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Abstract: An edge map is a feature map representing the contours of the object in the image. There
was a Single Image Super Resolution (SISR) method using the edge map, which achieved a notable
SSIM performance improvement. Unlike SISR, Video Super Resolution (VSR) uses video, which
consists of consecutive images with temporal features. Therefore, some VSR models adopted motion
estimation and motion compensation to apply spatio-temporal feature maps. Unlike the models
above, we tried a different method by adding edge structure information and its related post-
processing to the existing model. Our model “Video Super Resolution Using a Selective Edge
Aggregation Network (SEAN)” consists of a total of two stages. First, the model selectively generates
an edge map using the target frame and also the neighboring frame. At this stage, we adopt the
magnitude loss function so that the output of SEAN more clearly learns the contours of each object.
Second, the final output is generated using the refinement (post-processing) module. SEAN shows
more distinct object contours and better color correction compared to other existing models.

Keywords: computer vision; video super resolution; edge detection

1. Introduction

The VSR task is usually processed using information from consecutive frames. To use
this information, some VSR models [1,2] adopted motion estimation and motion compen-
sation to apply spatio-temporal features. However, in datasets that expresses large-scale
motion, accurate motion estimation is challenging. On the other hand, edge maps can
be generated through the widely used Canny edge detection, providing intuitive and
structural information to the model. Therefore, we propose Stage 1 of our model as follows
by adding structure information and a loss function to the existing model.

Before generating an edge map, it is necessary to detect the motion difference between
neighboring frames. Although most of the spatio-temporal information between the
consecutive frames is similar, information differences exist if some objects in the frame
show large-scale motion.

In the case of a neighboring frame with little change in motion, there is no significant
difference in the edge maps obtained in each frame. However, in the case of a frame with
a large change in motion, there is a big difference. Therefore, we use the following three
methods to obtain the edge map used in our model.

Detect blur frame. The variance of the frame calculated using the Laplacian filter can
express the degree of blur. The larger the variance, the greater the degree of change in the
pixel value, which means that there are many areas with a clear contour of the object on the
frame. Our model considers the variance of the frame to be a blur frame if it is lower than
the threshold. Therefore, our model uses only clear frames to extract an edge map.

Edge map extraction. Our model uses Canny edge detection to generate an edge map of
each frame, except blur frames. The final edge map used in the model is generated by fusing
the edge map of the target frame and the edge map of the neighboring frame one-to-one.
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Magnitude loss function. During the training, our model uses a Sobel mask to obtain
the gradient magnitude corresponding to each output of the Ground Truth (GT) and the
output of our model. Using the magnitude loss function, which minimizes the difference in
the magnitude between those, our model trains the contours of GT. Because artifacts exist
in some frames of the TestSet, such as Vid4 [3], incomplete areas are generated. To solve
this problem, there has been an attempt to use correlation between frames [4]. However,
these attempts also require accurate calculations such as flow estimation. So, we use an
additional module to solve this problem.

Refinement. The refinement process receives the output of Stage 1 and shows qual-
itatively and quantitatively improved results. This process looks similar to the refining
process in the classic vision field called post-processing, but it has a different character.
First, it uses deep learning, and in particular, it is possible to minimize information loss,
a classic problem of convolution operation. Second, the edge and color on the output image
can be processed at the same time, and it is quantitatively excellent because it tries to get
as close to the GT image as possible between learning. Third, the proposed refinement
was applied to the VSR (Video Super Resolution) field for the first time, and since it was
designed with high versatility, it is easily compatible with other VSR models according to
the user’s choice.

2. Related Work
2.1. Single Image Super Resolution

Most SISR models pass single images through deep convolution layers to achieve
image super resolution. In particular, VDSR [5] showed a faster convergence speed and
improved performance compared to SRCNN [6] by using residual learning.

In addition to attempting to use RGB frames as input data, there was an attempt to
use structural information in the model by providing an additional edge map. In particular,
Ref. [7] generated an HR edge map using a low-resolution image and the corresponding
edge map, which served as structural information.

However, there was a problem in which blur areas occurred in the images generated.
Models using adversarial learning showed the ability to overcome these limitations. In par-
ticular, SRGAN’s [8] performance was lower than that of other models, but it showed
improved results when evaluated with the human eye.

2.2. Video Super Resolution

A video dataset is a set of consecutive frames, and information between neighboring
frames is similar. Therefore, the VSR model attempted to combine the spatio-temporal
information of the target frame and the neighboring frames.

