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Abstract: Forecasting of PM2.5 concentration is a global concern. Evidence has shown that the
ambient PM2.5 concentrations are harmful to human health, climate change, plant species mortality,
etc. PM2.5 concentrations are caused by natural and anthropogenic activities, and it is challenging
to predict them due to many uncertain factors. Current research has focused on developing a
new model while overlooking the fact that every single model for PM2.5 prediction has its own
strengths and weaknesses. This paper proposes an ensemble framework which combines four
diverse learning models for PM2.5 forecasting in Puli, Taiwan. It explores the synergy between
parametric and non-parametric learning, and short-term and long-term learning. The feature set
covers periodic, meteorological, and autoregression variables which are selected by a spiral validation
process. The experimental dataset, spanning from 1 January 2008 to 31 December 2019, from Puli
Township in central Taiwan, is used in this study. The experimental results show the proposed multi-
model framework can synergize the advantages of the embedded models and obtain an improved
forecasting result. Further, the benefit obtained by blending short-term learning with long-term
learning is validated, in surpassing the performance obtained by using just single type of learning.
Our multi-model framework compares favorably with deep-learning models on Puli dataset. It also
shows high adaptivity, such that our multi-model framework is comparable to the leading methods
for PM2.5 forecasting in Delhi, India.

Keywords: PM2.5; short-term learning; long-term learning; multi-model framework; forecast

1. Introduction

The urbanization of human history has inevitably increased the scale and region
of the industrial and food production. The immense amount of particulate matter with
aerodynamic diameter ≤2.5 µm (PM2.5) generated during the production drifts into the
air and even infiltrates into our houses [1]. Other anthropogenic pollution sources include
vehicle exhaust, burning activities, coal, and gasoline combustion, to name a few [2].
Research studies have shown that ambient PM2.5 concentrations greatly contribute to
human respiratory diseases [3,4] and cancers [5]. The World Health Organization (WHO)
reported that ambient PM2.5 concentrations caused an estimated 3 million premature deaths
worldwide in 2012 [6].

The concentration of PM2.5 is hard to forecast due to anthropogenic activities, natural
landscape profiles, and uncertain weather conditions. Some anthropogenic activities and
natural scenarios have periodic characteristics. These periodic characteristics could be
long-term (from a season to a year) or short-term (from a couple of hours to several days).
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For long-term examples, the power plants in Taiwan are used to raise their production
during summer in response to the high energy demand, and the monsoon usually brings
northerly serious air pollutants to Taiwan’s west coast in every winter. As short-term
examples, the Taiwanese burn a lot of incense and joss papers on some religious ceremony
days, many people gather at night for barbecue activities on the Mid-Autumn Festival Day,
and anticyclones usually cause the ambient pollutants to last for several days.

The diverse methodologies adopted in the literature for PM2.5 forecasting range
from regression and autoregression, machine learning, meta-evolution, receptor model,
to hybrid methods. These methods can be classified as parametric or non-parametric
ones. The parametric methods require explanatory variables in addition to the PM2.5
series itself, while the non-parametric methods need only the PM2.5 series. Parametric
methods are effective when the selected explanatory variables are informative to describe
the PM2.5 concentrations. The widely used explanatory variables include wind speed
and direction, precipitation, temperature, relative humidity, atmospheric pressure, land
use, traffic amount, road types, satellite images, etc. Non-parametric methods analyze
the temporal trends or series components in the historical PM2.5 data and use them as
input for predicting the next PM2.5 concentration. It is worth noting that hybrid methods
are currently more popular because each type of methodology has its own strengths and
weaknesses and a hybrid of multiple models is likely to complement one another. Several
works have shown that hybrid methods can boost the performance obtained by using a
single method [7–9].

This paper proposes an ensemble framework that combines four diverse prediction
models. Both ensemble and hybrid methods combine multiple models to enhance the
overall performance, however, there is still a difference between them. In the ensemble
method, the adopted models work independently with the same input data, and a learning
scheme (such as probabilistic, weighting, or voting mechanism) is used to integrate the
outputs from the multiple models. While in the hybrid method, the embedded models
usually work cooperatively in a one-way fashion. The output of a preceding model
is used as the input of the next model. So there is no need to integrate the results of
respective models.

