrix and EM routing. The attention modules are plugged
into the AOC-Layer as introduced in Section 3.1. As shown in Table 10, the AOC-Caps with
max-pooling outperforms the one with avg-pooling. What is more, the type of pooling
operations has much less impact on the results than the routing methods.

Table 10. Performance of different pooling operations in AOC-Layer.

Dataset Names
AOC-Caps (AVG) AOC-Caps (MAX)

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.847 0.829 0.820 0.832 0.960 0.859 0.840 0.837 0.845 0.960

DermaMNIST 0.764 0.447 0.380 0.403 0.860 0.786 0.485 0.417 0.447 0.890

OCTMNIST 0.739 0.807 0.789 0.798 0.930 0.750 0.820 0.802 0.819 0.955

PneumoniaMNIST 0.918 0.895 0.879 0.880 0.985 0.931 0.914 0.893 0.895 0.990

OrganMNIST_Axial 0.927 0.915 0.900 0.912 0.970 0.931 0.920 0.903 0.919 0.973

OrganMNIST_Coronal 0.886 0.889 0.878 0.883 0.960 0.907 0.911 0.904 0.904 0.965

OrganMNIST_Sagittal 0.769 0.718 0.702 0.710 0.970 0.783 0.731 0.717 0.723 0.980

To test the effectiveness of the attention modules, we keep the capsule form to matrix
and EM routing. The pooling type is set to be maximal. As shown in Table 11, the AOC-Caps
with the attention module outperforms the one without the attention module. Attention
modules have a greater impact on the results than the pooling operation type and less than
the routing method. In Table 11, the AOC-Caps with attention modules achieves higher
accuracy, precision and recall.
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Table 11. Performance of AOC-Caps with/without attention module.

Dataset Names
AOC-Caps (without Attention) AOC-Caps (with Attention)

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.805 0.790 0.785 0.785 0.945 0.859 0.840 0.837 0.845 0.960

DermaMNIST 0.721 0.405 0.337 0.382 0.850 0.786 0.485 0.417 0.447 0.890

OCTMNIST 0.689 0.756 0.743 0.749 0.943 0.750 0.820 0.802 0.819 0.955

PneumoniaMNIST 0.863 0.847 0.826 0.833 0.980 0.931 0.914 0.893 0.895 0.990

OrganMNIST_Axial 0.877 0.864 0.845 0.856 0.972 0.931 0.920 0.903 0.919 0.973

OrganMNIST_Coronal 0.832 0.843 0.830 0.836 0.955 0.907 0.911 0.904 0.904 0.965

OrganMNIST_Sagittal 0.711 0.654 0.630 0.648 0.955 0.783 0.731 0.717 0.723 0.980

The results in Tables 9–11 have demonstrated the effectiveness of EM routing, max-
pooling in the AOC-Layer, and attention modules. By putting them together, we find
the optimal combination to implement AOC-Caps based on the following comparative
experiments.

4.6. Comparative Experiments

The results of the comparative experiments are reported in Table 12, in which the
results of ResNet18, ResNet50, Auto-sklearn, AutoKeras, and Google AutoML Vision are
from [19]. For the three AutoML models, the original paper does not provide metrics in
Pre, Rec, and F1, which are marked as dashes in Table 12.

Table 12 shows the performance of the comparative models on seven datasets in
MedMNIST. In terms of accuracy (ACC), AOC-Caps achieves the best accuracy on Der-
maMNIST and OrganMNIST_Axial datasets, and ranks second on other datasets. CapsNet
with dynamic routing and EM routing demonstrate worse performance than other methods,
due to the shallow feature extraction network. However, because the data of OrganM-
NIST_(Axial, Coronal, and Sagittal) are collected from 3D images, the viewpoints are
different. Therefore, the CapsNet with the EM routing with transformation invariance can
obtain good accuracy, even with the shallow feature extraction network.

Due to the class imbalance in certain datasets of MedMNIST, it is necessary to consider
different metrics. In terms of precision (PRE) and recall (REC), the performance of all
methods is lower than accuracy on datasets DermaMNIST and OrganMNIST_Sagittal
because of the data imbalance between different categories in DermaMNIST and Organ-
MNIST_Sagittal. In this case, AOC-Caps still achieves better results. However, it should
be pointed out that there is no corresponding solution to this data imbalance problem in
our experiments.

In our comparative experiments, a model with deeper layers does not necessarily
achieve higher accuracy. Consider ResNet18 as an example. It outperforms ResNet50 on
datasets such as DermaMNIST, OCTMNIST, OrganMNIST_Axial, and OrganMNIST_Sagittal.
As part of the reason, the low resolution of the image data does not require a deep network
model to extract high-level features.
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Table 12. Performance of seven datasets in MedMNIST.