Ref. [4] tried reconstruction without aligning the feature. Temporal information on
the neighbor frame feature was combined with the target frame feature through TM-CAM,
and spatial information according to the multi-scale was combined with the target frame
feature through CN-CAM.

Refs. [9,10] combined spatio-temporal information by aligning the neighbor image
feature using deformable convolution networks [11]. In particular, EDVR [10] showed
more sophisticated alignment using PCD.

Refs. [1,2,12] applied motion estimation and motion compensation. Motion estimation
is a process of extracting motion information between neighboring frames and has an
important influence on VSR model performance. However, motion estimation does not
guarantee accuracy because it is vulnerable to large-scale motion. Therefore, our model
adds structure information and additional modules to improve this vulnerability.

2.3. Post-Processing

First, post-processing used in the existing SISR or VSR operates based on CNN.
Park et al. proposed the In-loop Filter CNN (IFCNN) to replace SAO [13]. In addition,
Dai et al. proposed a Variable-Sized Filter Residual Learning Convolutional Neural Net-
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work (VRCNN) to replace both DB and SAO in HEVC intra-coding [14]. In their experi-
ments, VRCNN was reported to achieve a promising result of an average reduction in BD
speed of 4.6%. Both VRCNN and IFCNN are shallow networks with less than five layers.
Kang et al. proposed a Multi-Modal/Multi-Scale CNN (MMS-net) to replace the existing
DB and SAO in HEVC using a deeper network of 30 layers [15]. Wang et al. proposed a
Deep CNN-based Auto-Decoder (DCAD) for post-processing [16]. In this paper, DCAD
claims that there are average BD-rate reductions of 5.0%, 6.4%, 5.3%, and 5.5%, respectively,
for AI, LDP, LDB, and RA configurations. Ma et al. also proposed a residual-based video
restoration network (residual VRN) for video post-processing [17].

3. Method

Our model consists of a total of two stages, as shown in Figure 1. Stage 1 consists of
progressive recurrent structure to restore LRt to SRt inspired by RBPN.

Figure 1. Architecture of our Video Super Resolution Using Selective Edge Aggregation Network
(SEAN). It contains two stages: image teconstruction (Stage 1) and refinement (Stage 2).

In Stage 1, LRt is the target frame and 2k neighboring frames are {LRt−k, . . . , LRt+k}.
The optical flow Ft−k is precomputed between LRt and LRt−k by Pyflow [18]. Edge map et
of LRt is generated using Canny edge detection, Et−k is the edge map extracted through
edge map extraction (Section 3.1). The size of LRt, Ft−k, and Et−k is w × h, and the size on
SRt is W × H (w < W, h < H).

Stage 2 is the method of refining SRt to generate SR′t, which is the final output of the
model. Inspired by VDSR, the refinement module reduces the size of SRt and then extends
the size to generate SR′t that is W × H.

3.1. Edge Map Extraction

Just as Ft−k is generated using LRt and LRt−k, we use et and et−k to extract Et−k.
Before extracting Et−k, we consider the motion difference between LRt and LRt−k. If large-
scale motion exists, noise occurs in Et−k generated by fusing et and et−k. Therefore, we
proceed with the detection of blur frames to reduce noise.

We use the Laplacian filter to get the variance of LRt−k, and if the variance is less than
the threshold, we consider LRt−k to be a blur frame. If LRt−k is a blur frame, our model
does not use et−k when generating Et−k, and et is used instead of et−k. After detecting the
blur frames, our model generates Et−k as shown in Equation (1).

Ei,j
t−k =

{
0 if, ei,j

t−k + ei,j
t = 0

1 otherwise
(1)
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Ei,j
t−k and ei,j

t−k, which contain all the information on two edge maps (or a single edge
map), provide the structural information corresponding to time t− k to our model. i and j
are horizontal and vertical locations, respectively.

3.2. Feature Extraction

To extract target frame feature It, LRt is passed through a convolution layer. Then,
LRt,Ft−k,Et−k, and LRt−k are concatenated with nine channel-sized features. To provide our
model with multi-scale information, the concatenated map is passed through a convolution
layer that yields Mt−k. So Mt−k that has spatio-temporal and structure information can fill
in the insufficient feature of It.

