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Abstract: In this paper, a particle filter design scheme for a robust nonlinear control system of
uncertain heat exchange process against noise and communication time delay is presented. The
particle filter employs a cluster of particles and associated weights to approximate the posterior
distribution of states and is capable of handling nonlinear and non-Gaussian issues. However, when
the realistic given noise is much larger than that of the one modeled by the particle filter, the estimated
posterior distribution is no longer reliable. Considering that, the exponential weights take the place
of the original absolute particle weights in this paper, which act as an adjustment to the particle filter
weights for a better state estimation. This adjustment for the weight of the particle filter takes into
account the practical significance and can ensure the stability, tracking performance, and continuous
operation of the control process incorporated with the particle filter. The simulation verifies the
feasibility and usefulness of the method.

Keywords: particle filter; nonlinear and non-Gaussian; weight adjustment; sensor noise; communica-
tion time delay

1. Introduction

Current control systems integrating communication, calculation, and control into
different levels of factory operations and information processing have become the trend
of modern military, commercial, and industrial systems [1,2], one of which is the robust
nonlinear uncertain heat exchange control system. In such systems, sensors are employed
to increase the accuracy of processing options. The values of physical variables such as
temperature are usually picked up by sensors. Sensor transductors and electronics are
subject to various random noise mechanisms that may affect the signal [3]. The systems
accept the measured value from sensors and control based on the measurement and control
law; the control performance of which can be reduced due to the presence of random noise.
Wireless communication for data exchange between different sensors, actuators and other
components is playing an increasingly important role in recent control systems. Ideally,
data exchange through wireless communication should be accurate, timely, and reliable so
as not to decrease the control performance. However, any communication system inevitably
introduces random communication delays, and the performance degradation caused by
such communication faults should be minimized [4,5]. Based on the above, both sensor
noise and time delay are interference terms that need to be considered for the performance
of a control system, where an approximation to the real value of the signal that has the
reduced effect of measurements with noise and time delay is a feasible choice.

In recent years, methods for estimation from values with noise or uncertainties have
emerged [6–9]. These methods can reduce the influence of noise or can act as an estimator to
avoid the installation of real sensors, one of which is the particle filter (PF). The particle filter
can estimate states, variance, and other parameters based on the measurement values with
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noise [10–12]. From the law of large numbers, the estimated value of the particle filter can
be infinitely approximated to the real value when the number of particles is large enough.
The particle filter approach has the potential to ease the influence of random noise and time
delay and has been successfully applied to some noise attenuation problems [13] and time
delay effect mitigation issues [14]. In recent systems, such as that of uncertain heat exchange
process, to model the underlying dynamics of a physical system accurately, nonlinearity and
non-Gaussianity are often considered. Furthermore, known as a Monte Carlo technique,
the particle filter has proven to be capable of analytically handling intractable probability
distribution functions (pdfs) in nonlinear and non-Gaussian problems [15–20]. The essence
of the particle filter is representing the posterior distribution of states (or other parameters)
by a set of random particles with associated weights, which enables it to deal with functions
with any distribution. As a Bayesian approach, the target of state estimation is first to
predict the state probability distribution function forward from one observation time to the
next using the process model (prediction stage). Then, the update operation uses the latest
observation to modify the prediction pdf [21] (update stage). Over the last few decades, the
particle filter has become a research topic in positioning, tracking, and navigation [22,23],
econometrics [24], fault detection [25], and other applications.

In this paper, a particle filter algorithm is incorporated into a robust nonlinear uncer-
tain heat exchange control system to suppress the control performance degradation caused
by random noise, especially large sensor noise, generated on sensors and time delay in
wireless communication links. The particle filter is utilized for further state estimation
observation prediction, where the objective is to obtain the approximation of a real signal
with reduced noise and time delay effects, namely, the nearly real value of the system
states and output. It is found that when the random noise generated on sensors increases
to a large one (relative to the modeled one by particle filter), the estimated result cannot
reflect the true state. More extreme, when the random noise increases to a certain extent,
the particle filter algorithm cannot continue normally, which will then cause the system
involving the particle filter to collapse. Thus, the absolute particle weight is substituted by
the exponential weight, as an adjustment of the particle weight in the update stage when
facing large sensor noise. Specifically, first, the residual of each particle is judged if 3σ rule
is violated. If the number of particles that violate the 3σ rule reaches a certain proportion,
the exponential weights for particles falling outside the 3σ range are calculated, while the
absolute weights are preserved for particles within the 3σ range, as an adjustment for parti-
cle weights. Together, the state is estimated via these two kinds of particles with associated
weights calculated in different ways. Then, the observation (output) is predicted based on
the estimated state values. Through such an adjustment, the particle filter algorithm can
continue suffering large noise so that the entire control system will not be interrupted and
the reliability of the system can be guaranteed. As for the time delay, the residuals between
the delayed output and the undelayed output particles contribute to the calculation of
the particle weight [14]. The overall robust nonlinear uncertain heat exchange control
system is designed and the bounded input bounded output (BIBO) stability and tracking
performance are guaranteed based on the operator theory [26,27].

In summary, the contributions of this paper are as follows.

• The particle filter algorithm is integrated into a robust nonlinear control system to
simultaneously deal with the effects of sensor noise and time delay, and the control
performance is guaranteed.

