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Abstract: In this study, we examined the robust super-twisting sliding mode backstepping control
(SBSC) method, which employed a tracking differentiator and nonlinear disturbance observer for a
hexacopter unmanned aerial vehicle (UAV) system. To realize robust tracking control performance for
a highly coupled nonlinear hexacopter UAV system, a super-twisting sliding mode control method
was combined with designing stabilizing controls of backstepping control (BSC) applied to the UAV
system. Furthermore, the differentiation issue of the virtual control and compensation of transforma-
tion error in the conventional BSC design were bypassed via a new continuous tracking differentiator
structure. Additionally, a new disturbance observer based on the proposed tracking differentiator
was considered to estimate uncertainties of the hexacopter UAV. Comparative simulation results
demonstrated that the proposed tracking-differentiator-based SBSC scheme (PTSBSC) blended with
the tracking differentiator and nonlinear disturbance observer exhibits improved performance when
compared to that of conventional BSC and disturbance observer systems.

Keywords: hexacopter unmanned aerial vehicle; backstepping control; super-twisting sliding mode
control; tracking differentiator; nonlinear disturbance observer

1. Introduction

Developments of the rechargeable battery source, brushless DC motor, and various
related techniques lead to increased research unmanned aerial vehicles (UAVs). The
multi-rotor UAVs exhibit significant advantages in terms of hovering capability and ma-
neuverability involving side and backward movement, vertical take-off and landing in 3D
space, and lower maintenance cost than other small aerial vehicles [1–4]. Thus, UAVs were
initially used for military applications. However, recently, its applications were extended to
agriculture, aerial photography, inspection, surveillance, rescue, transport monitoring, and
exploration of inaccessible areas. Most multi-rotor UAVs adopted a four-rotor mounted
quadrotor structure, and they exhibit limited power for heavy cargo delivery. Currently,
UAVs mounted with more rotors, such as hexacopter and octocopter UAVs, when com-
pared to four rotors, were developed to enforce lifting and higher capabilities in terms
of flying time [5–10]. When considering the efficiency of UAVs, the hexacopter is more
feasible than the octocopter because an increase in the number of rotors leads to an increase
in size and cost.

However, safe and reliable flight of multi-rotor UAVs should be secured. This is
because severe damages can result if the UAV falls or crashes, and the increased speed
rotation of a multi-rotor can lead to more severe accidents. Thus, to guarantee safety and
reliability in the flight of multi-rotor UAVs, an effective and robust controller is required to
overcome the following challenges: (1) under-actuated control scheme for six degrees of
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freedom (DOF) with four control inputs; (2) strongly coupled nonlinear dynamics between
translational and rotational subsystems and kinematic coupling terms; and (3) uncertainties
including external disturbances, such as wind and rain, in outdoor environment and
unknown dynamics due to varying load.

Several control methods have been utilized to handle the above issues. Linear con-
trol schemes, including proportional-integral-derivative (PID) [7,9,11], linear quadratic
regulator (LQR) [12,13], predictive control [14], and H∞ control [15] have been initially
applied for the fundamental flight task of the multi-rotor UAVs. However, these methods
undergo their application limits due to performance degradation when the UAV leaves
away its designed trimming points or accepts excessive perturbations. To handle these
limits, recursive backstepping control (BSC) [6,16,17] is generally utilized as a baseline con-
troller because BSC is appropriate for the aforementioned coupled higher order nonlinear
systems and especially for multi-rotor UAVs [18–23]. The procedures for stabilizing system
states are recursively repeated in the BSC design by utilizing virtual controllers, and the
final controller is obtained in the last recursive step. Thus, a controller for any nonlinear
system can be systematically designed without utilizing any linearization, which neglects
useful nonlinearities.

Conversely, despite the popularity and advantage of the BSC scheme, there exist
several disadvantages in the traditional BSC scheme. First, the virtual stabilizing controls
contain the repeated differentiation terms with respect to virtual controls designed during
the pre-recursive steps for high-order nonlinear systems. Hence, this leads to an increase
in complexity. The tracking differentiator methods [24–30] were recently investigated as
a potential solution. Furthermore, the second-order finite-time command filter [31–33]
was considered to obtain improved properties to guarantee finite-time convergence and
avoid increases in complexity, given that the traditional BSC schemes were designed in
the point of infinite-time convergence. However, the traditional tracking differentiators
exhibit the disadvantage of slow convergence time, though the recently developed tracking
differentiators in [27–29] show more improved performance than those of the previous ones.

Second, most BSC systems were designed to be based on the nonlinear model dynamics
in each recursive step and are then exposed to the uncertainty issue. Hence, they are
sensitive to uncertainties, and control performances will be degraded when the parametric
perturbations and external disturbances occur. Further efforts have been made to enforce
robustness to uncertainty in the ordinary BSC system.

The first solution for the second issue is that BSC is typically combined with the
first-order sliding mode control (SMC) [34] by utilizing the robustness property of SMC.
However, there is a chattering disadvantage of the first order SMC [35–38].

As the second solution for the second issue, to enforce control performance by estimat-
ing and compensating uncertainties, several disturbance observers are developed [39–45].
A disturbance observer studied in [39,40] is applied to estimate uncertainties for nonlinear
systems. However, it has the drawback that the observer is designed under the assumption
of slow variation of uncertainties. An extended state observer (ESO) in [41,42] is devel-
oped on the position feedback, which is commonly obtained by integrating the velocity
information of the system, especially for the multi-rotor UAVs. The long-time integration
errors will influence the position information, which further degrade estimation accuracy
of the observers. Disturbance observers utilizing a tracking differentiator to bypass the
differentiation error in velocity feedback routine are developed in [43–45]. However, the
convergence rate of the state of observer is slow, and the resulting estimation performance
for uncertainties is degraded. Hence, to cope with the lower convergence performance in
these observers, a more enhanced observer is required to achieve higher estimation and
compensation of the uncertainties.

Motivated by the aforementioned works, as an alternative to the first-order SMC,
the super-twisting algorithm (STA) [46–49] was developed because the STA offers the
following advantages: it requires only the information on the sliding variable; it provides
finite-time convergence to the origin for the sliding variable and its derivative; and it gener-
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ates a continuous control signal to consequently adjust chattering. Furthermore, a novel
continuous tracking differentiator based on the sine hyperbolic function is proposed to
enhance lower performance traditional tracking differentiators. Finally, a novel disturbance
observer based on the proposed tracking differentiator is examined to estimate the external
disturbance in USVs. Therefore, in this study, a BSC system combined with STA (SBSC) is
considered to realize finite-time convergence and robustness with respect to uncertainty
over the conventional BSC system.

The contributions of this study are summarized as follows:

(1) The traditional BSC is combined with the STA to enforce insensitivity to variation of
uncertainties of a hexacopter UAV system and bypass chattering in the traditional
BSC combined with the first-order sliding mode control.

(2) The proposed SBSC control strategy for a hexacopter UAV improves finite settling-
time convergence when compared to the traditional BSC system. Faster movements
of a hexacopter UAV will be expected for a perturbed environmental situation.

(3) A novel continuous tracking differentiator based on the sine hyperbolic function
is developed to obtain enhanced convergence of the state variable of the tracking
differentiator. Thus, faster output of the command filter approximation on the deriva-
tive of the virtual control at each recursive step is acquired. The proposed tracking
differentiator system exhibits improved performance when compared to the conven-
tional system.

(4) An improved nonlinear disturbance observer can be designed by utilizing the pro-
posed tracking differentiator. Hence, the performance of estimation and disturbance
rejection for uncertainties of the hexacopter UAV control system are improved by
utilizing the proposed disturbance observer.

Finally, the performance of the proposed control scheme is evaluated via sequential
comparative simulation of a nonlinear hexacopter UAV system.