3.3. Back Projection

In the back projection block, features extracted in Section 3.2 can be upscaled and com-
bined to make final features. By projecting It to each neighboring feature {Mt−k, . . . , Mt+k},
It is provided with multi-scale features, and then our model generates {Ht−k, . . . , Ht+k}.
In Netdown, Ht−k is downscaled to It−k for providing next back projection with Ht−k feature.
Netm, Nets, Netres, and Netdown are networks on RBPN. The entire structure is in Figure 2
and equations are described as follows:

Hm
t+k = Netm(Mt+k) (2)

Hs
t+k−1 = Nets(It+k−1) (3)

Ht+k = Netres(Hm
t+k − Hs

t+k−1) (4)

It+k = Netdown(Ht+k) (5)

Figure 2. Structure of back projection.

3.4. Reconstruction

Finally to make LRt into SRt, our model concatenates [Ht−k, . . . , Ht+k] to combine all
features. This combined feature is generated as SRt through a convolution layer fSR with
kernel size of 1, and can be described as follows:

SRt = fSR([Ht−k, . . . , Ht+k]) (6)

3.5. Refinement

Figure 3 is the architecture of the Refinement module we propose and explains how it
was made from now on. We add a series of purification steps in this paper. We propose
a refining process to obtain a higher quantitative/qualitative score, and excellent color
correction effects and contour processing effects can be obtained. In the existing field of
super resolution, there was a limitation in which it was difficult to process clear color
correction and contour processing at once. This is because it was basically a method of
enlarging a small image size to a large size. Therefore, we add a refinement stage that learns
while maintaining the original image size for efficient processing. The input of the proposed
method is the enhanced image output from Stage 1. After that, the edge map of the input
image is extracted using “Canny edge detection” as a pre-processing process, and then
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merged in units of channels to learn together. In the first convolution step, the channel
size, width, and height are reduced once, and then, after learning the same size in 17 layers,
restored to the original size again in the last layer. At this time, the calculation of reducing
and increasing the size once solves the problem of the number of parameters and at the
same time facilitates learning better than a layer without compression or restoration at all.
This is based on the characteristics of the convolution operation. Finally, a total of 19 layers
are used, 3D convolution is used to calculate the time axis, and an experimentally proven
optimal layer is created.

Figure 3. This is the architecture of our proposed refinement module. The RGB image and the edge
image are input as a pair, and compression and restoration occur once at the beginning and end
through 3D convolution. The central 17 3D convolution layers were maintained without any size
change to minimize the loss.

“Canny edge detection” is used for edge extraction at the refinement stage. In this case,
the sigma value of 0.7 is the most optimal. This has the best effect in the learning process
because it creates a distinct edge necessary for learning. Specific reasons, comparisons,
and explanations will be described later in Section 4.2.

Finally, we propose a new refinement learning method. Figure 4 visually shows the
method. The refinement we propose does not up-sample small-sized images, but corrects
it with deep learning when an input with the same size as the final output is received.
To train the refinement module, we magnify a small image by four times using the bicubic
upsampling technique, and then compare it with GT to learn. However, the picture quality
enlarged by bicubic upsampling is not suitable, and this affects the performance of the
result. Therefore, we use SRCNN as a method to build a dataset of refinement. This makes
it possible to build a high-quality training set. This is a good choice because the more good
images are input, the fewer parts to consider during the learning process and the sharper
edges can be built. SRCNN is a recognized SISR model, but it is very suitable for simply
building datasets. For the training data of SRCNN, 400,000 IMAGENET data [19] and a
small training set [20,21] are used. In subsequent experiments, we use the Vimeo90k [1] and
REDS [22] training sets as the SRCNN test set, and then use the output as the refinement
train sets.

Figure 4. The proposed refinement learning method. To replace the existing bicubic upsampling, it is
possible to bring improved performance and stability of the refinement module by using SRCNN to
build HR required for learning.
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3.6. Loss Function

The edge map of SRt during Stage 1 training is incomplete compared to the edge map
of GT frame SRGT . Therefore, our model learns to minimize the difference of gradient
magnitude between SRt and SRGT .

We adopt a Sobel mask as an edge detector within magnitude loss Lossm. mo and mt
are gradient magnitude of SRt and SRGT , respectively, and Lossm is defined as follows.

Lossm =
H

∑
i

W

∑
j
|mo(i, j)−mt(i, j)| (7)

We also adopt L1 Loss LossL1 in Stage 1, and the the Stage 1 Loss Lossstage1 is formed
as follows. where α is a coefficient to balance the two terms.