• Particle weight adjustment is used when the noise is so large that it affects the particle
filter algorithm and the entire control system. In such a method, the 3σ rule is first used
to evaluate the impact of the noise, and then the original particle weight is replaced
by the exponential weight for particles that violate the 3σ rule when the number of
such particles reaches a certain proportion. This kind of weight adjustment ensures
the normal operation of the particle filter and control system.

• The simulation results and the corresponding analysis of the results verify the effec-
tiveness of the proposed method.
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In what follows, the preliminaries and problem statement are outlined in Section 2.
Particle filter with weight adjustment design for the compensation of sensor noise and time
delay is formulated in Section 3. Then, in Section 4, the simulation results are shown to
demonstrate the effectiveness of the method, and Section 5 is the conclusions.

2. Preliminaries
2.1. System Equipment and Modeling

The plant in this work is a heat exchange process with a spiral heat exchanger. For the
details of the experimental equipment and system modeling of the plant, see Appendix A.

2.2. Generic Particle Filter

To overcome nonlinearity and non-Gaussianity, the particle filter is applicable to
approximate the optimal Bayesian filter utilizing the important sequential Monte Carlo
methodology. As a class of simulation filters, the particle filter recursively approximates
the filtering random variable by ‘particles’ with discrete probability mass. In other words,
a continuous variable is approximated by a discrete one with random support. These
discrete points are viewed as samples. Particle filters treat the discrete support generated
by the ‘particles’ as the true filtering density [28]. It performs filtering, namely, estimating
the states (parameters or hidden variables) of a system, as a set of observations becomes
available [29]. A complete representation of the posterior distribution of the states is
allowed. Therefore, any nonlinearities or distributions can be dealt with using the particle
filter. After state estimation, the observation value can be predicted based on the estimated
state.

Consider the dynamic state space model of a statistical nonlinear system as follows:

xt = f (xt−1, ut−1, vt−1)

yt = h(xt, ut−1, nt),
(1)

where f (·) is the process model that encodes the evolution of the state sequence, h(·) is
the measurement model associated with the state, ut is deterministic control input, while
the process model noise sequence vt and measurement noise nt are independent and
identically distributed and comply with any given distribution. The pdf of the initial
state p(x0|y0) ≡ p(x0) is assumed to be available and subject to Gaussian distribution in
this work.

According to Bayesian theory and the law of large numbers, a particle filter is de-
signed for the estimation of the posterior distribution p(xt|y1:t) via N weighted samples
{xi

t, wi
t}, i = 1, · · · , N, which are drawn from an importance proposal distribution q(·).

The weight for each sample can be calculated recursively as

ωi
t = ωi−1

t
p
(
yt | xi

t
)

p
(

xi
t | xi

t−1
)

q
(
xi

t | xi
t−1, yt

) . (2)

Equation (2) shows the absolute particle weight, where p
(
yt | xi

t
)

is likelihood and
p
(

xi
t | xi

t−1
)

is prior distribution. Theoretically, the importance proposal distribution q(·)
should be selected as similar as the posterior probability p(xt|yt). However, the closed form
of p(xt|yt) is not able to be precisely approached. q

(
xi

t | xi
t−1, yt

)
= p

(
yt | xi

t
)

is selected
as the importance proposal distribution in the filter design in this paper. In such a way,
Equation (2) is simplified into

ωi
t = ωi−1

t p
(

yt | xi
t

)
. (3)
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The estimated state x̂t can be approximated by the sum of N weighted samples

x̂t =
N

∑
i=1

ω̂i
tx

i
t, (4)

where ω̂i
t is the normalized weight,

ω̂i
t =

ωi
t

∑N
i=1 ωi

t
. (5)

After receiving the estimated state value, the measurement ŷt can be predicted by
a substitution of the estimated value of state into the measurement model, as shown in
Equation (6).

ŷt = h(x̂t, ut) (6)

The particle degeneracy phenomenon is common in a particle filter, where after a
few iterations, all but one particle will have a negligible weight. A suitable measure of
degeneracy is an estimation of the effective sample size Ne f f [30] defined as

N̂e f f =
1

∑N
i=1
(
ω̂i

t
)2 , (7)

where small Ne f f indicates severe degeneracy. When Ne f f exceeds the threshold Nthreshold,
resampling will be performed. After resampling, the weight of each particle will be-
come 1/N.

2.3. Problem Statement

It must be mentioned that when the actual noise in a system is much higher than
the noise modeled by the measurement model of a particle filter, the estimated value can
no longer reflect the true state. In this paper, to deal with the fact that the particle filter
algorithm cannot operate normally when encountering realistic large sensor noise and time
delay, leading to the interruption of the entire control system incorporating the particle
filter algorithm, exponential weight is employed as a weight adjustment to guarantee
the continuous operation of the control system. Throughout this paper, the scale of the
sensor noise is relative to the noise modeled by the measurement model in the particle
filter algorithm.

3. Particle Filter with Weight Adjustment Design for the Compensation of Sensor
Noise and Time Delay

In this section, the uncertain heat exchange control system design using operator
theory is first described. Then, the particle filter with the weight adjustment is designed
to compensate for the influence of large sensor noise and time delay in wireless commu-
nication links. Moreover, the comparison of the two methods of exponential weights is
discussed and the tracking performance is proved.