The rest of the paper is organized as follows. The nonlinear system model of UAV
and tracking differentiator are presented in Section 2, and the design process for a SBSC
is described in Section 3. Furthermore, stability analysis is discussed in Section 4, and
simulation results for a hexacopter UAV system are provided in Section 5. Finally, the
summary and conclusion of the study are presented in Section 6.

2. Preliminaries
2.1. UAV Dynamics and Problem Formulation

A hexacopter UAV has a mechanism for generating the required forces and torques. The
nonlinear dynamics of a hexacopter, as presented in Figure 1 [10], is expressed as follows:

.
P = vb,

m
.
vb = RtF−mgez + Fd,

(1)

.
Θ = Rrωb,

Jb
.

ωb = −ωb × Jbωb + Mb + Mg + Md,
(2)

where P = [x, y, z]T denotes position with respect to the inertia frame, Θ = [φ, θ, ψ]T de-
notes Euler angles, vb = [u, v, w]T and ωb = [p, q, r]T denote linear and angular velocities,
respectively, in the body-fixed frame. Jb = diag(Jx, Jy, Jz) denotes a symmetric positive
definite moment of inertia matrix, ez = [0 0 1]T ; Mg denotes the resultant torque due to
the gyroscopic effect, and Fd and Md denote uncertainties, including parameter change,
asymmetric structure, payload variation, rotor fluctuation, and aerodynamic drag, which

are denoted as Fd = [dx
.
x, dy

.
y, dz

.
z]T , Mg =

6
∑

i=1
Jr(ωb × ez)Ω, and Md = [dφ

.
φ, dθ

.
θ, dψ

.
ψ]T .

Jr denotes the moment of inertia of each rotor and Ω = Ω1 −Ω2 + Ω3 −Ω4 Ω5 + Ω6, and
Ωi denotes the speed of rotor i. The translation force Fd contains gravity, main thrust force,
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and other force components. The airframe orientation in space is provided using a rotation
matrix Rt from the body frame to the navigation frame, and ωb is expressed as follows:

Rt =

 cθcψ sφsθcψ− cφsψ cφsθcψ + sφsψ
cθsψ sφsθsψ + cφcψ cφsθsψ− sφcψ
−sθ sφcθ cφcθ

, (3)

ωb = Rr =

 1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ




.
φ
.
θ
.
ψ

, (4)

where s(·) and c(·) denote sin(·) and cos(·), respectively. The lift force F = [0, 0, u f ]
T

and torque Mb = [uφ, uθ , uψ]
T are generated by rotors with respect to body-fixed frame

as follows:

u f =
6
∑

i=1
Fi,

uφ = − 1
2 F1l + 1

2 F2l + F3l + 1
2 F4l − 1

2 F5l − F6l,

uθ = −
√

3
2 F1l −

√
3

2 F2l +
√

3
2 F4l +

√
3

2 F5l,

uψ = Cd(−Ω2
1 + Ω2

2 −Ω2
3 + Ω2

4 −Ω2
5 + Ω2

6),

(5)

where Fi = CpΩ2
i denotes the force generated in the i-th rotor, Cd > 0 and Cp > 0 denote

coefficients of drag and thrust of the propeller, respectively, and l denotes the distance from
rotors to the center of mass. Given the perturbation of the mass of the body due to the
loading of the carrying object, (1) is expressed as follows:

m0
.
vb = RtF−m0gez + Ub, (6)

where Ub = −∆m
.
vb + Fd and ∆m denotes a mass perturbation. Based on the above results,

the translational dynamics equations of the hexacopter can be expressed as follows:

..
x =

1
m0

(cφsθcψ + sφsψ)u f − ρx, (7)

..
y =

1
m0

(cφsθ sin ψ− sφcψ)u f − ρy, (8)

..
z = −g +

1
m0

(cφcθ)u f − ρz, (9)

where ρx = 1
m0

(∆m
..
x − dx

.
x), ρy = 1

m0
(∆m

..
y− dy

.
y), and ρz = 1

m0
(∆m

..
z− dz

.
z). Next, the

rotational dynamic equations are expressed as follows:

..
φ =

.
θ

.
ψ

Jy − Jz

Jx
− Jr

Jx

.
θΩ +

l
Jx

uφ − ρφ, (10)

..
θ =

.
ψ

.
φ

Jz − Jx

Jy
+

Jr

Jy

.
φΩ +

l
Jy

uθ − ρθ , (11)

..
ψ =

.
φ

.
θ

Jx − Jy

Jz
+

l
Jz

uψ − ρψ, (12)

where ρφ =
dφ l
Jx

.
φ, ρθ = dθ l

Jy

.
θ, and ρψ =

dψ l
Jz

.
ψ.
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Figure 1. Description of the hexacopter UAV.

2.2. Tracking Differentiator

In this section, a tracking differentiator is considered to avoid the differentiation of the
virtual controls in the BSC scheme.

Theorem 1 ([26]). If any solution of the following system:

.
z1 = z2,

.
z2 = f (z1, z2)

(13)

satisfies z1 → 0 , z2 → 0 as t→ ∞ , then for an arbitrary bounded and integrable input function
α and a constant T > 0, the solution of the following system

.
χ1 = χ2,

.
χ2 = R2 f (χ1 − α, χ2/R)

(14)

satisfies lim
R→∞

∫ T
0 |χ1 − α|dt = 0 if the solutions of (14) satisfy χ1 → 0 and χ2 → 0 as t→ ∞ .

Theorem 2 ([26]). Consider the following system

.
χ1 = χ2,

.
χ2 = −r1sinh(a1χ1)− r2sinh(a2χ2).

(15)

The system (15) is global uniformly asymptotically stable if ri > 0 and ai > 0, i = 1, 2,
are satisfied.

Theorem 3. Consider the following system

.
χ1 =

.
χ2,

.
χ2 = −R2[r1sinh(a1 ϕ1(χ1 − α)) + r2sinh(a2 ϕ2(χ2)/R)],

(16)

where ϕ1(χ1 − α) = κsig1/2(χ1 − α) + (1 − κ)sig(2+γ)/2(χ1 − α), ϕ2(χ2) = sig1/2(χ2),
sig1/2(· ) =|·|1/2sign(·), 0 < κ < 1 and 0 < γ < 1 are constants. For an arbitrary bounded and
integrable function α and a constant T > 0, lim

R→∞

∫ T
0 |χ1 − α|dt = 0 can be obtained if the positive

conditions of all parameters are satisfied.
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Proof. Transforming ω1 = χ1− α and ω2 = χ2/R in (16), it follows that ω1r1sinh(a1ϕ(ω1)) ≥ 0
because sinh(·) is an odd function. Then,

∫ ω1
0 r1sinh(a1 ϕ(τ))dτ ≥ 0, where τ means an

introduced integral variable. Thus, we can consider the following Lyapunov function:

V(ω1, ω2) = R2
∫ z1

0
r1sinh(a1 ϕ(τ))dτ +

1
2

ω2
2. (17)

Taking the time derivative of (17) and using (16) result in

.
V(ω1, ω2) = R2

2r1sinh(a1 ϕ(ω1))ω2 + ω2
.

ω2

= R2
2r1sinh(a1 ϕ(ω1))ω2 − R2ω2[r1sinh(a1 ϕ1(ω1)) + r2sinh(a2 ϕ2(ω2))]

= −R2ω2r2sinh(a2 ϕ2(ω2)) ≤ 0

(18)

Thus, it is sure that
.

V(ω1, ω2) = 0 only when ω2 = 0. Based on (16), when ω2 = 0, ω1
will always be equivalent to zero. If ω1 → ∞ and ω2 → ∞ , we obtain that V(ω1, ω2)→ ∞ .
Hence, the solutions of

.
V(ω1, ω2) do not include any other whole trajectory, except the

origin (0,0).
Therefore, the system (16) is globally asymptotically stable. This concludes the proof.