Lossstage1 = LossL1 + α× Lossm (8)

In Stage 2, we propose content loss, style loss, and reconstruction loss additionally, ex-
cept for the existing L1 loss and magnitude loss between refinement learning, and perform
optimal learning by learning the parameters together in front of each added loss formula.

First of all, Lcontent, the content loss, refers to the two images we want to compare
with p and x, respectively, and calculates each feature map to determine the p feature
representation as Pl and the feature representation of x as Fl . It is the square of the
Frobenius norm for the difference.

Lcontent(p, x, l) =
1
2 ∑(Fl − Pl)

2 (9)

In this case, content reconstruction can be solved by finding x that minimizes the loss
using the feature map of the deep layer where only the in-depth information remains. Lstyle,
the style loss, is the sum of multiplying the weights after finding the Gram matrix for the
feature map and squaring the Frobenius norm. The reason why the Gram matrix is used
here is that style defines the correlation between feature maps. Here too, if the two images
to be compared are a and x, respectively, the values obtained by the Gram matrix for each
feature map can be called Al and Gl , and the effect El of the layer on the total loss is defined
as Equation (10).

El =
1

4Nl
2Ml

2 ∑(Gl − Al)
2 (10)

Lstyle(a, x) = ∑(wl − El) (11)

Therefore, the final Lstyle using El is the same as Equation (11), and style reconstruction
can be solved by finding x that minimizes loss. The reconstruction loss, Lrec calculates the
difference between the actual value and the predicted value without taking the softmax in
the cross-entropy loss.

LStage2 = β× Lcontent + γ× Lstyle + δ× Lrec (12)

Finally, the Stage 2 loss to be minimized by using all three losses we propose is the
same as Equation (12), and each given beta, gamma, and delta is a factor that adjusts the
reflection weight of each loss function. In this case, these arguments are self-learned.

4. Experiment

Baseline. We use the RBPN structure as Stage 1. These differences between RBPN
and our model are that our model uses edge map extraction (Section 3.1) before motion
compensation and adopts Lossm.

Dataset. We use Vimeo90k and REDS as the training dataset and use Vid4 and REDS4
as the test dataset for each training dataset.
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Details. In Stage 1 and Stage 2, an NVIDIA GeForce RTX 2080 and NVIDIA Tesla
P100 GPU are used to train respectively and the batch size is set to 2. In Stage 1, we set the
hyperparameters as RBPN except for the number of channels in the convolution layer of
feature extraction (Section 3.2) and batch size. In Stage 2, the learning rate is 0.0001 and the
Adam optimizer is used. Convolution is based on 3 × 3 frame size, and both horizontal
and vertical strides are set to 2. The maximum iteration is set to 2 M and early stopping
is performed.

4.1. Ablation Study

We conduct the experiment while removing each method to see if the proposed
methods worked. The experimental results are shown in Table 1. The batch size of each
experiment is set to 2, and REDS4 is used as a test set.

Table 1. Ablation study of our method and loss function on REDS4 dataset. “Baseline” means without
using proposed method and Lossm. “Detect Blur” represents blur frame detection before edge map
extraction. “Refinement” means proposed method in Section 3.5. Lossm is the proposed magnitude
loss function.

Baseline Detect Blur Lossm Refinement PSNR/SSIM
√

30.15/0.8595√ √
30.26/0.8648√ √ √
30.40/0.8670√ √ √ √
32.32/0.9069

Detect blur is a method of detecting the presence of a blur area in LRt−k using a
Laplacian filter before extracting Et−k. This method eliminates the use of et−k, which can
act as noise, allowing our model to learn a complete structure feature. In the experiment,
when baseline and adopting detect blur, the performance is higher than when it is not
adopted. Therefore, it is proved through experiments that the blur frame acts as noise when
generating Et−k.

Magnitude loss Lossm is a loss function that minimizes the gradient magnitude dif-
ference between SRt and SRGT . Our model learns the structure features of SRGT by
minimizing the gradient difference. When Lossm is adopted, that brings about a 0.14 dB
improvement on PSNR.

Incomplete contour and color correction occur in some areas of SRt due to artifacts
present in the test data. To overcome these limitations, the refinement module is adopted.
When the refinement module is adopted, the contours become clear and the color is improved.

