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Abstract: The presence of CO2, sand, and water in oil and gas reservoirs causes erosion–corrosion
leading to material degradation in pipelines and fluid handling equipment that results in increasing
maintenance and repair costs and a decrease in production. While the weight loss caused by erosion–
corrosion is known to depend on flow velocity, angle of impact, sand loading and size and target
material properties, field operators often limit the flow rate based on a critical corrosion velocity to
protect the equipment. This study investigates the effects of sand loading and flow velocity on weight
loss associated with erosion–corrosion in a mild steel sample using a submerged impingement jet.
The weight loss by erosion, corrosion and their interaction for a flow velocity range of 10 m/s to
20 m/s and sand loading range of 300 mg/L to 600 mg/L, in a seawater environment, are presented.
The results showed that the weight loss by pure erosion and erosion–corrosion interaction increases
linearly with jet velocity and sand loading, and that erosion is dominant in all cases except at low
velocity and sand loading. The scanning electron microscope (SEM) images after impingement tests
were analyzed. In addition, correlations for the velocity and sand loading were derived using the
design of experiment method (DOE).

Keywords: erosion–corrosion; velocity effect; sand loading effect; submerged jet impingement;
design of experiments

1. Introduction

Erosion–corrosion caused by the impingement of the corrosive slurries against metallic
materials is one of the significant contributing factors to the degradation phenomenon in
oil and gas industries. Erosion–corrosion is a form of tribo-corrosion which damages both
the surface layers and base of the metallic materials [1]. The erosion–corrosion process
involves pure erosion, loss of materials from the surface caused by the impact of solid
particles, static corrosion, deterioration of materials caused by an electrochemical reaction
under zero-flow conditions, and the erosion–corrosion interaction, referred to as synergy.
Generally, the total weight loss due to erosion–corrosion (TWL) can be represented as
shown in Equation (1). In Equation (1), E0 is pure erosion, C0 is static corrosion and IEC is
erosion–corrosion interaction (E–C interaction). The E–C interaction can be represented
as the summation of erosion due to corrosion (dEC) and corrosion due to erosion (dCE) as
shown in Equation (2).

TWL = E0 + C0 + IEC (1)

IEC = dEC + dCE (2)
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Some researchers have shown that the erosion is more significant than other com-
ponents in the erosion–corrosion process [2–7], while others have shown that the weight
loss due to the synergism is higher than the sum of material removal obtained when pure
erosion and static corrosion act separately [8–15]. There are several parameters that influ-
ence the erosion–corrosion process. Clark [16] listed the major factors that influence the
erosion–corrosion process. The impingement system has been extensively used [17–27] to
study the influence of the different parameters on erosion–corrosion. The erosion–corrosion
resistance of carbon steel in CO2 containing environments has also been widely inves-
tigated [28–31]. This paper focuses on the impact of sand loading and velocity on the
erosion–corrosion of mild steel by the impingement test in an aqueous slurry.

Elemuren et al. [8] investigated the impact of sand loading and flow velocity on
erosion–corrosion of 1018 steel 90◦ elbows in a slurry containing silica sand and potash
brine. Their study revealed that the mechanical effect of particles increased with increasing
flow velocity and sand loading. Moreover, they observed that the contribution of the
synergy decreased from 56% to 11% as the velocity increased from 2.5 m/s to 4 m/s.
They concluded that the synergy is the dominant factor at lower velocity and erosion,
becoming a dominant factor at the higher velocity. The erosion–corrosion investigation
by Hu and Neville [32] on a pipeline steel (API X65) revealed that material damage was
predominantly caused by the synergy as the resistance to corrosion decreases from surface
property degradation caused by erosion. The investigation also revealed that the TWL
increases linearly with jet velocity for velocities ranging from 5 m/s to 20 m/s. Yang and
YF. Cheng [4] investigated the effects of flow velocity, impact angle and sand concentration
on erosion–corrosion of X65 steel. Their findings indicate that pure erosion and erosion
enhanced by corrosion are the dominant factors and that the total weight loss decreased
with the increasing impact angle. Experiments conducted by Burstein and Sasaki [15] on
the erosion–corrosion of stainless steel showed that minimum material loss took place at
low velocities at an impact angle of 90◦, while severe material loss occurred at lower impact
angles and high flow velocities. Experiments conducted by Meng et al. [33] on two stainless
steels with different flow velocities, sand loadings and fluid temperatures showed that
the highest correlation occurred between the flow velocity and sand loading. They also
investigated the contribution of each parameter to TWL using a full two-level factorial
design method and found that the erosion–corrosion interaction had the greatest effect
on TWL.