�

For comparison of the above differentiators, three tracking differentiators were selected.
The first one, which is proposed by Yang et al. [27], is the following hyperbolic tangent
tracking differentiator:

.
χ1 = χ2.

χ2 = −R2[r1tansig(a1(χ1 − α)) + r2tansig(a1χ2/R)],
(19)

where tansig(a1x) = 2
e−2a1x+1

− 1. The second one, which was proposed by Zong et al. [28,29],
is the tangent sigmoid function tracking differentiator given by

.
χ1 = χ2

.
χ2 = −R2[r1{(χ1 − α) + |χ1 − α|βtansig(a1(χ1 − α))}+ r2{χ2/R + |χ2/R|βtansig(a2χ2/R)}], (20)

where 0 < β < 1 is a constant. The third one, the first-order sliding mode tracking
differentiator proposed by Levant [30,31], is considered, which is described as

.
χ1 = v1 = −r1|χ1 − α|1/2sign(χ1 − α) + χ2,

.
χ2 = −r2sign(χ2 − v1),

(21)

3. Design of Controller and Nonlinear Disturbance Observer
3.1. Design of Altitude Controller

The vertical displacement is determined by the altitude controller. The state equation
for altitude dynamics in (8) can be expressed as follows:

.
x1 = x2,

.
x2 = 1

m (cos φ cos θ)u1 − g− ρ2,
(22)

where the altitude state variable x1 = z, x2 =
.
z, and u1 = uz. By introducing the command

trajectory x1d in the z-coordinate, the sliding mode surfaces to include the tracking error
and new states are defined as follows:

s1 = x1 − x1d − ξ11, (23)

s2 = x2 − χ11 − ξ12, (24)
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where the sliding mode surfaces include the tracking error and the compensating signals.
The state variables ξ11 and ξ12 in (23) and (24) are obtained from the dynamics of the
compensating signals expressed as follows:

.
ξ11 = −k11ξ11 + ξ12 + χ11 − α1 − βζ,11sig1/2(ξ11),.

ξ12 = −k12ξ12 − ξ11 − βζ,12sig1/2(ξ12),
(25)

where βζ,ij > 0, i = 1, 2, j = 1, 2, denote constants. Next, the output of the tracking differen-
tiator χ11 is obtained from the tracking differentiator dynamics described in Theorem (3):

.
χ11 = χ12,

.
χ12 = −R2

1[r11sinh(a11 ϕ11(χ11, α1)) + r12sinh(a12R−1
1 ϕ12(χ12))],

(26)

where ϕ11(χ11, α1) = κ1sig1/2(χ11− α1) + (1− κ1)sig(2+γ1)/2(χ11−α1), ϕ12(χ12) = sig1/2(χ12),
sig1/2(·) = |si|1/2sign(·). α1 denotes the virtual control defined later, r1i > 0 and a1i > 0
are constants, and κ1 > 1 and 0 < γ1 < 1 denote constants. We define the following super-
twisting state variable vectors to design the controller using the variables defined previously.

ζ1 =
[

ζ11 ζ12
]T

=

[
k11s1 + sig1/2(s1)

−k12
∫ t

0 [k2
11s1 +

3k11
2 sig1/2(s1) +

1
2 sign(s1)]dτ

]
,

(27)

ζ2 =
[

ζ21 ζ22
]T

=

[
k21s2 + sig1/2(s2)

−k22
∫ t

0 [k2
2s2 +

3k2
2 sig1/2(s2) +

1
2 sign(s2)]dτ

]
.

(28)

The super-twisting state variable vectors consist of the sliding mode surfaces and
signum functions. Using the definition in (23), the time derivative of the components of the
state vectors in (27) and (28) can then be written as

.
ζ11 = k11

.
s1 +

1
2 |s1|−1/2

.
s1

= µ1(x2 −
.
x1d −

.
ξ1)

= µ1(x2 −
.
x1d + k11ξ11 − ξ12 − χ11 + α1 + βξ,11sig1/2(ξ11))

= µ1(s2 −
.
x1d + k11ξ11 + α1 + βξ,11sig1/2(ξ11)),

(29)

.
ζ12 = −µ1k12ζ11, (30)

.
ζ21 = k21

.
s2 +

1
2 |s2|−1/2

.
s2

= µ2

(
1
m (cos φ cos θ)u1 − g− ρ2 − χ12 + k12ξ12 + ξ11 +βξ,12sig1/2(ξ12)

)
,

(31)

.
ζ22 = −µ2k22ζ21, (32)

where µ1 = k11 +
1
2 |s1|−1/2 and µ2 = k21 +

1
2 |s2|−1/2. We can select the virtual control from

(29) and control input from (31) as follows:

α1 = −k11ζ11 − k11ξ11 − βξ,11sig1/2(ξ11) +
.
x1d + ζ12, (33)

u1 = m
cos φ cos θ (−k21ζ21 − k21ξ12 + g + ρ̂2 + χ12 − ξ11 − βξ,12sig1/2(ξ12)

− ξ1η1
ξ2η2

s2 + ζ22),
(34)



Appl. Sci. 2022, 12, 2490 8 of 27

where ηk = (ck + 4ε2
k)ζk1 − 2εkζk2, ck > 0 and εk > 0, k = 1, 2, are constants, the virtual

control input α1 denotes the recursive input, and u1 denotes the final control input. Using
(33) and (34), (29) and (31) can be expressed as follows:

.
ζ11 = −k11µ1ζ11 + µ1ζ12 + µ1s2, (35)

.
ζ21 = −µ2k21ζ21 + µ2ζ22 −

µ1η1

η2
s2 − µ2ρ̃2, (36)

where ρ̃2 = ρ2 − ρ̂2 denotes the estimate error. Considering the above results, the following
compact expressions can be obtained:

.
ζ1 = −µ1

[
k11 −1
k12 0

][
ζ11
ζ12

]
+

[
µ1s2

0

]
, (37)

.
ζ2 = −µ2

[
k21 −1
k22 0

][
ζ21
ζ22

]
+

[
− µ1η1

η2
s2

0

]
+

[
µ2ρ̃2

0

]
. (38)

We define the Lyapunov function candidate as follows:

V1 =
1
2

ζT
1 P1ζ1 +

1
2

ζT
2 P2ζ2, (39)

where Pk denotes positive definite matrices defined as follows:

Pk =

[
ck + 4ε2

k −2εk
−2εk 1

]
, k = 1, 2.

Differentiating (39) with respect to time and using (37) and (38) result in the follow-
ing expression:

.
V1 = ζT

1 P1
.
ζ1 + ζT

2 P2
.
ζ2

≤ −µ1ζT
1 Q1ζ1 + µ1η1s2−µ2ζT

2 Q2ζ2 + ρ̃2µ2η2 − µ1η1s2

≤ −
2
∑

k=1
µkζT

k Qkζk + δ2,
(40)

where ηk = (ck + 4ε2
k)ζk1 − 2εkζk2 , |ρ̃2µ2η2| ≤ δ2, and the positive definite matrix

Qk =

[
2kk1(ck + 4ε2

k)− 4kk2εk (ck + 4ε2
k)− 2εkkk1 + kk2

ck + 4ε2
k − 2εkkk1 + kk2 4εk

]
, k = 1, 2.