4.2. Refinement

We defined some basic conditions for systematic experiments and proceeded with
step-by-step experiments. First, in the process of determining the final refinement module,
Vimeo90k is used as the training dataset and Vid4 is used as the test dataset. Second,
the base model layer used between experiments used 3D convolution as shown in Figure 5.
The procedure for conducting the experiment is as follows. First, we verify the parameter
values of “Canny edge detection”, which has the best performance in our model. Second,
the results according to various model structures are checked. Third, after selecting the final
model, the form of input data is newly proposed and tested during training. Finally, the ne-
cessity of the refinement module is shown by applying the proposed refinement to several
models. When testing the sigma value of Canny edge detection and experimenting with
various model structures, the refinement module learned HR through bicubic upsampling.
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Figure 5. The architecture of the basic model used in the refinement experiments. The input data is
an RGB image and the edge information is a pair. The first 7 frames are subjected to 3D convolution
to reduce the channel and size. In the same way, the channel is reduced to 5 frames and then reduced
to 3 frames. The data for 3 frames is 3D convolution using zero padding and goes through 9 layers
without changing the size. Afterward, restore it in the opposite way to the way it was reduced.

As you can see in Table 2, we found the optimal sigma value. In “Canny edge
detection”, the value “Sigma” determines the strength of the edge. We test the sigma
values from 0.5 to 4 on the same picture. As a result, the best performance of PSNR and
SSIM are obtained at sigma = 0.7 and 1. However, when comparing the two scores, since
the difference in PSNR is larger than the difference in SSIM, we conduct all subsequent
experiments based on the value of 0.7.

Table 2. Quantitative results according to sigma value of Canny edge detection in refinement
base models.

Sigma Value PSNR SSIM

0.5 26.49 0.8009
0.7 27.52 0.8178
1 27.34 0.8175
2 27.06 0.8141
3 26.65 0.8080
4 26.48 0.7980

We conduct four additional experiments on the model structure. To reduce the loss
as much as possible, like the base model in Figure 6, we try to keep the 3D features of the
same size without going through the compression and recovery process. We will refer to
this experimental method as “VDLayer”. This experiment is conducted to maintain the
structural information of the data image as much as possible, and the optimal layer is found
by setting the number of layers to 15, 19, and 23.

Figure 6. Using VDLayer’s architecture that does not compress and recover input data, we test
performance changes according to various model structures. To maintain the size when RGB + Edge
pairs are input as input, zero padding is added considering the size and stride of the 3D convolution.

As you can see in Table 3, VDLayer = 19 is the highest for SSIM, but for PSNR,
the existing base model performs the best. VDLayer is helpful in maintaining the structural
shape of the image as expected, but learning is not smooth due to the rather large number
of parameters, and accordingly, it was difficult to expect an increase in PSNR.
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Table 3. Quantitative evaluation of various refinement module structures. All of the sigma values for
Canny edge detection are 0.7.

Method PSNR SSIM

Stage1 + refinement module (BASE) 27.52 0.8178
Stage1 + refinement module (VDLayer = 15) 26.91 0.8119
Stage1 + refinement module (VDLayer = 19) 27.53 0.8180
Stage1 + refinement module (VDLayer = 23) 26.76 0.8082

Stage1 + refinement module (MVDLayers = 17) 27.54 0.8182

As can be seen in Tables 4 and 5, the combination of Stage1 to the Refinement module
to which the SRCNN Refinement method was applied showed the best performance. So we
select a new model structure by appropriately combining the two. Therefore, we concluded
this model as the final model. In the experiment, 19 layers had the best performance.
Inspired by this, we adopted a method of compressing and restoring only the first and last
layers and maintaining the size of only the middle 17 layers (MVDLayers).

Table 4. Quantitative results (PSNR/SSIM) for the Vid4 test set when the refinement module is combined.

Combined Method Stage 1 RBPN MuCAN EDVR

w/o Refinement 27.02/
0.8136

27.12/
0.8180

27.26/
0.8215

27.35/
0.8264

Bicubic Refinement 27.54/
0.8182

27.15/
0.8199

27.47/
0.8215

27.92/
0.8261

SRCNN Refinement 27.79/
0.8439

27.32/
0.8247

27.48/
0.8312

27.76/
0.8357

Table 5. Quantitative results (PSNR/SSIM) for the REDS4 test set when the refinement module
is combined.