Our ensemble framework combines four diverse models, namely, the cluster linear
regression, Fourier series descriptor, short-term multi-layer perceptron, and long-term
multi-layer perceptron. Our ensemble framework includes parametric and non-parametric
models, short-term and long-term learning schemes in a single framework. To the best
of our knowledge, this paper is the first attempt to develop an ensemble of such diverse
models and learning schemes for PM2.5 forecasting. In addition to the framework design,
the feature selection is deliberate. Four types of features, including periodic variables, me-
teorological variables, short-term meteorological variables, and short-term autoregression
variables, are considered. A spiral validation process [10,11] is devised to reduce the size
of the feature set by retaining the most effective variables. We choose a central Taiwan
township named Puli as our studied area. Our experimental results with the PM2.5 and
meteorology datasets for the twelve year period from 2008 to 2019 show that the proposed
multi-model framework can synergize the advantages of the embedded models and obtain
an improved forecasting result, indicating that the design of our ensemble framework is
promising. We also show that the performance obtained by using the proposed multi-
model framework surpasses that obtained by using either short-term learning ensemble or
long-term learning ensemble, revealing the importance of training with both short-term
and long-term data in order to make the forecasting system adaptive to varying pollution
events and weather conditions.

The remainder of this paper is organized as follows. Section 2 reviews the relevant
research on PM2.5 forecasting and presents the contributions of this paper. Section 3 eluci-
dates the proposed multi-model ensemble framework. Section 4 presents the experimental
results and comparative performance. Finally, Section 5 concludes this work.
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2. Related Work and Contributions
2.1. Related Work

We have performed a comprehensive review of recent work on PM2.5 forecasting.
Current forecasting approaches can be classified into the following five categories.

(1) Regression or autoregression. First, regression (either linear or nonlinear) tech-
niques stem from a set of explanatory variables (such as meteorological metrics, traffic
conditions, road types, etc.) and use them to estimate the response variable (i.e., PM2.5
concentrations) by training on cross-sectional data. Regression techniques are useful for
analyzing the relationship between explanatory variables and the response variable. How-
ever, the selection of effective explanatory variables depends on the local meteorological
patterns and it is critical to the prediction accuracy. Multivariate linear regression models
for the forecasting of concentrations of NOx and PM10 in Athens and Helsinki have been
intensively evaluated by [12] using NO, NO2, CO, O3, and PM2.5 as the explanatory vari-
ables. Nonlinear regression models have been deployed in [13] to forecast the PM2.5 air
quality and detect unhealthy PM2.5 event in the Louisville, Kentucky metropolitan area.
Separate nonlinear regression models were presented by [14] for primary PM2.5, PM2.5
sulfate ion, and PM2.5 nitrate ion. The explanatory variables of the nonlinear regression
models included facility emissions rates in tons per year and the distance between the
single emissions source and receptor. The multiple nonlinear regressions were found useful
in predicting Beijing’s daily PM2.5 concentration with one nonlinear regression applied to
each season of meteorological conditions [15]. The graphically and temporally weighted
regression has been attempted in [16] to find the relationship between the surface PM2.5
concentration and the satellite-derived aerosol optical depth (AOD) data. Dynamic multiple
linear equations have been used in [17] to model the hourly PM2.5 concentration in relation
to meteorological characteristics. The authors showed that the prediction accuracy of the
dynamic system could surpass to that obtained by nonlinear models. A spatiotemporal land
use regression method was applied to forecast the PM2.5 concentration in finely-grained
spatial grids [18]. The result showed that the PM2.5 concentration level in primary schools
is significantly different to the mean PM2.5 level of the corresponding city.

Second, autoregression methods, such as autoregressive integrated moving average
model (ARIMA) and generalized autoregressive conditional heteroscedasticity (GARCH),
require no explanatory variables but focus on discovering the temporal trends contained in
the PM2.5 time series. ARIMA was adopted in [19] to explore the short-term time series and
estimate the mean daily PM2.5 concentration. A GARCH model was used in [8] to capture
linear and nonlinear panel information for PM2.5 concentrations forecasting.