3.2. Design of Longitudinal and Latitudinal Controllers

Let us define the state variables for x-, y-axes and roll, pitch axes from (6), (7), (9), and

(10) as x3 = [x y]T , x4 = [
.
x

.
y]T , x5 = [φ θ]T , and x6 = [

.
φ

.
θ]

T
. The state–space model is

represented as follows:

.
x3 = x4,

.
x4 = R4(ψ, u1)T4(x5)− ρ4, (41)

.
x5 = x6,

.
x6 = f6 + g6uφθ − ρ6, (42)

where R4(ψ, u1) = 1
m

[
cos ψ sin ψ
sin ψ − cos ψ

]
u1, T4(x5) = [cos φ sin θ sin φ]T , ρ4 = [ρx ρy]

T ,

g6 = diag(l/Jx l/Jy), uφθ = [τφ τθ ]
T, and f6 = [

.
θ

.
ψ(Jy − Jz)/Jx + Jr

.
θΩr/Jx

.
ψ

.
φ(Jz −Jx)/Jy − Jr

.
φΩr/Jy]T,

ρ6 = [ρφ ρθ ]
T . We define the sliding mode vectors including the tracking command, errors,

and state variables as
s3 = x3 − x3d − ξ31, (43)
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s4 = x4 − χ31 − ξ32, (44)

s5 = x5 − x5d − ξ51, (45)

s6 = x6 − χ51 − ξ52. (46)

In the sliding mode surfaces, the dynamics of the compensating signals ξ3j, j = 1, 2, is
described as .

ξ i1 = −ki1ξi1 + ξ12 + χi1 − αi − βζ,i1sig1/2(ξi1),.
ξ i2 = −ki2ξi2 − ξi1 − βζ,i2sig1/2(ξi2), i = 3, 5,

(47)

where βζ,ij > 0, i = 3, 5, j = 1, 2, are constants. Furthermore, χi1 is obtained from the
tracking differentiator described as follows:

.
χi1 = χi2,

.
χi2 = −R2

i [ri1sinh(ai1 ϕi1(χi1, αi)) + ri2sinh(ai2R−1
i ϕi2(χi2))], i = 3, 5,

(48)

where ϕi1(χi1, αi) = κisig1/2(χi1− αi) + (1− κi)sig(2+γi)/2(χi1−αi), ϕi2(χi2) = sig1/2(χi2),
κi > 1 and 0 < γi < 1 are constants. We define the following super-twisting state variable
vectors to design the controller using the variables defined previously

ζ3 =
[

ζ31 ζ32
]T
=

[
k31s3 + sig1/2(s3)

−k32
∫ t

0 [k2
31s3 +

3k32
2 sig1/2(s3) +

1
2 sign(s3)]dτ

]
, (49)

ζ4 =
[

ζ41 ζ42
]T
=

[
k41s4 + sig1/2(s4)

−k42
∫ t

0 [k2
41s4 +

3k42
2 sig1/2(s4) +

1
2 sign(s4)]dτ

]
, (50)

ζ5 =
[

ζ51 ζ52
]T
=

[
k51s5 + sig1/2(s5)

−k52
∫ t

0 [k2
51s5 +

3k51
2 sig1/2(s5) +

1
2 sig1/2(s5)]dτ

]
, (51)

ζ6 =
[

ζ61 ζ62
]T
=

[
k61s6 + sig1/2(s6)

−k62
∫ t

0 [k2
61s6 +

3k61
2 sig1/2(s6) +

1
2 sig1/2(s6)]dτ

]
. (52)

The differentiation of the above state vectors is as follows:

.
ζ3 =

[ .
ζ31

.
ζ32

]T
=

[
µ3(s4 + ς31 + ξ41 −

.
x3d −

.
ξ31)

−µ3k31ζ31

]
, (53)

.
ζ4 =

[ .
ζ41

.
ζ42

]T
=

[
µ4(R4(ψ, u1)T4(x5)− ρ4 −

.
χ31 −

.
ξ32)

−µ4k41ζ41

]
, (54)

.
ζ5 =

[ .
ζ51

.
ζ52

]T
=

[
µ5(s6 + χ51 + ξ6 −

.
x5d −

.
ξ51)

−µ5k51ζ51

]
, (55)

.
ζ6 =

[ .
ζ61

.
ζ62

]T
=

[
µ6( f6 + g6uφθ − ρ6 −

.
χ51 −

.
ξ52)

−µ6k61ζ61

]
, (56)

where µi = kij +
1
2 |si|−1/2, i = 3, 4, 5, 6, j = 1, 2. We can select the virtual controls

αi, i = 3, 5 for the recursive input, and control inputs ui, i = 2, 3 as follows:

α3 = −k31ζ31 − k31ξ31 − βξ,31sig1/2(ξ31) +
.
x3d + ζ32, (57)

α5 = −k51ζ51 − k51ξ51 − βξ,51sig1/2(ξ51) +
.
x5d + ζ52, (58)

u2 = T4(x5) = R−1
4 (ψ, u1)(−k41ζ41 − k41ξ42 + ρ̂4 + χ32 − ξ41

−βξ,41sig1/2(ξ41)− ξ−1
4 η−1

4 ξ3η3s4 + ζ42),
(59)
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u3 = uφθ = g−1
6 (−k61ζ61 − k61ξ61 − f6 + ρ̂6 + χ52 − ξ61

−βξ,61sig1/2(ξ61)− ξ−1
6 η−1

6 ξ5η5s6 + ζ62)
(60)

where R−1
4 =

[
cos ψ sin ψ
sin ψ − cos ψ

]−1

=

[
cos ψ sin ψ
sin ψ − cos ψ

]
, ηk = (ck + 4ε2

k)ζk1 − 2εkζk2,

ck > 0 and εk > 0,k = 3,4, 5, 6, are constants. Next, substituting these controls into
the dynamics of the compensating signals given in (47) and repeating the procedures of
the previous step, we obtain the following compact expressions for the super-twisting
state vector:

.
ζ j = −µj

[
k j1 −1
k j2 0

][
ζ j1
ζ j2

]
+

[
µjsj

0

]
, j = 3, 5, (61)

.
ζk = −µk

[
kk1 −1
kk2 0

][
ζk1
ζk2

]
+ µk

[
ρ̃k
0

]
+

[
−η−1

k µk−1ηk−1sk
0

]
, k = 4, 6, (62)

where ρ̃k = ρk − ρ̂k, k = 4, 6. The Lyapunov function candidate with (60) and (61) is defined
as follows:

V2 =
6

∑
k=3

1
2

ζT
k Pkζk, (63)

where Pk denotes positive definite matrices defined as follows:

Pk =

[
ck + 4ε2

k −2εk
−2εk 1

]
, k = 3, 4, 5, 6.

The time derivative of (63) leads to the following expression:

.
V2 ≤ −µ3ζT

3 Q3ζ3 − µ5ζT
5 Q5ζ5 + µ3η3s3 + µ5η5s5 − µ4ζT

4 Q4ζ4 − µ6ζT
6 Q6ζ6 − µ3η3s3

−µ5η5s5 + ρ̃T
4 µ4η4 + ρ̃T

6 µ6η6

≤ −
6
∑

k=3
µkζT

k Qkζk + δ4 + δ6,

(64)

where
∣∣ρ̃T

4 µ4η4
∣∣ ≤ δ4,

∣∣ρ̃T
6 µ6η6

∣∣ ≤ δ6, and the positive definite matrix

Qk =

[
2kk1(ck + 4ε2

k)− 4kk2εk (ck + 4ε2
k)− 2εkkk1 + kk2

ck + 4ε2
k − 2εkkk1 + kk2 4εk

]
, k = 3, 4, 5, 6.

3.3. Design of the Heading Controller

Let us define the state variable for the yaw axis from (11) as x7 = ψ and x8 =
.
ψ. Hence,

the state–space model can be represented as follows:

.
x7 = x8,

.
x8 =

.
φ

.
θ

Jx − Jy

Jz
+

l
Jz

τψ − ρψ= f8 + g8u4 − ρ8, (65)

where f8 =
.
φ

.
θ

Jx−Jy
Jz

, g8 = l
Jz

, and ρ8 = ρψ. The tracking error and new states are defined
as follows:

s7 = x7 − x7d − ξ71, (66)

s8 = x8 − χ71 − ξ72. (67)

The compensating signals included in (66) and (67) are obtained from the follow-
ing dynamics:

.
ξ71 = −k71ξ71 + ξ72 + χ71 − α7 − βζ,71sig1/2(ξ71),

.
ξ72 = −k72ξ72 − ξ71 − βζ,72sig1/2(ξ72).