Combined Method Stage 1 RBPN MuCAN EDVR

w/o Refinement 30.40/
0.8670

30.09/
0.8590

30.88/
0.8750

31.09/
0.8800

Bicubic Refinement 30.71/
0.8613

30.12/
0.8633

31.02/
0.8771

31.01/
0.8804

SRCNN Refinement 32.32/
0.9069

30.34/
0.8642

31.69/
0.8951

31.01/
0.8804

Vimeo90k was used as training data to test Vid4, and REDS was used as training
data to test REDS4. The model trained with SRCNN shows better performance in most
experiments than the refinement module learned through bicubic upsampling.

4.3. Comparison with State-of-the-Art Methods

We compared our model with a total of three models: RBPN, MuCAN, and EDVR.
If you look at Tables 6 and 7, you can see the results of applying refinement (Stage 2) to the
comparison model and our model. RBPN performance before using refinement in Vid4
is higher than our model performance, but lower in REDS4. This is because artifacts exist
in Vid4.
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Table 6. Result on Vid4. The arrows indicate how much the model we finally propose has risen
compared to when only Stage 1 was used. All show a consistent rise.

SEAN RBPN MuCAN EDVR

PSNR 27.79
(0.24↑)

27.32
(0.19↑)

27.48
(0.45↑)

27.76
(0.46↑)

SSIM 0.8439
(0.0257↑)

0.8247
(0.0052↑)

0.8312
(0.0153↑)

0.8357
(0.0099↑)

Table 7. Result on REDS4. The arrows indicate how much the model we finally propose has risen
compared to when only Stage 1 was used. All show a consistent rise.

SEAN RBPN MuCAN EDVR

PSNR 32.32
(1.61↑)

30.34
(0.23↑)

31.70
(0.82↑)

31.01
(0.30↑)

SSIM 0.9069
(0.0456↑)

0.0.8642
(0.003↑)

0.8951
(0.0201↑)

0.8804
(0.0078↑)

Similar to our model, an edge map was used to edge-aware loss in MuCAN, where
the performance growth rate after using the refinement in Vid4 is lower than that in REDS4.
The performance is also lower than EDVR performance in Vid4, but higher in REDS4.

Additionally, if you look at Figure 7, you can see the results before and after applying
the Refinement module. Our model’s and MuCAN’s output became clearer than the
output without the refinement applied, but in the case of RBPN, a blur area was created.
From this point of view, it can be said that the edge map created in Vid4 was applied as
noise when training Stage 1 of our model, and the edge map created in REDS4 acted as
effective information.

Similar to the training of Stage 1 of our model, the edge map of each frame was
used when training the refinement module, and when the experiment was conducted by
applying it to the comparative model and our model, our model performance improved
the most. In addition, if you look at Figures 8 and 9, it can be seen that the contour of the
image generated by our model in Vid4 and REDS4 has become clear and the color has also
improved compared to the comparative models. Therefore, the refinement module proved
that it is effective in our model methodologically and experimentally.

SEAN RBPN MuCAN EDVR

Figure 7. Comparison of applying the Stage 2 (refinement) module on REDS4. The results in the first
line have not applied Stage 2, and the results in the second line have applied Stage 2. In the case of
the results of the model trained using structure feature, the results are improved, and in the case of
the model not used, a blur area is formed.



Appl. Sci. 2022, 12, 2492 11 of 13

SEAN RBPN MuCAN EDVR GT

Figure 8. Visual results on Vid4 for 4× scaling factor.

SEAN RBPN MuCAN EDVR GT

Figure 9. Visual results on REDS4 for 4× scaling factor.

Table 8 shows the quantitative performance values of the final model we propose.

Table 8. Final result.

SEAN RBPN MuCAN EDVR

Vid4 27.79/0.8439 27.12/0.8180 27.26/0.8215 27.35/0.8264
REDS4 32.32/0.9069 30.09/0.8590 30.88/0.8750 31.09/0.8800

5. Conclusions

We add structural information by using an edge map in this study and use detect blur
to minimize noise before adding information. In addition, the difference between output
structural information and GT structural information generated by using magnitude loss
was minimized, and a refinement module was used to improve the problem caused by the
artifact of the test set. We found the optimal refinement module through experiments and
showed consistent performance improvement. Among any other models, when combined
with the Stage 1 model we propose, the performance improvement was the greatest.
Therefore, we finally propose this model.
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