(2) Machine learning. Machine learning approaches are the main stream in the liter-
ature of PM2.5 forecasting. The approaches, such as artificial neural networks (ANNs),
fuzzy systems, and support vector machine (SVM), are able to learn the relationship func-
tion between the explanatory variables and the responsive variable (PM2.5 concentrations)
based on training data. The advantage of machine learning is that there is no prior as-
sumption for the form of the relationship function. In other words, a black-box learning is
implicitly performed without the need to anticipate the analytic form of the relationship.
General regression neural networks (GRNN) have been applied in [20] to predict all de-
composed PM2.5 components obtained by the ensemble empirical mode decomposition
(EEMD) method. The EEMD method has also been used in [21] to decompose the PM2.5
historical data and the least square support vector machine (LSSVM) is employed to predict
all reconstructed components and integrate them to produce the final forecasting result. A
specific type of ANN named multiple layer perceptron (MLP) is adopted in [22] to learn the
relationship between PM2.5 concentration and a set of meteorological factors with satellite-
derived AOD data. An ensemble model was established in [23] to combine PM2.5 estimates
from three machine learning methods, namely, neural network, random forest, and gradient
boosting. An improved deep learning model for predicting daily PM2.5 concentration in the
Beijing–Tianjin–Hebei area has been proposed in [24]. The improved deep learning model
considers spatiotemporal correlations among surrounding monitoring sites with spatial
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site-density information. Firstly, an MLP is applied to generate weighted PM2.5 time series
data based on air pollution concentration, wind condition, and the distance between the
focused site and its neighboring sites. Second, both the original and weighted PM2.5 time
series are fed into a long short-term memory (LSTM) to extract spatiotemporal features.
Finally, these spatiotemporal features and meteorological data are input to another MLP to
predict the daily PM2.5 concentration. Vast amounts of meteorological and pollutant data
have been dealt with by [25] based on deep learning techniques. A deep learning network
consisting of a convolutional neural network (CNN) and an LSTM is deployed. The CNN
extracts meteorological and pollutant features from 14 sites in Shanghai and the LSTM is
used to model time dependence of pollutants. The experimental results showed that the
proposed combined model outperforms classic deep learning models.

(3) Meta-evolution. Evolutionary algorithms are a family of nature-inspired opti-
mization algorithms based on evolution in biology. Among them, genetic algorithm (GA),
particle swarm optimization (PSO), ant cuckoo search algorithm (CSA) are notable ones.
Meta-evolution is a framework where the evolutionary algorithms are applied to fine
tune the hyperparameters of a machine learning model to improve its performance. Meta-
evolution frameworks have been developed to predict PM2.5 concentrations. For example,
GA [26], PSO [27], and CSA [28] have been applied to optimize the parameter settings of
artificial neural networks and support vector machines to estimate the PM2.5 mass by using
meteorological variables as inputs.

(4) Receptor model. In this model, the relationship between the pollution and its
particulate sources is estimated according to the pollutants’ conservation on chemical mass
balance (CMB) or the chemical transportation by the profiles of particulate mass sources
along the dispersion route. The receptor model is commonly used for PM2.5 dispersion
prediction of line or point sources such as roadways or burning sites. The dispersion of
PM2.5 along urban highway in India has been analyzed in [29]. The vehicle types, sizes,
and ages are considered in the emission mass balance and the molecular settling velocity
and meteorological conditions are incorporated into the line source dispersion prediction
model. The impact of Taiwan’s barbecue festival on air quality is studied in [30], which
monitored the PM2.5 mass before, in, and after, the barbecue festival and compared the
contribution from different chemical species. Another type of receptor model is based
on statistical analysis, such as positive matrix factorization (PMF) [31]. PMF justifies the
number of factors for finding the best-fit model to interpret the solution. PMF is used to
analyze the contribution of various source apportionments in a mixture of PM2.5 samples.