3.1. Operator Based Control System Design

Figure 1 shows the overall control system design scheme, which is based on operator
theory, and its BIBO stability is ensured using Bézout identity, where u ∈ U, y ∈ Y, w ∈W
are the input and output of the plant P(U → Y) and the output of a space change operator,
respectively, and r2 is the reference input. P = ND−1 and P + ∆P = (N + ∆N)D−1 are
the nominal plant and uncertain plant with right factorization, respectively, where N
is stable, D is stable and invertible, and ∆N is unknown. Based on Bézout identity in
Equation (8), if Equation (9) holds, where M and M̃ are unimodular operators, then the
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nonlinear feedback control system with uncertainty is robust stable and the stabilizing
operators S and R are designed as in Equation (10).

SN + RD = M (8){
S(N + ∆N) + RD = M̃∥∥∥(S(N + ∆N)− AN)M̃−1

∥∥∥ < 1
(9)

N : Y → U

b(t) =
1− K

A1+A5

ln[
Tho(t)−Tco(t)

Thi−Tci(t)
]− A4

t ln[
Thi−Tci(t)

Thi(0)−Tci(0)
]
− A3

R : U → U

e(t) =
K
A2

u(t)

(10)

where K is the design parameter, and

A1 = 2a(6π)3

3λ A2 = − RePr A
Nµcρρ A3 = δ

λ + 1
hc

A4 =
a2(6π)4cρρ

4λ A5 = a2(6π)4

2drλ

Nµ = 0.023R0.8
e P0.3

r hc =
cρρUc Nµ

RePr A .

(11)

where the parameters can be found in Table 1.

𝑪 𝑹−𝟏 𝑫−𝟏 𝑵

∆𝑵

𝒓𝟐 𝒆𝟐 𝒓𝟏 𝒆𝟏 𝒖 𝒘 𝒚

∆𝒚

𝒚

𝑺

𝒃

− −

𝑷 + ∆𝑷

Figure 1. Overall control system design based on operator theory.

The tracking controller C is

C(e2)(t) = Kαe2(t) + Kβ

∫ t

0
e2(τ)dτ. (12)

The above is the robust nonlinear uncertain heat exchange control system design that
is not subject to sensor noise and wireless communication delay. Considering sensor noise
and time delay, in order to not redesign the controller, the particle filter algorithm with
a weight adjustment is incorporated into the system to estimate the state and predict the
output from the measurement that is corrupted by sensor noise and time delay.

3.2. Particle Filter with Weight Adjustment Design to Compensate the Influence of Sensor Noise
and Time Delay

Considering the sensor noise and time delay existing in the system output, the particle
filter is put into an uncertain heat exchange control system for state estimation and further
output prediction to avoid the reconfiguration of controller. The estimated states and the
predicted output values calculated using the particle filter that have mitigated the influence
of noise and time delay will be substituted for the corrupted output picked up from sensors
and passed through wireless communication to be fed into the feedback loop. Figure 2



Appl. Sci. 2022, 12, 2495 6 of 19

shows the particle filter with the weight adjustment design scheme of an uncertain heat
exchange control system, where GPF is a generic particle filter, WAPF is the particle filter
with the weight adjustment, Φ is a time-varying time delay component due to the use of
wireless communication, y is the system output and regarded as the measurement value
that has not been affected by sensor noise and time delay, y is the output with a random
noise and time delay, x̂ and ŷ are the states and output reconstructed by the particle filter
from the impaired signal, which will then be conveyed to operator S as the feedback signal
of the system. Noise in this paper is additive Gaussian noise. Other components are defined
in accordance with Figure 1.

𝑪 𝑹−𝟏 𝑫−𝟏 𝑵

∆𝑵

𝒓𝟐 𝒆𝟐 𝒓𝟏 𝒆𝟏 𝒖 𝒘 𝒚

∆𝒚

𝒚

𝑺 𝑮𝑷𝑭/𝑾𝑨𝑷𝑭
𝜱

ഥ𝒚

𝑵𝒐𝒊𝒔𝒆

ෝ𝒙, ෝ𝒚

𝒃

𝒛

− −

𝑷 + ∆𝑷

Figure 2. Overall control system incorporated with particle filter considering noise and time delay.

Table 1. Parameters.

r Target temperature value 35 ◦C
Thi Hot fluid outlet temperature 40 ◦C
Tci(0) Initial cold fluid inlet temperature 26 ◦C
Tco(0) Initial cold fluid temperature 26 ◦C
Uhmax Max of hot fluid flow rate 5.4 L/min
Uc Cold fluid flow rate 4.3 L/min
a Archimedes’ spiral equation constant 8× 10−7 m/rad
λ Thermal conductivity of SUS304 16.7 W/(m·◦C)
Re Reynolds number 22,000
Pr Prandtl number 7
A Cross-section area of flow path 5.5× 10−4 m2

cρ Specific heat of water 4.2 kJ/(kg·◦C)
ρ Density of water 1000 kg/m3

δ Thickness of heat exchanger’s wall 1.83× 10−3 m
dr Width of flow path 5× 10−3 m
m Mass of cold fluid flow rate 0.0717 kg
δm Uncertainty of m 0.015 kg
M Mass of cold fluid in TANK2 31.8 kg
α Tci-Uh Design parameter 0.3 L/min
β Tho-Uh Design parameter 0.03
γ Design parameter for valve of hot fluid 1.25
κ Design parameter for flow change of hot fluid 0.026
K Design parameter of S, R 0.7
Kα Proportional gain of C 2000
Kβ Integral gain of C 97
∆t Sampling time 1 s
Tend Simulation time 2401 s
σ Standard deviation of likelihood function 0.01 ◦C