Shehadeh et al. [34] measured the erosion–corrosion rate on carbon steel pipe elbows
phenomena caused by seawater with a sand loading ranging from 0 to 9 g/L. Their
experimental results clearly indicated that the erosion–corrosion rate varies linearly with the
flow velocity and sand loading for both laminar and turbulent flows. They also proposed
a linear equation that could help to predict the erosion–corrosion rate. Harvey et al. [35]
developed a semi-empirical model for corrosion dominated synergy of non-passivating
erosion–corrosion of carbon steel using a slurry pot. The aim of this study was to yield
an expression for erosion-enhanced corrosion which reveals the oxide-free surface. The
developed model also accommodates the enhanced corrosion due to surface deformation
caused by erodent particles. A number of studies [36–40] have aimed to develop empirical
and mechanistic models and equations for different environmental conditions which could
help in material loss prediction or material selection. However, a model which can predict
the weight loss due to pure erosion (Eo) and TWL caused by impingement of aqueous
slurries has yet to be developed.

The main thrust of this study is to propose an empirical regression model that relates
the Eo and TWL with the flow velocity and sand loading along with the fundamental
investigation of the erosion–corrosion of mild steel in salty slurry (containing silica sand)
using a submerged impingement jet apparatus. The influence of sand loading and flow
velocity on weight loss caused by erosion–corrosion, pure erosion, and erosion–corrosion
interaction has been investigated. Although the empirical model was not developed under
field conditions, it will provide the means for a better understanding of the effects of sand
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loading and velocity on the erosion–corrosion of mild steel. The pure erosion study was
carried out by chemically inhibiting the corrosion by the removal of dissolved oxygen.
The surface profile of the specimen after the test was analyzed using Scanning Electron
Microscopy (SEM).

2. Materials and Methods
2.1. Sand Particles

Sand used in this study was primarily composed of silicon and oxygen with small
traces of magnesium, aluminum, and calcium, which was collected from the desert in UAE.
A dry sand sieving method was used to prepare the sand of size 125–250 µm. The collected
silica sand was washed, dried, and then sieved using a set of sieves with a gradually
decreasing mesh, as shown in Figure 1, where only sand with the required mesh size was
collected for the tests. The SEM image of silica sand particles used shows that the particles
are fairly rounded with few sharp edges, as shown in Figure 2.
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2.2. Sample

The specimens were parted from a mild steel rod of 25 mm diameter. The rod was
turned to a diameter of 22.5 mm using a lathe machine and samples of 9 mm thickness
were cut. The parted specimens were mounted in a mold containing epoxy resin using a
ProntoPress-10 mounting machine leaving a working surface area of 4 cm2. In order to
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obtain a mirror-like finish (oxide polishing), the specimens were polished with a micro-
cloth containing a suspension of oil-soluble aluminum oxide using a Tegrapol-21 polishing
machine. The specimens were cleaned with soapy water, degreased with acetone, and
rinsed with distilled water.

2.3. Solutions

A saltwater solution containing 3.5 wt% of NaCl was prepared for corrosion and
erosion–corrosion tests. For the erosion test, tap water was used. The dissolved oxygen
in tap water was removed by adding sodium sulfite (Na2SO3), which acts as a corrosion
inhibitor. The concentration of dissolved oxygen was below 20 ppb and the pH of the
water changed from 8.36 to 8.96 after adding the Na2SO3. Both concentration and pH were
continuously monitored using Milwaukee D.O meter and Orion pH meter, respectively,
throughout the impingement tests.