(68)
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where βζ,7j > 0, j = 1, 2 are constants. In (67), χ71 denotes the output of the tracking
differentiator expressed as follows:

.
χ71 = χ72,

.
χ72 = −R2

7[r71sinh(a71 ϕ71(χ71, α7)) + r72sinh(a72R−1
7 ϕ72(χ72))],

(69)

where ϕ717(ς71, α7) = κ7sig1/2(χ71 − α7) + (1− κ7)sig(2+γ7)/2(χ71− α7), ϕ72(χ72) = sig1/2(χ72),
κ7 > 1 and 0 < γ7 < 1 are constants. The super-twisting state variable vectors are
defined as

ζ7 = [ζ71 ζ72]
T=

[
k7s7 + sig1/2(s7)

−k72
∫ t

0 [k2
7s7 +

3k7
2 sig1/2(s7) +

1
2 sign(s7)]dτ

]
, (70)

ζ8 = [ζ81 ζ82]
T , =

[
k8s8 + sig1/2(s8)

−k82
∫ t

0 [k2
8s8 +

3k8
2 sig1/2(s8) +

1
2 sign(s8)]dτ

]
, (71)

Next, the time derivatives of the state vector to design the controllers are given by

.
ζ7 = [

.
ζ71

.
ζ72]

T
=

[
µ7(x8 −

.
x7d −

.
ξ71)

−µ7k72ζ71

]
, (72)

.
ζ8 = [

.
ζ81

.
ζ82]

T
=

[
µ8( f8 + g8u8 − ρ8 − χ72 −

.
ξ72)

−µ8k82ζ81

]
, (73)

where µ7 = k7 +
1
2 |s7|−1/2 and µ8 = k8 +

1
2 |s8|−1/2. We can select the virtual control α7 for

recursive input and control input u4 as follows:

α7 = −k71ζ71 − k71ξ71 − βξ,71sig1/2(ξ71) +
.
x7d + ζ72, (74)

u4 = uψ =
1
g8

(−k81ζ81 − k81ξ81 − f8 + ρ̂8 + χ72 − ξ71 − βξ,81sig1/2(ξ82)−
ς7η7

ς8η8
s8 + ζ82). (75)

We define the Lyapunov function candidate as follows:

V3 =
1
2

ζT
7 P7ζ7 +

1
2

ζT
8 P8ζ8, (76)

where Pk denotes positive definite matrices defined with ck > 0 and εk > 0 as follows:

Pk =

[
ck + 4ε2

k −2εk
−2εk 1

]
, k = 7, 8.

Substituting (74) and (75) into (72) and (73), respectively, and differentiating (76) with
respect to time results in the following expression:

.
V3 = ζT

7 P7
.
ζ7 + ζT

8 P8
.
ζ8≤ −µ7ζT

7 Q7ζ7 + µ7µ7s8 − µ8ζT
8 Q8ζ8 − µ7η7s7+ρ̃T

8 χ8η8,

≤ −
8
∑

k=7
µkζT

k Qkζk + δ8,
(77)

where ηk = (ck + 4ε2
k)ζk1 − 2εkζk2,

∣∣ρ̃T
8 µ8η8

∣∣ ≤ δ8, and the positive definite matrix

Qk =

[
2kk1(ck + 4ε2

k)− 4kk2εk (ck + 4ε2
k)− 2εkkk1 + kk2

ck + 4ε2
k − 2εkkk1 + kk2 4εk

]
, k = 7, 8.
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3.4. Design of the Disturbance Observer

Assumption 1. The disturbance |ρ(t)| is bounded such that there exists an unknown constant
that satisfies |ρ(t)| ≤ ρ.

Theorem 4. The disturbances ρ = [ρ2 ρ4 ρ6 ρ8]
T are estimated by the following novel nonlinear

disturbance observers:
.

Θ̂ = µ2[f(x) + gu− χ2 −
.
ξ2 − ρ̂],

.
ρ̂ = −Λ2[ηρ1sinh(cρ1ϕ1(Θ̃)) + ηρ2sinh(cρ2Λ−1ϕ2(ρ̂))],

(78)

where Θ = [ζ21 ζ41 ζ61 ζ81]
T denotes the state vector, including the super-twisting state vec-

tor, µ2 = diag(µ2, µ4, µ6, µ8), χ2 = [χ12 χ32 χ52 χ72]
T denotes the state vector of the track-

ing differentiator,
.
ξ2 =[

.
ξ12

.
ξ32

.
ξ52

.
ξ72]

T
denotes the state vector of the compensating signal,

ϕ1(Θ̃) =κsig1/2(Θ̃) + (1− κ)sig(2+γ)/2(Θ̃), ϕ2(ρ̂) = sig1/2(ρ̂), Θ̃ = Θ− Θ̂, ρ̃ = ρ− ρ̂,
Θ̂ and ρ̂ denote the estimates of Θ and ρ, Λ, ηρ1, ηρ2,cρ1, and cρ1 are diagonal positive constant
matrices, respectively. Evidently, Θ̂→ Θ and ρ̂→ ρ when Λ→ ∞ .

Proof. When Λ→ ∞ ,
∣∣∣ .
ρ̂
∣∣∣ = ∣∣∣Λ2[ηρ1sinh(cρ1ϕ1(Θ̃)) + ηρ2sinh(cρ2Λ−1ϕ2(ρ̂))]

∣∣∣ can be as-
sumed as an infinitely large value. This indicates that the variation in ρ̂ significantly

exceeds f(x) + gu − χ2 −
.
ξ2. Furthermore, it suggests that lim

Λ→∞

d(f(x)+gu−χ2−
.
ξ2+ρ̂)

dt =
.
ρ̂,

lim
Λ→∞

Λ−1(f(x) + gu− χ2 −
.
ξ2 + ρ̂) =Λ−1ρ̂. Hence, it is easy to note that (78) holds accord-

ing to Theorem (1) when µ2[f(x) + gu− χ2 −
.
ξ2 + ρ̂] is considered as Θ̂. This concludes the

proof. �

To compare of the proposed observer with the conventional observers, two disturbance
observers were provided. The first observer is designed using the structure of the tracking
differentiator proposed by Zong et al. [28,29] expressed in (20) as follows:

.
Θ̂ = µ2[f(x) + gu− χ2 −

.
ξ2 + ρ̂],

.
ρ̂ = −Λ2[ηρ1{Θ̃ +

∣∣∣Θ̃∣∣∣βtansig(cρ1Θ̃)}+ ηρ2{ρ̂Λ−1 +
∣∣ρ̂Λ−1

∣∣βtansig(cρ2ρ̂Λ−1)}].
(79)

The second observer is designed using the structure of the tracking differentiators
proposed by Levant [30,31] expressed in (21) as follows:

.
Θ̂ = µ2[f(x) + gu− χ2 −

.
ξ2 + ρ̂− r1sig1/2(Θ̃)],

.
ρ̂ = −r2sign(Θ̃).

(80)

4. Stability Analysis

Lemma 1. ([50]). Consider the system
.
x = f (x). For the given positive scalar constants, c1, c2,

0 < γ < 1, and δ, if the continuous function V(x) satisfies
.

V(x) ≤ −c1V(x)−c2Vγ(x) + δ,
then the trajectory of the system

.
x = f (x) is finite time stable and convergence time is bounded

as follows:

Ts ≤ max[t0 +
1

υc1(1−γ)
ln υc1V1−γ(t0)+c2

c2
,

t0 +
1

c1(1−γ)
ln c1V1−γ(t0)+υc2

υc2
].