(5) Hybrid approaches. In order to obtain better prediction performance, hybrid
methods combining multiple types of prediction approaches are proposed. For instance,
receptor model was used in [23] to simulate the spatiotemporal transportation of PM2.5
mass, and a back propagation neural network was applied to calibrate the simulations
with meteorological and land use data. A hybrid GARCH model combining ARIMA and a
SVM has been proposed in [8] for PM2.5 concentrations forecasting. A multi-model fusion
method for PM2.5 prediction is proposed in [9]. The backpropagation neural network is
used as the fusion model to integrate the decisions from multiple regression methods. The
prediction accuracy of the fusion method has been shown to be superior to that obtained
from a single model. Kumar et al. [32] proposed a hybrid machine-learning method to
predict the PM2.5 concentration in Delhi on an hourly basis. The method firstly uses an
extra-trees regression to learn the correlation between the PM2.5 and meteorological time
series. Then the AdaBoost is applied to boost the performance by assigning stronger weight
to misclassified samples.

2.2. Research Trends and Contributions of This Paper

Depending on the applications, the time unit for PM2.5 forecasting varies significantly.
For short-term forecasting, the PM2.5 concentration is estimated for the next immediate
hour or in the next 6 h, 12 h, or 24 h [8,9,17,19,22,27,29]. For middle-term forecast, the
daily and weekly PM2.5 concentration are predicted in [7,15,16,18–21,23,26,28,30]. Rela-
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tively few works [18,23] have contemplated the long-term prediction such as seasonal and
yearly PM2.5.

For the country of the studied area, most existing works chose the cities in China as
their investigation fields because these cities are among those which have the most serious
PM2.5 pollution in the world. Some other studies have been conducted in the rest of Asia
(e.g., Taiwan, Iran, and India) and America (USA, Chile).

From our literature review, we observe three research trends as follows. (1) The
regression techniques and the machine learning (including ANN) models constitute the
two main classes of approaches used in the literature for PM2.5 forecasting. (2) Both
parametric (which requires explanatory variables) and non-parametric (which requires
no explanatory variables) models are widely adopted in the literature, and there are no
significant performance advantages of one over the other. Various phenomena reveal that
the relationship between PM2.5 concentrations and the explanatory variables is too complex
to be described by a parametric model. The PM2.5 time series itself manifests some salient
trends and the usage of non-parametric model is desired to realize the temporal trends.
(3) Different lengths of training time span have been considered in the literature. It ranges
from a week [8], a month [28,29], to multiple years [7,15]. Nevertheless, none of the
approaches in the literature has fused both the short-term and long-term learning. This is
the promising direction that will be explored in this paper. (4) An increasing number of
recent work has developed hybrid approaches which combine multiple models in a single
framework to exploit the strengths and weaknesses of individual models. In particular,
regression has been hybridized with ANN [9] and SVM [8].

The characteristics of existing literature can be compared according to the following
three aspects: forecasting approaches, time unit of forecasting, and the country of studied
area, as listed in Table 1.

Table 1. Comparison of recent works on PM2.5 forecasting.
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Zhu and Fan, 2015 • day China
Tsai et al., 2015 • day Taiwan
Yin et al., 2016 • day China

Ausati and Amanollahi, 2016 • day Iran
Di et al., 2016 * • • day USA

Zhang et al., 2016 • hour China
Ni et al., 2017 • hour/day China

Niu et al., 2017 • day China
Wang et al., 2017 * • • hour China
Sun and Sun, 2017 • day China

Mao et al., 2017 • hour China
Dhyni et al., 2017 • hour India
Guo et al., 2017 • day China

Moisan et al., 2018 • hour Chile
Zhang et al., 2019 * • • hour China

Di et al., 2019 • day/season/year USA
Qin et al., 2019 • hour China

Zhang et al., 2020 • week/season/year China
Xiao et al., 2020 • day China

Kumar et al., 2020 * • • hour India

* hybrid approaches.
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In light of these trends, this paper proposes (1) a multi-model ensemble framework
for the next 24-h PM2.5 concentration forecast in Puli, Taiwan. The multiple models com-
plement one another from different learning perspectives and they collaborate to maximize
the overall performance. (2) Four regression and machine learning models are deployed in
our framework. Different learning characteristics, namely, parametric and non-parametric,
short-term and long-term, are exploited in the proposed framework. (3) Our experiments,
conducted with the historical Puli, Taiwan dataset, show promising results.