2.4. Experimental Setup and Test Conditions

Erosion–corrosion tests were performed using a recirculating submerged impingement
jet apparatus (SIJ), as shown in Figure 3. The recirculating system enables the sand to mix
with the water which flows through the nozzle, with a diameter of 4 mm, and impinges
on the specimen at an angle of 90◦. This specific angle of attack was chosen to determine
material degradation of elbows and tees. The specimen was positioned at a distance of
5 mm from the nozzle. A cooling coil was immersed in the reservoir which compensates
for temperature increases due to pump friction. All the experiments were conducted at
a temperature of 29–33 ◦C. The impingement tests were carried out at different slurry
velocities (10, 13, 16, and 20 m/s) and different sand loadings (300, 400, 500 and 600 mg/L).
The flow loop was rinsed with clean water after each experiment, and the slurry solution
was refilled. Therefore, the interaction between silica particles and steel particles left in
the solution was ignored as it is beyond scope of this study. The specimens were weighed
before and after jet impingement tests using a digital balance (Precisa XB 220A) with a
sensitivity of ±0.1 mg.
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The static corrosion tests were conducted using the linear polarization method. A
potentiostat (Gamry Ref 600) consisting of three electrodes was used for the static corrosion
measurements. The linear polarization resistance (Rp) was measured using a three-electrode
potensiostat in which an Ag/AgCl electrode was used as the reference electrode, with
platinum as the reference electrode and the specimen as the working/test electrode. The
test was conducted at 0.25 mV/s scan-rate over a potential range from −20 mV to +20 mV.
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The corrosion current-density (icorr) was calculated from the polarization resistance using
Equation (3), where βa and βc are Tafel constants.

icorr =
βaβc

2.3Rp(βa + βc)
(3)

The calculated icorr was then converted to the weight loss using Faraday’s law. All the
experiments were repeated three times to check the validity and repeatability.

3. Results and Discussions
3.1. Effect of Time on TWL

The TWL was studied to understand the effect of time on erosion–corrosion. The
experiment was conducted at a jet velocity of 20 m/s and sand loading of 600 mg/L. It
was found that the TWL increased linearly with time for an impingement period of four
hours as shown in Figure 4 and Table 1. This is consistent with the results obtained by Xu
and Neville [32] for API-X65 under CO2 saturated conditions. It can be seen from Figure 4
that after a 4-h test, a large amount (71 mg) of material was removed from the surface.
Therefore, the time for conducting the experiments to investigate the velocity and sand
loading effects was set to 4 h.
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Table 1. TWL with respect to time at 20 m/s and 600 mg/L.

Time (hours) TWL (mg) Error (mg)

1 22.2 ±0.46
2 38.8 ±0.75
3 55.8 ±0.79
4 71 ±1.17

The SEM image in Figure 5 shows the center of the specimen with a diameter <1 mm
from the center before impingement, after 1-h impingement and after 4-h impingement.
The image reveals plastic deformation after impingement tests on the surface along with
the formation of pits and ploughing tracks. Figure 5b shows discrete cracks and isolated
pits after one-hour impingement. These cracks and pits on the surface of the specimen
are evidence of material loss as a result of impingement. Figure 5c shows thick elongated
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tracks and large holes caused after a 4-h impingement. It is believed that the formation of
these large holes is due to the drilling action of impinging slurry at the surface [41].
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Figure 6 shows an SEM image of the specimen at a diameter of 2 mm away from the
center after 4 h of impingement. The material loss in this region, where the impingement
angle is less than 90◦, is significant. According to the observations of Parsi et al. [42], higher
material losses occur at lower impact angles. This is due to the formation and cutting of
platelets by particles at lower impact angles. The SEM image (Figure 7) of the specimen
at a diameter of 3 mm away from the center shows elongated pits and discrete cutting
tracks aligned in the flow direction from the center. It is evident from Figures 6 and 7
that the material damage at an area of 3 mm from the center was less than the damage at
2 mm away from the center. This is because the area 3 mm away from the center was less
impacted by the solid particles compared with the area which was 2 mm away from the
center, though the particle impinges at a lower (<90◦) angle.
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3.2. Effect of Static Corrosion on Weight Loss

To determine the weight loss due to static corrosion after 4 h of immersing in salt
solution at 31 ± 2 ◦C, Linear Polarization Resistance (LPR) measurements were performed.
However, LPR technique requires the corresponding Tafel constants to be obtained from
the anodic and cathodic curve. Hence to determine these constants, a dynamic polarization
test was performed for the mild steel sample by sweeping voltage between −1.2 V to 0.8 V
with respect to the open circuit potential. The curve as shown in Figure 8 was obtained after
the dynamic polarization test. Analyzing the curve using Gamry Echem analyst software,
the values for anodic constant βa and cathodic constant βc were found as 0.2016 V/decade
and 0.3256 V/decade, respectively.