In the component GPF/WAPF, controlled variables Tci(t) and Tho(t) are assumed as
state variables xTci ,t and xTho ,t, which will be estimated as the sum of weighted particles
(corresponding to x̂ in Figure 2), manipulated variable Uh(t) is Uh,t, and controlled variable
Tco,t is measurement variable yTco,t which is predicted using Equation (6) (corresponding
to ŷ in Figure 2). To formulate a paradigm for the particle filter, the process model is
established as Equation (13),
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Tci(t) =
m + ∆m

m + ∆m + M
Tco(t− ∆t) +

M
m + ∆m + M

Tci(t− ∆t)

X(t) =
Uh(t) + α

Uh(t) + Uc
Thi +

Uc − α

Uh(t) + Uc
Tci(t)

Tho(t) = (1− β)Tho(t− ∆t) + βX(t),

(13)

and the measurement model is established as Equation (14),

Y(t) =
γUh(t)
Uhmax

Z(t) = (1− κ)Z(t− ∆t) + κẎ(t)

Tco(t) = Tci(t) + [Thi − Tho(t)]Z(t),

(14)

where the process noise and measurement noise comply with Gaussian distribution. For the
physical meaning and values in the equations, please refer to Appendix A and Table 1.

It can be noticed that in the first equation of the state transition model shown in
Equation (13), the calculation of xTci ,t consists of the information of measurement value
yTco ,t−1, which seems not to meet the Markovian assumption in the particle filter. However,
in a generic particle filter, the prior distribution is by far the most popular importance
density in the literature [25], and such importance density is also adopted in this paper,
as illustrated in Section 2.2. In such a way, the posterior probability modification effect
on particle sampling is ignored. Inspired by the motivation of the auxiliary variable
particle filter [28], where the most promising particles (high prediction likelihood) at time
t− 1 are expanded to time t, thereby merging the information of posterior probability to
generate sampled particles, the posterior information at the previous time instant yTco ,t−1 is
integrated into the particle sampling procedure at time t. Furthermore, the influence of the
posterior information at time t− 1 on the sampled particles is applied with an appropriate
proportion. In this work, the proportion is set as (m + ∆m)/(m + ∆m + M), which is
exactly in line with the physical laws of reality.

Taking the time delay element into account yields

zt = Φ(ȳt) = ȳ(t− d), (15)

where d represents the time delay. Please refer to [14] for the method of generating the time
delay. If the sensor noise (denoted here as m) is put into the expression of the output from
sensors and flowing through the wireless path, then the signal received by the particle filter
is

zt = (y + m)(t− d), (16)

which is exactly the expression of the two interference items in the signal input to the
particle filter algorithm. The particle filter is adopted for processing the signal subject
to noise and time delay to acquire the approximation of system states and further the
system output that reduced the impact of the above two factors. The residuals between the
time-delayed output due to the wireless communication and undelayed particles contribute
to the particle weight update. Therefore, the processing of the measurement values with
noise and time delay is consistent with that of the general particle filter. That is, the two
interference items are dealt with comprehensively in this work.

During the control process incorporated with a generic particle filter, it is found that
large noise appearing in the measurement makes the posterior calculation less accurate. It
is because measurements that are realistic given the high amount of noise obtain very low
likelihoods, the measurement model judges such amounts of noise as highly unlikely, and
the associated particles will be removed during the resampling step [21]. In detail, the pre-
diction pdf of each particle is updated based on the residual |resi

t| shown in Equation (17).
Higher residuals result in a lower likelihood, meaning that the sampled particle is less likely
to represent the true state and vice versa under the situation where the measurement is not
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polluted by actual large noise. However, when the actual measurement noise is much larger
than the noise modeled in the measurement model of the particle filter, the residual will
also become larger, resulting in a small particle weight. This will cause the state estimation
in a generic particle filter to be no longer applicable, and the traditional resampling method
to be meaningless. More extreme, if almost all particle weights are becoming smaller to a
certain extent, system control incorporated with a particle filter cannot proceed normally,
which will be shown in the simulation in Section 4.

|resi
t| = |yt − xi

t| (17)

For coping with the unsuitable particle weights for state estimation and subsequent
resampling owing to the actual given large noise, it is a reasonable consideration to adopt a
particle weight adjustment scheme. Precisely, when the realistic given system output yt
measured by sensors and transmitted through the wireless communication path is available,
the residual |resi

t|, which represents the difference between the actual measurement and
sampled particles, is first calculated and the 3σ rule is exploited to determine whether
|resi

t| is large so that the particle weight is pushed to a low likelihood. A small particle
weight may indicate that the current measurement is affected by realistic large noises,
but this judgment from only one particle is not absolutely accurate. When the number of
particles that violate the 3σ rule reaches a certain proportion prop of the total particles, it
can be considered that the actual large noise has likely affected the current measurement
adversely. At this time, exponential weights ωi

exp,t, taking the place of the original absolute
weights wi

t at low likelihood due to large noise, are assigned to those particles outside the
3σ range. For particles within the 3σ range, the particle weights remain as the original
absolute weights. Overall, particle weights are calculated with Equation (18). After that,
the exponential weights and absolute weights are normalized to [0, 1] in Equation (19) for
the subsequent state estimation and measurement prediction.

ω̃i
t =

{
ωi

exp,t = exp(wi
t) | resi

t |> 3σ

wi
t | resi

t |≤ 3σ
(18)

ω̂i
t =

ω̃i
t

∑N
i=1 ω̃i

t
(19)

In summary, the particle filter with weight adjustment algorithm is shown in Algorithm 1.