3. Proposed Methods
3.1. Framework Architecture

We develop a multi-model framework for dealing with the next 24-h PM2.5 forecasting
problem. Figure 1 shows the architecture of our framework. The response variable is the
PM2.5 concentration to be forecasted and the explanatory variables are relevant periodic
and meteorological factors which are selected based on a spiral validation method. The
properties and trends of the response variable are learned through both long-term and
short-term data. The long-term training set consists of nine-year hourly data for the
response variable and the explanatory variables, while the short-term training set consists
of the dataset for the same variables but with the data records available only for the
immediate past week of the test day. Our system intends to not only capture the long-term
relationship between the response variable and the explanatory variables but also reveal
the recent PM2.5 trends that have incurred by the emerging climate patterns or pollutant
sources. The long-term relationship is learned by the cluster linear regression and a multi-
layer perceptron, and the short-term trends are identified by a Fourier series descriptor
and a multi-layer perceptron. A random forest classifier is applied to estimate the most
probable value class of the PM2.5 which then guides the multi-model strategy method to
integrate the forecasts from all long-term and short-term predictors to produce the final
forecast. The feature selection strategy and each of our learning models are elucidated in
the following subsections.
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3.2. Feature Selection

The selection of effective features for forecasting PM2.5 concentration depends on
spatiotemporal meteorological patterns and local geographical terrains. This phenomenon
manifests in the discrepancy among the chosen features in the literature for studies con-
ducted at different places [7,15,16,20,29]. It resembles the selection of appropriate functional
components in the software design life cycle (SDLC) of a software project. In light of this,
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we adopt the spiral model broadly used in the SDLC field to determine the features which
will be employed in our forecasting framework. The spiral model [10,11,33,34] as shown in
Figure 2 repeats spiral iterations of four phases: planning, design, conduct, and evaluation.
In the planning phase, system and unit specifications are acquired. Design phase starts
with the software design according to the specifications. In the construct phase, the code
implementation of the system prototype is fulfilled. In the evaluation phase, the users’
feedback with the prototype is collected for system evaluation and risk analysis. Then the
software development process enters into the next spiral iteration to enhance the feedback
evaluation and resolve the risk until the system evaluation and incurred risk are acceptable.
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Figure 2. The spiral model of software development life cycle.

The planning and design in the SDLC depend on the system requirement and unit
specifications which are not complete enough in the early SDLC phases, so the spiral model
allows the software development to incrementally converge to the ideal system. Analo-
gously, the design of effective features for forecasting PM2.5 depends on the geographical
places where the investigation is conducted because the formation of PM2.5 concentrations
are highly related to local anthropogenic and meteorological patterns. Therefore, we adapt
the spiral model to a feasible feature selection model for prediction of PM2.5 concentration.
We start with an initial set of diverse features which are determined by the literature review
and our own invention, such as the temporal periodical features and compound features.
Then, in each spiral iteration, we respectively remove each feature from the current set to
conduct the production of respective new system prototypes with the same training set. The
resulting risk (prediction RMSE as will be defined) of each system prototype is evaluated
from system simulation over the validation set. Based on the evaluation, the feature whose
test removal has resulted in the remaining feature set having the minimum risk in terms
of RMSE with the validation set is actually removed from the current feature set. Then
the spiral feature validation process enters into the next spiral iteration until the current
feature set contains only one feature. Finally, the best set of features can be determined by
comparing the risk variations of generated prototypes along the spiral iterations. In the
following, we describe our feature engineering process in detail.