After performing the LPR test and using Gamry Echem analyst software the Rp value
obtained for samples after 4 h was 33.76 kΩ. This value, along with the Tafel constants
when used in Equation (3), gives the icorr value as 1.602 µAcm−2. By converting this icorr
value using the Faraday’s law, the weight loss is calculated as 0.03 mg which is relatively
very low compared to TWL and E0.
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3.3. Effect of Velocity and Sand Loading

Figures 9 and 10 show the velocity and sand loading effect on the TWL, E0 and IEC
after 4 h of exposure. Tables 2 and 3, and the figures show how the weight loss increases
linearly with both the velocity and sand loading at an increased rate of the velocity than
for sand loading alone. In both cases pure erosion is dominant. The IEC was calculated by
subtracting the E0 and C0 from TWL.
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Figure 10. Effect of sand loading on weight loss at 20 m/s.

Table 2. Weight loss due to velocity effect at 600 mg/L.

Velocity (m/s)
TWL(mg) Pure Erosion E–C Interaction

TWL
(mg)

Error
(mg)

Weight Loss
(mg)

Error
(mg)

Weight Loss
(mg)

Error
(mg)

10 35.13 ±0.66 22.20 ±0.54 12.52 ±0.12
13 45.07 ±0.81 29.23 ±0.70 15.42 ±1.45
16 55.83 ±0.80 34.87 ±0.61 20.55 ±0.95
20 71 ±1.17 42.67 ±1.02 28.12 ±1.20

Table 3. Weight loss due to sand loading effect at 20 m/s.

Sand Loading
(mg/L)

TWL(mg) Pure Erosion E–C Interaction

TWL
(mg)

Error
(mg)

Weight Loss
(mg)

Error
(mg)

Weight Loss
(mg)

Error
(mg)

300 52.33 ±0.61 28.23 ±0.32 23.68 ±0.85
400 58.23 ±0.65 32.47 ±0.80 25.35 ±0.98
500 64.33 ±0.70 36.57 ±0.70 27.35 ±0.98
600 71 ±1.17 42.67 ±1.02 28.12 ±1.21

Figure 11 shows SEM images of the specimen after erosion–corrosion impingement
tests under two different conditions with a 1500x magnification. Figure 11a shows the
formation of metal shards along with discrete isolated pits and cracks after the impingement
test at the minimum velocity of 10 m/s and maximum sand loading of 600 mg/L. Figure 11b
shows the SEM image at the minimum sand loading of 300 mg/L and maximum velocity
of 20 m/s. The SEM (in Figure 11b) shows discrete pits and ploughing tracks larger in size
than those seen in Figure 11a. These larger pits and ploughing tracks are a result of the
large impact energy of the higher velocity sand having the potential to cause more damage.
The image also shows areas on the surface which are free from the impact of sand particles.
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Figure 11. SEM of specimen after erosion–corrosion impingement test (a) at 10 m/s and 600 mg/L;
and (b) at 20 m/s and 300 mg/L.

Figure 12 shows the SEM image of the surface 2 mm away from the center after the
pure erosion test under the same conditions, as in Figure 6 which is the SEM image after
the erosion–corrosion test. At this region (2 mm away from the center) the impact angle
is expected to be at an angle of less than 90◦. In erosive wear, the angular impingement
of particles experiences deformation based on its orientation when it contacts the surface
whether it is rolling forward or backward while in contact. The image shows that metal
flakes are formed on the surface due to the multiple impacts of particles. According to
Levi’s platelet mechanism [43] these flakes are the signs of plastic deformation of the surface.
This deformation in the direction of flow indicates the removal mechanism [44–47]. As
the angle was less than 90◦, it is believed that the particle impact would form a crater, and
subsequent impingement would enlarge the crater and also pile up the material around it,
eventually removing it from the surface. Figure 6 shows the craters and larger holes as a
sign of significant removal of materials due to the combined effect of corrosion and erosion.
This is due to corrosion-enhanced erosion, resulting in the removal of flakes formed by
multiple impacts of sand particles [48].
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3.4. Empirical Regression Model That Relates the TWL and E0 with the Velocity and Sand Loading