3.3. Comparison of Two Methods of Exponential Weight

This work is inspired by the knowledge of information theory about information
entropy and based on the consideration that when the realistic measurement is mixed
with large noise, some particles that are likely to represent the true state may be removed
from the generic particle filter. Information entropy represents the degree of uncertainty,
and the largest entropy means the largest degree of uncertainty in the system. Among all
possible probabilistic models (distributions), the model with the largest entropy is the best
model. When the uncertainty in the system is the largest, that is, when any information
in the system is unknown, no assumption is made about any unknown information, and
the unknown information is treated with an equal probability.

Considering a dataset T = {(x1, y1), · · · , (xn, yn)}, where xi represents the value of
the ith sample. At this time, the maximum entropy model is

P(yi = k|xi) =
exp(wkxi)

∑K
k=1 exp(wkxi)

, (20)

where k represents the kth category, yi represents the label value of the ith sample, and wk
represents the parameter corresponding to the kth category, indicating the probability that
the ith sample belongs to the kth category. This is usually used for multi-classification
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problems. Putting it into the particle filter algorithm, it can be considered as that if the
measurement affected by large noise is available, then the posterior distribution with the
largest entropy is the best model, that is, to seek the sampling particles that are most likely
to represent the real state. Corresponding to the above dataset, the problem to find the best
posterior distribution can be illustrated as follows.

Algorithm 1 Particle filter with weight adjustment.

Input: {xi
t−1, ω̂i

t−1}N
i=1, yt

Output: {xi
t, ω̂i

t}N
i=1

Generate the initial N particles xi
0 from its distribution, and set its weight as ω̂i

0 = 1/N
Loop process:
while t ≥ 1 do

Set the normalization sum as ωsum = 0
for i = 1, · · ·N do

draw samples from xi
t ∼ q(xi

t|xi
t−1, yt)

assign weight ωi
t according to Equation (3) and calculate |resi

t|, record the number
numt
of particles outside 3σ range

end for
Particle weight adjustment:

if numt > prop ∗ N then
for i = 1, · · ·N do

if |resi
t| > 3σ then

ω̃i
t = exp(ωi

t)
else

ω̃i
t = ωi

t
end if
Accumulate the normalization sum as ωsum = ωsum + ω̃i

t
end for

end if
Normalize exponential weights and absolute weights Comprehensively:
for i = 1, · · ·N do

ω̂i
t = ω̃i

t/ωsum
end for

State estimation and output prediction:
Estimate state according to Equation (4), and predict output according to

Equations (6) and (14)
Resample particles:
if N̂e f f < Nthreshold then

Resample N particles with replacement
for i = 1, · · ·N do

ωi
t = 1/N

end for
end if

end while

At the current time t, regard T = {(yt, x1
t ), (yt, x2

t ), · · · , (yt, xN
t )} as a dataset, where

xi
t is the sampled particles at time t, and yt is the measurement at current time. Since the

measurement is the only determined one, it can be seen as a correspondance of xi = 1
in Equation (20), so the value of yt in Equation (21) can be set as yt = 1. The number
of categories K is the number of sampled particles N. The parameter wk corresponds
to the particle weight ωi

t. Therefore, the posterior probability of having the maximum
entropy at the current time can be expressed as the normalized exponential weight shown
in Equation (21)
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P(xi
t|yt) =

exp(ωi
tyt)

∑N
i=1 exp(ωi

tyt)
=

exp(ωi
t)

∑N
i=1 exp(ωi

t)
. (21)

This is different from the described method in Section 3.2 and Algorithm 1. Through
analysis, it can be found that this method has high requirements for the quality of sampled
particles. If the sampled particles are very close to the real state, the estimated state will
be very close to the real value. In other words, this method puts almost all trust in the
sampled particles and relies heavily on the quality of sampled particles. If the quality of the
sampled particles is not good enough, the estimated state value will deviate significantly
from the true value. Multiple rounds of trial and error selection may be required to obtain
a good state estimation. Moreover, this method will greatly suppress the effect of small-
likelihood particles and maximize that of large-likelihood particles; therefore, it is likely
that only several particles have large weights, while other particles have small weights, i.e.,
the particle degeneracy arises. Therefore, it is necessary to be modified.

In the modified method shown in Section 3.2 and Algorithm 1, only those particles
outside the 3σ range are assigned with exponential weights, while the weights of other
particles remain the absolute weights. Exponential weights retain the role of small weighted
particles so that they can still play a role in state estimation. Furthermore, the concern of
retaining the absolute weights for particles that do not violate the 3σ rule is that the current
small weight might not be due to the measurement affected by actual large noise but
sampling in the state prediction stage. The comprehensive consideration of the exponential
weight and absolute weight is a relatively conservative strategy where both the realistic
large noise and particle sampling are taken into account as the cause of the small weight,
which is reasonable on account of the previous analysis. In addition, if all the weights are
extremely small, it can be concluded that the measurement at this time is indeed adversely
affected by large noise. The measurement mixed with large noise is unreliable, where all
particles become nearly the same weight after the weight adjustment, and it is wise to treat
all the sampled particles equally, as shown in Equation (22).

lim
wi

t→0
ω̂i

t = lim
wi

t→0

ω̃i
t

∑N
i=1 ω̃i

t

= lim
wi

t→0

ωi
exp,t

∑N
i ωi

exp,t

= lim
wi

t→0

exp(wi
t)

∑N
i=1 exp(wi

t)

=
1
N

(22)

3.4. Tracking Performance of the Particle Filter Design in Overall Control System

It should be noted that the control system design incorporating the particle filter with
weight adjustment can still guarantee its tracking performance using the tracking controller
described in Section 3.1, which illustrates that the incorporation of the particle filter avoids
redesigning the controller.