(81)
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Theorem 5. If the sliding mode surfaces are defined as (23), (24), (43)–(46), (66), and (67), then
systems (7)–(12) are controlled by virtual controls (33), (57), (58), (74) and control inputs (34),
(59), (60), (75), and the unknown disturbances are estimated by the nonlinear disturbance observer
provided in (78). Furthermore, the equilibrium points of (7)–(12) are asymptotically stable, and the
trajectory of the closed-loop signals is bounded in finite time as follows:

lim
t→Ts

V(ζ) ≤ min
{

∆
(1−υ)Λ1min

,
(

∆
(1−υ)Λ2min

)1/2
}

Ts ≤ max[t0 +
2

υΛ1min
ln υΛ1minV1/2(t0)+Λ2min

Λ2min
,t0 +

2
Λ1min

ln Λ1minV1/2(t0)+υΛ2min
υΛ2min

]

(82)

if the parameter conditions guarantee positive definiteness of Qk, i.e.,

kk1 >
2ε3

k
ck

+
ck
8
+ εk, kk2 > 2εkkk1. (83)

Proof. By defining the Lyapunov function as V =
3
∑

k=1
Vk using the results from (39), (63),

and (76), we can obtain the following expression:

.
V ≤ −

8

∑
k=1

µkζT
k Qkζk +

4

∑
k=1

δ2k. (84)

Given that
1
2

λmin(Pk)‖ζk‖2 ≤ 1
2

ζT
k Pkζk≤

1
2

λmax(Pk)‖ζk‖2, (85)

1
21/2 λ

1/2

min(Pk)‖ζk‖ ≤ V
1/2

k ≤
1

21/2 λ
1/2

max(Pk)‖ζk‖, (86)

and ‖ζk‖ =
(
ζ2

k1 + ζ2
k2

)1/2
=
(
k2

k1s2
k +2kk1|sk|3/2 + |sk|+ s2

k2)
1/2

, and |sk|−1/2 ≤ |sk| ≤ ‖sk‖

≤ 21/2V1/2
k

λ1/2
min(Pk)

, then

.
V ≤ −

8
∑

k=1
µkζT

k Qkζk + ∆

≤ −
8
∑

k=1
λmin(Qk)

(
kk1 +

1
2 |sk1|−1/2

)
‖ζk‖2 + ∆

= −
8
∑

k=1
kk1λmin(Qk)‖ζk‖2 − 1

2

8
∑

k=1

λmin(Qk)

|sk1|−1/2 ‖ζk‖2 + ∆

≤ −2
8
∑

k=1
kk1

λmin(Qk)
λmax(Pk)

Vk− 1
21/2

8
∑

k=1

λmin(Qk)λ
1/2
min(Pk)

λmax(Pk)
V−1/2

k + ∆

≤ −
8
∑

k=1
Λk1Vk −

8
∑

k=1
Λk2V−1/2

k + ∆≤ −Λ1minV −Λ2minV1/2 + ∆,

(87)

where ∆ =
4
∑

k=1
δ2k, Λ2min = min(Λk2), Λ1min = min(Λk1) Λ1 = 2kk1

λmin(Qk)
λmax(Pk)

, and

Λk2 = 1
21/2

λmin(Qk)λ
1/2
min(Pk)

λmax(Pk)
. Then, (74) is expressed as follows:

.
V ≤ −υΛ1minV − (1− υ)Λ1minV −Λ2minV1/2 + ∆ (88)

or .
V ≤ −Λ1minV − υΛ2minV1/2 − (1− υ)Λ2minV1/2 + ∆ (89)
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given that V ≥ ∆
(1−υ)Λ1min

, we obtain the following expression:

.
V ≤ −υΛ1minV −Λ2minV1/2. (90)

From Lemma 1, the boundedness of V(ζ) decreases argument ζ

ζ ∈
{

V(ζ) ≤ ∆
(1− υ)Λ1min

}
. (91)

Thus, the convergence time Ts is given as follows:

Ts ≤ t0 +
2

υΛ1min
ln

υΛ1minV1/2(t0) + Λ2min

Λ2min
. (92)

Next, given that V ≥ ∆
(1−υ)Λ2min

, we obtain the following expression:

.
V ≤ −Λ1minV − υΛ2minV1/2. (93)

This leads to the following:

ζ ∈
{

V1/2(ζ) ≤ ∆
(1− υ)Λ2min

}
, (94)

Ts ≤ t0 +
2

Λ1min
ln

Λ1minV1/2(t0) + υΛ2min

υΛ2min
. (95)

Therefore, V(ζ) is a continuously decreasing strong Lyapunov function, and the
equilibrium point ζ = 0 is reached in finite time from every initial condition. This also
guarantees that the equilibrium point s = 0 is reached in finite time from every initial
condition. This concludes the proof. �

Theorem 6. The finite time convergence of the compensating dynamics given in (25), (47), and
(68) is also guaranteed by the finite time convergence of ξij. Thus, the finite time boundedness of ξij
is demonstrated by defining the following expression:

Vξ =
2

∑
j=1

1
2

ξ2
1j +

2

∑
j=1

1
2

ξ2
3j +

2

∑
j=1

1
2

ξ2
5j +

2

∑
j=1

1
2

ξ2
7j. (96)

The convergence time Tξr is then obtained as

Tξr ≤
4V1/4

ξ (0)

λΞξ
. (97)
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Proof. From (96), one can obtain that

.
Vξ =

2
∑

j=1
ξ1j

.
ξ1j +

2
∑

j=1
ξ3j

.
ξ3j +

2
∑

j=1
ξ5j

.
ξ5j +

2
∑

j=1
ξ7j

.
ξ7j

= ξ11[−k11ξ11 + ξ12 + χ11 − α1 − βζ,11sig1/2(ξ11)]

+ξ12[−k12ξ12 − ξ11 − βζ,12sig1/2(ξ12)]+

· · ·+ ξ71[−k71ξ71 + ξ72 + χ71 − α7 − βζ,71sig1/2(ξ71)]

+ξ72[−k72ξ72 − ξ71 − βζ,72sig1/2(ξ72)]

≤ −
2
∑

j=1
k2

1jξ
2
1j −

2
∑

j=1
k2

3jξ
2
3j −

2
∑

j=1
k2

5jξ
2
5j −

2
∑

j=1
k2

7jξ
2
7j

−
2
∑

j=1
βξ,1j

∣∣ξ1j
∣∣3/2 −

2
∑

j=1
βξ,3j

∣∣ξ3j
∣∣3/2

−
2
∑

j=1
βξ,5j

∣∣ξ5j
∣∣3/2 −

2
∑

j=1
βξ,1j

∣∣ξ1j
∣∣3/2

+|ξ11||ζ11 − α11|+ |ξ31||ζ31 − α31|

+|ξ51||ζ51 − α51|+ |ξ71||ζ71 − α71|

≤ −
2
∑

j=1
k2

1jξ
2
1j −

2
∑

j=1
k2

3jξ
2
3j −

2
∑

j=1
k2

5jξ
2
5j −

2
∑

j=1
k2

7jξ
2
7j

−
2
∑

j=1
βξ,1j

∣∣ξ1j
∣∣3/2 −

2
∑

j=1
βξ,3j

∣∣ξ3j
∣∣3/2

−
2
∑

j=1
βξ,5j

∣∣ξ5j
∣∣3/2 −

2
∑

j=1
βξ,1j

∣∣ξ1j
∣∣3/2
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(98)

where ∆ = 1
2 (δ

2
11 + δ2

31 + δ2
51 + δ2

71) and |ζi,1 − αi,1| ≤ δi,1 can be achieved in finite time.
Then, (98) is expressed under the condition of k2

i,1 ≥
1
2 as

.
Vξ ≤ −

2
∑

j=1
βξ,1j

∣∣ξ1j
∣∣3/2 −

2
∑

j=1
βξ,3j

∣∣ξ3j
∣∣3/2 −

2
∑

j=1
βξ,5j

∣∣ξ5j
∣∣3/2

−
2
∑

j=1
βξ,1j

∣∣ξ1j
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+ ∆

≤ −ΞξV3/4
ξ + ∆,

(99)

with Ξξ = min[23βξi,j], i = 1, 3, 5, 7, j = 1, 2. Then, (99) is expressed as follows:

.
Vξ ≤ −λΞξV3/4

ξ − (1− λ)ΞξV3/4
ξ + ∆, (100)

under the condition that there exists a scalar 0 < λ < 1. If V3/4
ξ ≥ ∆

(1−λ)Ξξ
is satisfied, (100)

is expressed as follows: .
Vξ ≤ −λΞξV3/4

ξ . (101)

Consequently, Vξ(t) approaches zero in finite time, and the finite time convergence of
ξi,j is guaranteed. The convergence time Tξr is obtained as follows:

Tξr ≤
4V1/4

ξ (0)

λΞξ
. (102)

This concludes the proof. �
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5. Simulation Results

In this section, simulations for three cases, including the nominal system, perturbed
system without the observer, and perturbed system with the observer are conducted to
evaluate the performance of the proposed controller and disturbance observer for the
hexacopter UAV system. Four control systems were designed to compare the proposed
scheme with the conventional methods: namely, the standard BSC system (BSC); Levant’s
tracking differentiator [31,32] based BSC system (YTBSC) studied by Yu et al. [50]; Zong’s
tracking differentiator [28,29] based BSC system (ZTBSC), where the adopted controller
is designed according to those in [50]; and proposed tracking differentiator and super-
twisting algorithm based BSC system (PTSBSC). The system parameters of the hexacopter
UAV are listed in Table 1 of [10].

Table 1. Selected values of the hexacopter UAV.

Symbol Quantity Value

m0 nominal mass of the body 1.5 kg
l length of arm 0.275 m

Jx, Jy, Jz moment of inertia at each axis 3.259× 10−2, 3.259× 10−2, 6.059× 10−2 kg ·m2

Jr moment of inertia at propeller 9.9× 10−5 kg ·m2

Cd coefficient of drag 1.523× 10−7Nms2

To compare the performance of the tracking differentiators presented in Section 2,
the parameters are selected as R = 2, r1 = 1.5, r2 = 5.5, a1 = 1, a2 = 0.5, β = 0.5,
γ = 0.5 and κ = 0.95 under the initial condition of α = 0, x1(0) = 2, and x2(0) = −2.
Comparative results are presented in Figure 2, where the proposed differentiator shows
more rapid convergence performance than others. Only three tracking differentiators are
considered, excluding the tracking differentiator proposed by Yang et al. [27] due to its
lower performance.
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5.1. Simulation Results of the Nominal Hexacopter USV System

The design parameters of the controller and observer are selected via the trial-and-error
method. The selected values are listed in Tables 2–4.

Table 2. Selected values of the tracking differentiator.

Differentiator Selected Value

Altitude R1 = 20, r11 = 20, r12 = 20, a11 = 2, a12 = 2, κ1 = 1.2

Longitudinal and Lateral R3 = 20, r31 = 20, r32 = 20, a31 = 2, a32 = 2, κ3 = 1.2
R5 = 20, r51 = 5, r52 = 5, a51 = 1, a52 = 1, κ5 = 1.2

Heading R7 = 20, r71 = 20, r72 = 20, a71 = 2, a72 = 2, κ6 = 1.2

Table 3. Selected values of the compensating signal.

Compensator Selected Value

Altitude k11 = 0.5, k12 = 0.5, βζ,11 = 1, βζ,12 = 1

Longitudinal and Lateral k31 = 0.5, k32 = 0.5, βζ,31 = 1, βζ,32 = 1
k51 = 0.5, k52 = 0.5, βζ,51 = 0.5, βζ,52 = 0.5

Heading k71 = 0.5, k72 = 0.5, βζ,71 = 0.1, βζ,72 = 0.1

Table 4. Selected values of the disturbance observer.

Observer Selected Value

Altitude Λz = 10, ηρz1 = 0.1, ηρz2 = 0.1, cρz1 = 2, cηρz2 = 2, κz = 1.2
Longitudinal Λx = 15, ηρx1 = 0.2, ηρx2 = 0.2, cρx1 = 2, cηρx2 = 2, κx = 1.2

The command trajectories of each axis were selected as follows:

xd(t) =


2 m, 0 < t ≤ 40
5 m, 40 < t ≤ 60
1 m, 60 < t ≤ 100

, yd(t) =


1 m, 0 < t ≤ 25
2.5 m, 25 < t ≤ 80
1.5 m, 80 < t ≤ 100

, zd(t) =
{

5 m, 0 < t ≤ 80
3 m, 80 < t ≤ 100

,

ψd(t) =


0 rad, 0 < t ≤ 28

0.25 rad, 28 < t ≤ 80
0.125 rad, 80 < t ≤ 100

, φd(t) = 0 rad, θd(t) = 0 rad.

Simulation results for the nominal hexacopter system are shown in Figure 3, wherein
the additional load mass and disturbances are not considered. The position tracking result
in 3D space is shown in Figure 3a. The position tracking results for the translation axes are
presented in Figure 3b–d. The angular position tracking results are shown in Figure 3e–g.
To clarify the tracking performance for each control system, tracking errors for x, y, z, and
ψ axes are shown in Figure 3i–l. As shown in Figure 3i,j, the tracking performances of
the BSC and YTBSC are similar. As shown in Figure 3k, the improvement in the tracking
performance of the z-axis of the YTBSC exceeds that of the BSC system. However, the
performance of the PTSBSC system exceeds that of the other two systems as shown in
Figure 3h–k. The control inputs of the altitude and heading controllers are shown in
Figure 3l,m, respectively.
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Figure 3. Simulation results of the nominal hexacopter system. (a) The 3D tracking result. (b) Output
of x-axis. (c) Output of y-axis. (d) Output of z-axis. (e) Output of ψ-axis. (f) Output of φ-axis.
(g) Output of θ-axis. (h) Tracking error of x-axis. (i) Tracking error of y-axis. (j) Tracking error of
z-axis. (k) Tracking error of ψ-axis. (l) Control input of latitude controller. (m) Control input of
heading controller.

5.2. Simulation Results of the Perturbed System

Subsequently, simulation for the perturbed system with a 200% increase in the mass
of the hexacopter, which denotes the variation in the load mass, is conducted to evaluate
robustness with respect to the load perturbation. The other perturbations are as follows:

dx =0.1 N s/m, dy = 0.01 N s/m, dz = 0.1 N s/m, dφ = dθ = dψ = 0.012 N s/rad.

Additionally, the wind disturbance of 1.5 sin(t) m/s2 is applied to the x-axis. The
simulation results are shown in Figure 4, where the 3D tracking result is shown in Figure 4a
and the tracking results in each axis are shown in Figure 4b–e. Outputs in the x and y axes
of the conventional BSC system indicate high oscillation, and the latitude error exceeds
those of other systems. The outputs of the YTBSC system exhibit high overshoot in the
point of direction change as shown in Figure 4b–e. Conversely, the simulation results in
Figure 4 indicate that the robustness of the proposed PTSBSC system exceeds those of the
two systems for the disturbance due to mass variation and other disturbances.