Table 2 shows the initial set of features with which we start the spiral validation
process for feature selection. The initial set contains 20 features determined by our own
invention (the periodic features and short-term compound features as will be noted) and
the literature review (the meteorological and autoregression features). These features
are classified in four categories. (1) Periodic variables. We preliminarily examined our
dataset and found a commonly observed situation in Puli Township that the daily low
PM2.5 appears in early afternoon, and the daily high PM2.5 is usually observed around
midnight. Figure 3a shows a typical example of daily periods observed within 1 February
2011 and 8 February 2011. We anticipate that this salient daily period would be a useful
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indicator for adjusting the prediction for PM2.5 concentration. Moreover, the PM2.5 time
series in our multi-year dataset also has a yearly periodic trend. Figure 3b shows the
PM2.5 yearly periodic trend within 2008 and 2016. The low monthly PM2.5 is seen in
every summer, and the high monthly PM2.5 in a year commonly appears in winter. With
the observations from daily and yearly trends of PM2.5 variations, we propose periodic
variables based on sine and cosine values of daily and yearly ordinal hour to capture these
trends. (2) Meteorological variables. The meteorological feature variables are commonly used
in the PM2.5 forecasting literature. We include in the initial feature set the broadly used
variables as follows: temperature (Temp), relative humidity (RH), precipitation (Prep),
wind speed (WS), and direction sine (sin_w) and cosine (cos_w). (3) Short-term history
meteorological variables. In addition to the meteorological condition within the current hour,
the PM2.5 concentration is strongly related to its recent weather status. For example, a
constantly blowing strong wind for a couple of hours would significantly mitigate the PM2.5
concentrations. Therefore, we record short-term history meteorological variables observed
in a time window of prior six hours. To explore more effective features, we propose new
compound feature variables as follows. As the wind speed (WS) and wind direction sine
(sin_w) and cosine (cos_w) have cohesive meaning as a whole, some important information
may be missing if these features are used independently. We propose the compound
features sinw_WS and cosw_WS by calculating the sum of product of WS and sin_w and of
WS and cos_w, respectively. Moreover, a complex feature combining sinw_WS and cosw_WS
is proposed. The feature ST_WB, defined as the root of the sum of square sinw_WS and
square cosw_WS, is found to have higher prediction capability than sinw_WS and cosw_WS,
as will be noted. (4) Short-term history autoregression variables. The PM2.5 series has strong
autocorrelation characteristic. Figure 4 shows the autocorrelation of the PM2.5 as a function
of the time lag in hours. It is seen that the autocorrelation has a daily periodic trend and
decays with the time lag length. Thus, we devise three autoregression variables within 48-h
time lag.

Table 2. Initial feature variables and their removal order in the spiral validation process.

Initial
Variables

Variable
Descriptions

Remova
Order

Finally
Retained

(1) Periodic variables

sin_d Sine of ordinal hour in a day 15
√

cos_d Cosine of ordinal hour in a day 16
√

sin_y Sine of ordinal hour in a year 3
cos_y Cosine of ordinal hour in a year 6

(2) Meteorological variables

Temp Temperature 14
√

RH Relative humidity 8
Prep Precipitation 7
WS Wind speed 10

√

sin_w Sine of wind direction 2
cos_w Cosine of wind direction 5

(3) Short-term history meteorological variables

ST_Temp Mean temperature in prior six hours 17
√

ST_RH Mean relative humidity in prior six hours 19
√

ST_Prep Mean precipitation in prior six hours 9
√

ST_WS Mean wind speed in prior six hours 13
√

sinw_WS Sum of product of sin_w and WS in prior six hours 1
cosw_WS Sum of product of cos_w and WS in prior six hours 4
ST_WB Rooted sum of square sinw_WS and square cosw_WS 18