Proof. Tracking performance using controller C.
Figure 2 can be re-expressed as Figure 3, where the uncertainty caused by state

estimation and measurement prediction using particle filter and the structural uncertainty
are summarized into ∆N. Figure 4 shows the equivalent block-diagram of stabilizing
system P̃.

From Figure 4, the error e2 can be written as

e2(t) = (I + P̃C)−1(r2)(t), (23)

where I is identity operator. From the exponential iteration theorem, (I + P̃C)−1(r2)(t)
exists [26]. Furthermore, we have [31]
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y(t) = r2(t)− e2(t)

= r2(t)− (I + P̃C)−1(r2(t))

= r2(t)−
(

r2(t) + P̃C(r2(t))
)−1

= r2(t)−
(

r2(t) + Kα P̃(r2(t)) + Kβ

∫ t

0
P̃(r(τ))dτ

)−1
.

(24)

Considering the first condition that P̃ satisfies, as stated in [26], it is assumed that for
all t in [0, T], C is stable and P̃(u) ≥ Kl as T ≥ t ≥1≥ 0, u > 0, then

Kα P̃(r2(t)) + Kβ

∫ t

0
P̃(r(τ))dτ

≥ KαKl + Kβ

∫ t

0
P̃(r2(τ))

≥ KαKl + Kβ

∫ t1

0
P̃(r(τ1))dτ1 + KβKl

∫ t

t1

dτ2.

(25)

KβKl
∫ t

t1
dτ2 can be made arbitrarily large by making t < T large enough and selecting

an appropriate Kl , then
(

r2(t) + Kα P̃(r2(t)) + Kβ

∫ t
0 P̃(r(τ))dτ

)−1
can be made arbitrarily

small, indicating that y(t)− r2(t) can be made arbitrarily small, so y(t) can track r2(t).

𝑪 𝑴−𝟏 𝑵

∆𝑵

𝒓𝟐 𝒆𝟐 𝑢 𝒘 𝒚

∆𝒚

𝒚

−

𝑷 + ∆𝑷

Figure 3. Equivalent block-diagram of Figure 2.

𝑪 ෩𝑷
𝒓𝟐 𝒆𝟐 𝒖 𝒚

−

Figure 4. Equivalent block-diagram of Figure 3.

4. Simulation

In this section, the simulation results of the particle filter with weight adjustment
design for the robust nonlinear uncertain heat exchange process in Figure 2 will be given
to demonstrate the effectiveness of the method. The simulation time is set as 2401 s,
the sampling time is set as ∆t = 1 s, the parameter values used are listed in Table 1,
the number of particles is N = 200, and the time delay is assumed to be subject to Gaussian
distribution. Because the effect of time delay on the control system has been verified
in [14], it will not be repeated, and the effect of sensor noise and time delay will be shown
comprehensively here. In the simulation, the method of generating the time delay and its
distribution remain unchanged, and only the variance of sensor noise is changed to obtain
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sensor noise of different scales relative to that modeled in the measurement model in the
particle filter. The following set of equations are considered an illustrative example:

p(xt | xt−1) = N
(

xt; f (xt−1, ut), σ2
v

)
p(yt | xt) = N

(
yt; h(xt, ut), σ2

n

)
p(ns) = N

(
µs, σ2

s

)
,

(26)

where σ2
v and σ2

n are variances of process noise and measurement noise modeled in the
particle filter, respectively, and σ2

v = 0.0012 and σ2
n = 0.12. f (·) and h(·) are the process

model and measurement model without noise and the same as in Equation (1). µs and σ2
s

are the mean and variance of sensor noise, and µs = 0 and σ2
s is set as different values.

The mean of process noise and measurement noise modeled in the particle filter is 0.
Figure 5 shows the result under sensor noise (σ2

s = 0.32) and time delay without
particle filter, where Figure 5a shows the system output Tco, the target value r2 and the
output affected by sensor noise and time delay, Figure 5b shows the sensor noise imposed
on the output. The system states Tho, Thi and system output Tco are also shown in Figure 5b,
where since the value of hot fluid input Thi is a constant, it is not displayed. It can be
observed that the control performance is not satisfactory due to sensor noise and time delay.
There is an oscillation in both output and input values, and there is even a tendency to
deviate from the target value after about 1550 s.
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Figure 5. Control performance is not satisfactorywithout particle filter under sensor noise (σ2
s = 0.32)

and time delay: (a) output and input; (b) sensor noise, states, and output.

Figure 6 shows the result using a generic particle filter to reduce the effect of noise and
time delay with the same noise variance as in Figure 5. It is clear that the particle filter does
improve the control performance under noise and time delay. Figure 6a shows the output
and input results as illustrated in Figure 5a, and it can be seen that the stability and the
tracking performance can be guaranteed. Figure 6b shows the sensor noise imposed on the
system output, the error between states estimated using GPF and that from the system (Tho
error and Tci error), and the error between output predicted using GPF and that from the
system (Tco error). From Figure 6b, the variance of the error between the states output from
GPF and that from the system has been reduced compared with the given sensor noise,
which demonstrates that the influence of sensor noise has decreased. Figure 6c shows the
states and output constructed from particle filter and that from the system, which is not
imposed sensor noise and time delay, where the states and output using GPF is very close
to that of the system.
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Figure 6. Control performance is improved with generic particle filter under sensor noise (σ2
s = 0.32)

and time delay: (a) output and input; (b) sensor noise and errors; (c) states and output.