Dataset Names
ResNet18 ResNet50

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.844 0.817 0.817 0.805 0.966 0.864 0.832 0.833 0.820 0.978

DermaMNIST 0.721 0.468 0.373 0.391 0.895 0.710 0.363 0.332 0.343 0.886

OCTMNIST 0.758 0.814 0.749 0.713 0.951 0.745 0.809 0.730 0.702 0.951

PneumoniaMNIST 0.843 0.895 0.797 0.817 0.970 0.857 0.895 0.797 0.817 0.966

OrganMNIST_Axial 0.921 0.924 0.912 0.917 0.995 0.916 0.917 0.906 0.910 0.995

OrganMNIST_Coronal 0.889 0.889 0.886 0.886 0.990 0.893 0.890 0.886 0.886 0.992

OrganMNIST_Sagittal 0.762 0.714 0.706 0.694 0.969 0.746 0.705 0.697 0.692 0.970

Dataset Names
Auto-sklearn AutoKeras

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.186 _ _ _ 0.500 0.864 _ _ _ 0.979

DermaMNIST 0.734 _ _ _ 0.906 0.756 _ _ _ 0.921

OCTMNIST 0.595 _ _ _ 0.883 0.736 _ _ _ 0.956

PneumoniaMNIST 0.865 _ _ _ 0.947 0.918 _ _ _ 0.970

OrganMNIST_Axial 0.563 _ _ _ 0.797 0.929 _ _ _ 0.996

OrganMNIST_Coronal 0.676 _ _ _ 0.898 0.915 _ _ _ 0.992

OrganMNIST_Sagittal 0.601 _ _ _ 0.855 0.803 _ _ _ 0.972

Dataset Names
Google AutoML Vision CapsNet : Dynamic

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.811 _ _ _ 0.982 0.710 0.693 0.665 0.682 0.851

DermaMNIST 0.766 _ _ _ 0.925 0.601 0.332 0.314 0.308 0.807

OCTMNIST 0.732 _ _ _ 0.965 0.598 0.657 0.677 0.669 0.890

PneumoniaMNIST 0.941 _ _ _ 0.993 0.738 0.793 0.773 0.779 0.930

OrganMNIST_Axial 0.818 _ _ _ 0.988 0.738 0.758 0.741 0.747 0.923

OrganMNIST_Coronal 0.861 _ _ _ 0.986 0.740 0.747 0.730 0.742 0.943

OrganMNIST_Sagittal 0.706 _ _ _ 0.964 0.635 0.595 0.578 0.583 0.852

Dataset Names
CapsNe : EM MS-Caps

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.810 0.799 0.776 0.783 0.951 0.843 0.830 0.809 0.817 0.955

DermaMNIST 0.713 0.430 0.372 0.398 0.867 0.720 0.463 0.389 0.412 0.880

OCTMNIST 0.695 0.775 0.730 0.752 0.932 0.673 0.754 0.730 0.749 0.950

PneumoniaMNIST 0.842 0.879 0.836 0.858 0.960 0.810 0.833 0.819 0.825 0.960

OrganMNIST_Axial 0.870 0.883 0.845 0.859 0.987 0.889 0.890 0.867 0.873 0.980

OrganMNIST_Coronal 0.843 0.857 0.833 0.839 0.980 0.863 0.870 0.851 0.859 0.977

OrganMNIST_Sagittal 0.701 0.667 0.601 0.628 0.963 0.742 0.701 0.678 0.688 0.962

Dataset Names
DEEPCaps AOC-Caps

ACC PRE REC F1 AUC ACC PRE REC F1 AUC

PathMNIST 0.791 0.783 0.770 0.779 0.965 0.859 0.840 0.837 0.845 0.960

DermaMNIST 0.749 0.406 0.337 0.390 0.898 0.786 0.485 0.417 0.447 0.890

OCTMNIST 0.600 0.676 0.659 0.663 0.920 0.750 0.820 0.802 0.819 0.955

PneumoniaMNIST 0.821 0.847 0.828 0.836 0.955 0.931 0.914 0.893 0.895 0.990

OrganMNIST_Axial 0.856 0.867 0.851 0.859 0.961 0.931 0.920 0.903 0.919 0.973

OrganMNIST_Coronal 0.847 0.855 0.842 0.843 0.950 0.907 0.911 0.904 0.904 0.965

OrganMNIST_Sagittal 0.737 0.693 0.659 0.673 0.960 0.783 0.731 0.717 0.723 0.980
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5. Conclusions

In this paper, we proposed a novel attentive octave convolutional capsule network
(AOC-Caps) for medical image classification. In the AOC-Layer, the octave convolution
and attention modules (CBAM) are used for communicating and selecting the higher- and
lower-frequency information. The output feature maps of the AOC-Layer are used as the
foundation for constructing capsules. The experiments have verified the effectiveness of
the AOC-Layer. Because the images of certain datasets come from 3D images and the
viewpoint is likely to change, the capsule routing method with transformation invariance,
such as matrix CapsNet with the EM routing, can obtain higher accuracy. By combining
the AOC-Layer and matrix CapsNet with the EM routing, AOC-Caps could achieve better
performance than most baselines in the experiments.

However, the AOC-Layer in AOC-Caps is still a shallow convolutional network.
Although AOC-Caps has achieved better results than DeepCaps on the classification
tasks in MedMNIST, the deep network structure is still necessary when handling high-
resolution medical images. This may be due to the smaller image size of the dataset and less
detailed information. In future studies, we will consider high-resolution medical images
of different diseases and investigate the effect of AOC-Caps in the case of deep structures.
Furthermore, it is necessary to consider how to solve the problem of class imbalance in
medical image analysis.
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