A two-level factorial experimental method in the design of the experiments (DOE)
was used to develop an empirical regression model that represents the TWL and E0 as a
function of velocity and sand loading. Each variable was assigned two levels, low and high,
also designated as −1 and +1, resulting in four different combinations. All the experiments
were repeated three times for validity. Table 4 shows the four different combinations of
velocity and sand loading used to conduct the experiments. Table 5 shows the values of
velocity and sand loading at low and high levels used to develop a mathematical model.
The model was developed using MINITAB in a form as shown in Equation (4).

Table 4. Runs for 22 experiment design.

Run V S

1 −1 −1
2 −1 +1
3 +1 −1
4 +1 +1

Table 5. Variables and experimental design levels for conducting experiments.

Factors
Levels Used

Low (−1) High (+1)

Velocity (m/s) 10 20
Sand Loading (mg/L) 300 600

In Equation (4), Y is the response variable, B0, B1, B2, B12 are constant regression
coefficients of the model, X1, X2 are independent variables and X12 is the interaction
between X1 and X2, the product of X1 and X2.

Y = B0 + B1X1 + B2X2 + B12X12 (4)

TWL = −15.70 + 2.4700 V + 0.02500 S + 0.001856 V × S (5)

Eo = −17.40 + 1.5667 V + 0.03211 S + 0.000778 V × S (6)

Figure 13 shows the results of experiments conducted with the four different combi-
nations. The results show that erosion is the dominant factor for all combinations except
for the combination of low velocity and low sand loading, where the E–C interaction
contributed more to the weight loss. Equations (5) and (6) are the developed models for
TWL and Eo, respectively. These equations were derived under laboratory conditions for
a velocity of 10 m/s to 20 m/s, sand loading of 300 mg/L to 600 mg/L, a temperature of
29–33 ◦C, an impingement angle of 90◦ in a 4-h time period.

The models given in Equations (5) and (6) where V is velocity and S is sand loading
for both TWL and Eo, show that the velocity has more influence on the weight loss than the
sand loading, as the velocity V has a larger coefficient than the sand loading S. However,
both velocity and sand loading have a significant influence on TWL and E0.
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Tables 6 and 7 show the regression analysis results for the TWL and E0, respectively.
The p-value determines the significance of each term in the model. If the p-value of each
term in the model is less than the significant level, then the model is statistically significant.
It can be seen that the p-value for all the coefficients in Tables 6 and 7 are less than 0.05
(significant level), indicating that the model is highly significant. The R-Sq value for
Equation (5) is 99.95% and for Equation (6) is 99.91%.

Table 6. Regression analysis for TWL.

Term Coefficient p-Value a

Constant −15.70 <0.001
Velocity V 2.4700 <0.001

Sand Loading S 0.02500 <0.001
V × S 0.001856 <0.001

R-Sq = 99.95% R-Sq (adj) = 99.93%
a Significant at 5% level.

Table 7. Regression analysis for E0.

Term Coefficient p-Value a

Constant −17.40 <0.001
Velocity V 1.5667 <0.001

Sand Loading S 0.03211 <0.001
V × S 0.000778 <0.001

R-Sq = 99.91% R-Sq (adj) = 99.88%
a Significant at 5% level.

4. Conclusions

In this study, the effects of velocity and sand loading on the weight loss of mild steel
under impingement conditions were investigated. It was found that both TWL and the E0
increased linearly with velocity and sand loading, and that more weight loss occurred away
from the center of the specimen. Except at low velocity and low sand loading, pure erosion
was the dominant factor. SEM images revealed the formation of metal flakes and discrete
isolated pits and cracks which grew larger with higher velocity and sand loading. Design of
the experiment was used to develop an empirical regression model which could predict the
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TWL and E0 as a function of velocity and sand loading for specific conditions. Translating
the results of this model for the prediction of material loss in field conditions requires
additional work which includes using the types of steel used in the field. In addition,
future work should include the effect of field operational temperature, velocity, and the
impingement angle on the pure erosion and erosion–corrosion.
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