Figures 7 and 8 display the results when sensor noise is increased, where variance
grows from σ2

s = 0.32 to σ2
s = 0.72, and further increased relative to the measurement

noise modeled in the particle filter. The system can guarantee the stability and tracking
performance with the incorporation of a generic particle filter, as shown in Figure 8, while
divergence occurs in the system after about 1000 s without a particle filter, as shown in
Figure 7. Compared with the results with and without a particle filter, it is clear that a par-
ticle filter does reduce the effect of sensor noise and time delay on the control performance.
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Figure 7. Control performance is increasingly unsatisfactory without particle filter as the sensor noise
increases (σ2

s = 0.72): (a) output and input; (b) sensor noise, states, and output.

However, when the sensor noise becomes larger to a certain extent (σ2
s = 1.52) relative

to the measurement noise modeled in the particle filter (σ2
n = 0.12), the generic particle filter

cannot work normally. According to the analysis in Sections 3.2 and 3.3, this is because the
measurement noise pushes nearly all the sampled particles to low likelihoods, which will
be removed in resampling and cause particle degeneracy. The particle weights can become
extremely small, even exceeding the limit of storage under the reality that the amount of
calculation storage is limited; thus, the state cannot be estimated and the particle filter
algorithm collapses, which drags the system down to discontinuity, as shown in Figure 9.
Note that because the noise is generated independently of the control system, it is not
consistent with the states, the input and output of the control system in terms of time, as in
Figure 9b.
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Figure 8. Control performance can still be guaranteed due to the use of a particle filter to reduce the
impact of noise even as the sensor noise is increased (σ2

s = 0.72): (a) output and input; (b) sensor
noise and errors; (c) states and output.
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Figure 9. When the sensor noise is increasing to a certain extent, the particle filter algorithm cannot
work normally. Further, the overall control system incorporated with PF is interrupted (σ2

s = 1.52):
(a) output and input; (b) sensor noise and errors; (c) states and output.

Particle weight is adjusted according to Algorithm 1. The proportion of particles that
violate the 3σ rule to judge if weight adjustment needs to be employed is set as prop = 70%.
Figure 10 shows the effectiveness of the weight adjusted particle filter in the reduction in the
large noise impact. It is clear that after adopting the particle filter with weight adjustment
algorithm, the continuous operation, stability and tracking performance of the system are
all guaranteed.
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Figure 10. Particle filter with weight adjustment algorithm can still work normally even when the
sensor noise increases to a certain extent relative to the modeled one. Further, the stability and
tracking performance of the overall control system incorporated with particle filter with weight
adjustment is guaranteed (σ2

s = 1.52): (a) output and input; (b) sensor noise and errors; (c) states and
output.
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Figure 11 shows that when the variance of sensor noise grows (σ2
s = 1.72) , due to the

influence of large sensor noise, the generic particle filter algorithm loses its function and
the operation is interrupted, then the whole system is implicated.
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Figure 11. When the sensor noise increases to a certain extent, the particle filter algorithm cannot
work normally. Further, the overall control system incorporated with PF is interrupted (σ2

s = 1.72):
(a) output and input; (b) sensor noise and errors; (c) states and output.

In contrast, when the particle filter with weight adjustment algorithm is employed,
the stable and continuous operation of not only the particle filter algorithm itself but also
the entire system can be achieved, as shown in Figure 12.
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Figure 12. Particle filter with weight adjustment design can guarantee the normal operation of the
overall control system under sensor noise (σ2

s = 1.72) and time delay: (a) output and input; (b) sensor
noise and errors; (c) states and output.

In order to further illustrate the effectiveness and usefulness of the method,
Figures 13 and 14 show the simulation results of the particle filter with weight adjustment
for mitigating the noise impact on system continuity, stability, and tracking performance
when the noise further increases. In these cases, the particle filter with weight adjustment
algorithm can still work normally even when the sensor noise largely increases relative
to the modeled one. Further, the stability and tracking performance of the overall control
system incorporated with particle filter with weight adjustment is guaranteed.

From the above simulation results, the generic particle filter and particle filter with
weight adjustment design scheme indeed reduce the influence of sensor noise and time
delay so that the continuity, stability, and tracking performance of the system can be
guaranteed with no need to redesign the controller. In order to quantitatively illustrate the
validity of the method, the variance is listed in Table 2, where GPF and WAPF represent
the generic particle filter and particle filter with weight adjustment algorithm, respectively.
As described above, 1 means that the method is used and 0 means that the method is not
used, var(sn.set) represents the variance of the sensor noise set in simulation, var(sn.sim)
represents the variance of the actual displayed sensor noise in simulation, and var(ETci )
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represents the variance of state Tci error, which is the difference between the state value
estimated by the particle filter and that from the system. Similarly, var(ETho ) represents
the state Tho error, and var(ETco ) represents the variance of the output Tco error, which is
the difference between the output value predicted by particle filter and that of the system
without noise and time delay. It can be seen from Table 2 that after incorporating the generic
particle filter algorithm into the control system, the variance of the sensor noise is reduced
when the variance of sensor noise imposed is σ2

s < 1.52. However, as the sensor noise
increases to σ2

s ≥ 1.52 (about 152 times the modeled noise), the particle filter with weight
adjustment algorithm is necessary and the incorporation of that is effective in reducing the
effects of large sensor noise.
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Figure 13. The particle filter with weight adjustment design can guarantee the normal operation of
the overall control system under sensor noise (σ2

s = 1.92) and time delay: (a) output and input; (b)
sensor noise and errors; (c) states and output.
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Figure 14. The particle filter with weight adjustment design can guarantee the normal operation of
the overall control system under sensor noise (σ2

s = 2.02) and time delay: (a) output and input; (b)
sensor noise and errors; (c) states and output.