5.3. Simulation Results of the Perturbed System with Disturbance Observer

Under the same disturbance conditions, as listed in Section 5.2, simulation for the
perturbed system with the controller blended with the disturbance observers based on
(78) (proposed), (79) (Zong [28,29]), and (80) (Levant [30,31]) is conducted to evaluate
the estimation performance. The simulation results are shown in Figure 5, where the 3D
tracking result is presented in Figure 4a and the tracking errors in the x, y, z, and ψ-axes
are shown in Figure 5b–e. The results indicate that the tracking results of the control
system with the proposed observer exhibit a more efficient performance than that of the
controller with the Levant observer. The estimates of the observer states and disturbances
of the proposed observer are shown in Figure 5f–i. Estimates of the observer states and
disturbances of the Levant observer are shown in Figure 5j–m. Finally, estimates of the
observer states and disturbances of the Levant observer are shown in Figure 5n–q. The
simulation results indicate that the estimate performance of the proposed observer exceeds
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that of the conventional Levant and Zong observers. Table 5 shows the root mean square
(RMS) value of the tracking error of each system, where it is shown that the RMS value of
the proposed system decreases until an average 7% of that of Levant’s system.
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Figure 5. Simulation results of the perturbed hexacopter system with the controller combined with
the disturbance observer. (a) The 3D tracking result. (b) Tracking error for x-axis. (c) Tracking error
for y-axis. (d) Tracking error for z-axis. (e) Tracking error for ψ-axis. (f) ζ2z and ζ̂2z of the proposed
observer. (g) ρz and ρ̂z of the proposed observer. (h) ζ2x and ζ̂2x of the proposed observer. (i) ρx

and ρ̂x of the proposed observer. (j) ζ2z and ζ̂2z of the Levant observer. (k) ρz and ρ̂z of the Levant
observer. (l) ζ2x and ζ̂2x of the Levant observer. (m) ρx and ρ̂x of the Levant observer. (n) ζ2z and ζ̂2z

of the Zong observer. (o) ρz and ρ̂z of the Zong observer. (p) ζ2x and ζ̂2x of the Zong observer. (q) ρx

and ρ̂x of the Zong observer.

Finally, under the disturbance condition with the 300% increase in the mass and
the same other condition, simulation for the perturbed system is conducted to evaluate
the estimation performance with the disturbance observers based on (78) (proposed),
(79) (Zong [28,29]), and (80) (Levant [30,31]). The desired 8-shape command trajectory is
described as

Pd(t) = [ xd yd zd]
T = [ 0 0 −4(1− e−0.3t)]T (m), t ≤ 4s,

Pd(t) =

 xd
yd
zd

 =


8− 8 cos

(
2π(t−4)

12

)
4 sin

(
4π(t−4

12

)
−4(1− e−0.3t)

, t ≥ 4s,

under other rotation commands set to be zero value.
In the first stage, the hexacopter UAV climbs vertically for 4 s to simulate the take-off

flight. Next, it follows an 8-shaped path while continuing to lift. In the second stage, the lift,
sideslip, and forward performances of the hexacopter UAV are evaluated comprehensively.
The simulation results are shown in Figure 6, where the 3D tracking result is presented in
Figure 6a, and the tracking output and errors in the x, y, z axes are shown in Figure 6b–g.
The simulation results indicate that the tracking results of the control system with the
proposed observer exhibit a more efficient performance than that of the controller with the
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Levant observer, like the previous results. Table 6 shows the root mean square (RMS) value
of the tracking error of each system, where it is shown that the RMS value of the proposed
system decreases until an average 27% of that of Levant’s system.
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Table 6. RMS value of the tracking error of each system.

Axis Levant Zong Proposed

x 0.231 (100%) 0.172 (75%) 0.074 (32%)
y 0.379 (100%) 0.294 (78%) 0.156 (41%)
z 0.344 (100%) 0.053 (15%) 0.028 (8%)

Average 0.318 (100%) 0.173 (54%) 0.086 (27%)

5.4. Discussions

Simulations are conducted for three cases, such as nominal system, perturbed system
without disturbance observers, and perturbed system with disturbance observers. Simula-
tion results of the nominal system for the linear position command trajectory show that the
performance of the PTSBSC system exceeds that of the other BSC and YTBSC systems. This
achievement is obtained, owing to the improved performance of the proposed tracking
differentiator. The proposed tracking differentiator shows the best performance over the
conventional tracking differentiators, including the recently developed ones.

The second simulation under the condition of the perturbation with wind gust and
200% increase in the mass is conducted to the control system without the disturbance
observer. In this case, the control performance is only dependent on the property of the
controller itself. The proposed PTSBSC system maintains the least performance variation
compared with other two BSC and YTBSC systems, where a large variation of the output
tracking results appears.

Finally, the disturbance observers are utilized to estimate uncertainties, such as the
wind gust and 200% and 300% variations in the mass. Simulations are conducted for
the linear position and 8-shaped command trajectories to evaluate various aspects of the
control performance. The output performances are determined by the superiority of the
adopted observer, where the proposed disturbance observer shows the outperforming
estimation results. Therefore, the proposed control system with the novel disturbance
observer is ascertained to provide the outperforming results compared to those of the
traditional similar controller and disturbance observer systems.

In addition, the phenomenon of pilot-induced oscillations (PIOs) that represent a
particular and specific aspect of the framework of human–machine interactions was and
still is a dynamic behavior of great interest in the design of aircraft [51]. PIOs consists of
sustained or uncontrollable oscillations, resulting from efforts of the pilot to control the
aircraft. The disturbance problem of PIOs can occur also in controlling UAVs. However,
the possibility to exploit strategies from nonlinear dynamics for controlling PIOs took
fewer attention in the UAV control system. In this study, this type of disturbance was not
considered yet. As a further study including an experimental examination, it is worth to
explore this disturbance by the proposed nonlinear controller and disturbance observer to
seek a more feasible control system under various aspects of real flight conditions of UAVs.

6. Conclusions

In this study, a super-twisting sliding mode backstepping control blended with a new
tracking differentiator and disturbance observer based on the concept of the proposed
tracking differentiator was examined to realize robust tracking control performance of a
hexacopter UAV system. Recursive design in conventional backstepping control and faster
convergence enabled the improved tracking differentiator to bypass the occurred repeated
differentiation issue and obtain the continuous and smooth derivative of the virtual control.
Next, the enhanced disturbance observer was designed to estimate uncertainties of the
hexacopter UAV system based on the proposed tracking differentiator. Thus, the robust
nonlinear controller equipped with the improved disturbance observer was designed to
obtain a hexacopter UAV control system that outperforms the conventional control scheme
in conditions with high nonlinearities and unknown disturbances. Sequential comparative
simulations for the hexacopter nonlinear UAV system in a nominal case and a case with
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variation in the load mass and wind disturbance were executed, and the simulation results
demonstrated the efficiency of the proposed control system.

Author Contributions: Conceptualization, S.H.; methodology, S.H.; software, S.P.; validation, S.H.
and S.P.; formal analysis, S.H.; investigation, S.H.; resources, S.P.; data curation, S.P.; writing—original
draft preparation, S.H.; writing—review and editing, S.P.; visualization, S.P.; supervision, S.H.; project
administration, S.H.; funding acquisition, S.P. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Korea Hydro & Nuclear Power Co. (2021) and the
Dongguk University Research Fund of 2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data sharing is not applicable.

Acknowledgments: This work was supported by the Korea Hydro & Nuclear Power Co. (2021) and
was supported by the Dongguk University Research Fund of 2020. Authors thank Korea Hydro &
Nuclear Power Co. and Dongguk University for their funding support.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

symbol name
ai coefficient of the tracking differentiator
αi virtual control
βi coefficient of the tracking differentiator
βξ,i coefficient of the controller
δi upper bound of the unknown uncertainty
ηi auxiliary variable of the super-twisting state variable
ζi super-twisting state variable and vector
ξi state variable of the compensating signal system
ki, Λi, κi, γi design constants
ri coefficient of the tracking differentiator
Ri coefficient of the tracking differentiator
ρi lumped uncertainty
Pi, Qi positive definite matrices
ϕi(·) composite sig(·) function
si sliding mode surface
ui controller
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