Table 2. Sensor noise reduction under different simulation cases.

Figure GPF/WAPF var(sn.set) var(sn.sim) var(ETci) var(ETho) var(ETco)

Figure 6 1/0 0.32 0.0899 1.08× 10−4 0.26× 10−5 3.62× 10−4

Figure 8 1/0 0.72 0.483 2.27× 10−4 1.37× 10−4 3.77× 10−4

Figure 9 1/0 1.52 2.29 NaN NaN NaN
Figure 10 0/1 1.52 2.377 3.20× 10−4 1.91× 10−4 3.65× 10−4

Figure 11 0/1 1.72 3.053 NaN NaN NaN
Figure 12 0/1 1.72 2.923 3.78× 10−4 2.84× 10−4 5.59× 10−4

Figure 13 0/1 1.92 3.891 1.35× 10−4 6.74× 10−5 1.38× 10−4

Figure 14 0/1 2.02 4.104 1.47× 10−4 1.10× 10−4 2.60× 10−4
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5. Conclusions

In this paper, concerning the influence of sensor noise and wireless communication
time delay on the robust nonlinear uncertain heat exchange control system, a particle filter
is incorporated into the overall control system to deal with the adverse effect of the above
two factors so as to avoid the reconfiguration of the controller. Considering that when
encountering large sensor noise, the incorporated particle filter algorithm cannot operate
normally, which leads to the interruption of the control system, inspired by the information
theory knowledge about the principle of maximum entropy, the calculation method of
particle weights is modified, where the exponential particle weights are substituted for the
original absolute particle weights when the number of particles that violate the 3σ rule
arrives at the set proportion and residual exceeds the 3σ range. The simulation verifies
the validity of the weight adjustment in the particle filter for large noise and time delay
simultaneously.

Sensor noise and time delay are considered and dealt with comprehensively in this
work. In future work, sensor noise and time delay can be processed separately, where a
better control performance could be expected. Moreover, H-infinity filtering [32] and Luen-
berger observers [33] are good estimation methods, and these methods can be employed in
the future work.
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Appendix A

Appendix A.1. System Equipment

Figure A1 shows the plant that realizes the heat exchange process with a spiral heat
exchanger (KUROSE KMSA-03). Such equipment exchanges heat with no need to mix hot
fluid in TANK1 and cold fluid in TANK2 and two kinds of fluids return to their own TANK.

Temperature Sensor

TANK 1 TANK 2

Flow Control Valve

Spiral Heat Exchanger

Figure A1. Experimental equipment of heat exchange process.
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Figure A2 shows the internal workflow of a spiral heat exchanger of a counterflow
type.

Cold Fluid Output

Hot Fluid Input

Hot Fluid Output

Cold Fluid Input

Figure A2. Internal workflow of spiral heat exchanger.

In such an equipment, a flow control valve adjusts the flow rate of each fluid, where
the analog current signal commands the opening of a flow control valve. In the temperature
range of the experimental environment, the maximum values of the hot fluid flow rate
Uh and cold fluid flow rate Uc are 5.4 L/min and 4.3 L/min, respectively. Temperature
sensors (resistance temperature detectors) are attached to four points for the measurement
of the cold fluid inlet temperature Tci, cold fluid outlet temperature Tco, hot fluid inlet
temperature Thi, and hot fluid outlet temperature Tho of the spiral heat exchanger and
output the measurement value as the analog current signal, as shown in Figure A1. It
should be noted that the measurement signal by sensors is mixed with random noise, which
should be considered in the control process. A heater is installed in TANK1, so Thi can be
regarded as unchanged. In this paper, let the input and output of the system be Uh and Tco.

Appendix A.2. System Modelling

Heat balance in microvolume is employed for modeling the spiral heat exchanger.
Considering that it takes time for the fluid to pass through the spiral heat exchanger device
and the spiral heat exchanger wall surface to heat up in reality, that is, there is time delay
in the input/output relationship of Tho, Uh, and Tci, a delay factor is added in modeling.
In addition, it should be mentioned that in practice, it cannot achieve ideal heat exchange.
The heat exchanger can be modeled as follows

Ṫci(t) =
m + ∆m

m + ∆m + M
T̈co(t) +

M
m + ∆m + M

T̈ci(t)

X(t) =
Uh(t) + α

Uh(t) + Uc
Thi +

Uc − α

Uh(t) + Uc
Tci(t)

Ṫho(t) = (1− β)T̈ho(t) + βẊ(t)

Y(t) =
γUh(t)
Uhmax

Ż(t) = (1− κ)Z̈(t) + κẎ(t)

Tco(t) = Tci(t) + [Thi − Tho(t)]Z(t).

(A1)

Table 1 shows the parameters.
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