√

(4) Short-term history autoregression variables

L_PM2.5 Last hour PM2.5 in the preceding day 20
√

D1_PM2.5 Mean hourly PM2.5 in the preceding day 11
√

D2_PM2.5 Mean hourly PM2.5 in the day 24 h ahead 12
√
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After we have prepared the initial feature set of 20 candidate features, the spiral
validation process is applied to assist us to asymptotically converge to an ideal set of
effective features. As previously noted, in each spiral iteration, we respectively remove
each feature from the current set to conduct the production of respective new system
prototypes with the same training set. The resulting risk of each system prototype is
evaluated from system simulation over the validation set. The training set covers eight-year
data for Puli Township from 2008 to 2015, while the validation set contains the entire year
2016 data. Based on the evaluation, the feature whose test removal has resulted in the
remaining feature set having the minimum risk in terms of RMSE with the validation set is
actually removed from the current feature set. Then the spiral feature validation process
enters into the next spiral iteration until the current feature set contains only one feature.
Finally, the best set of features can be determined by comparing the risk variations of
generated prototypes along the spiral iterations. To illustrate, Figure 5 shows the variations
of the risk in terms of RMSE obtained by the retained feature set in each spiral iteration
by applying the spiral validation process. The order of removed features in the sequential
spiral iterations is shown in Table 2. We observe that the RMSE stays at a relatively low
level as the number of retained features in the feature set decreases from 12 to 7. We
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finally determine to retain 12 features (i.e., removing 8 features) as indicated in Table 2
because then the final feature set contains some members from each feature category and
it potentially has better generalization capability than other feature selections. Note that,
our spiral validation process is a feature selection heuristic to asymptotically obtain the
near-optimal feature set from 20 initial potential features. For an exhaustive search of

the optimal feature set, we require to estimate in total
(

20
1

)
+

(
20
2

)
+ . . . +

(
20
20

)
system prototypes which is computationally prohibitive.
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Our multi-model framework has two learning tasks, (1) the relationship between the
meteorological variables and the PM2.5 concentration, and (2) the trends embodied in the
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PM2.5 series. For the first learning task, we devise the cluster linear regression and the
multi-layer perceptron. The learning scheme for the second task is two-fold. One is through
the feature design where we have selected periodic variables and autoregression variables
as previously noted. The other is accomplished by the Fourier series descriptor which
learns the main components in the PM2.5 series. The two learning tasks are conducted in
both short-term and long-term manners, as described in the following sections.

3.3. Long-Term Learning
3.3.1. Cluster Linear Regression

To investigate the relationship between the PM2.5 concentration and the explanatory
variables, some existing works deployed various forms of linear regression, such as multiple
linear regression [20] and dynamic multiple regression [17]. We devise another form of
linear regression, namely, the cluster linear regression, which partitions the feature space
into several clusters and interprets the relationship between the features and the response
variable for each cluster by linear regression. The clustering process is conducted by a
decision tree with six features. The features are selected by reference to the maximal
information gain principle where the feature reducing the most regression RMSE (and thus
with better interpretation capability) is selected next in the decision tree. To avoid selecting
redundant features, the collinearity between the next feature and the features already
selected is tested. In details, the clustering starts with the initial feature set I, consisting
of all 20 features listed in Table 2 and an empty set J of features for clustering. For each
feature variable x contained in I, we find the optimal threshold to partition x values into
two subgroups and interpret all the plots (x, PM2.5) in each subgroup by linear regression.
The optimal value of the threshold is the one which minimizes the sum of the RMSE for
the two subgroups. After all features in I have been examined, the best feature x* with
the minimum sum of the RMSE is selected. We then test the Pearson collinearity between
x* and any variables already contained in J. If their absolute Pearson correlation is all no
greater than 0.7, we update the two feature sets by I = I − {x*} and J = J ∪ {x*}. Otherwise,
we only perform I = I − {x*} and test the next best feature x* with the minimum sum of the
RMSE. The process is iterated until J contains six features resulting in 64 clusters, i.e., the
decision tree has six levels. As the amounts of our nine-year long-term data are huge, the
maximal level of the decision tree is set to six by trading off the regression interpretability
and the computational efficiency.

3.3.2. Multilayer Perceptron

Multilayer perceptron (MLP) is an artificial neural network in which in addition to the
input layer and the output layer, one or more non-linear hidden layers can be deployed
in the network. In our long-term learning, the MLP is adopted to learn the non-linear
relationship between long-term meteorological data and PM2.5 variations. Consequently,
the input layer consists of neurons corresponding to the 12 features which are determined
by the spiral validation process as noted in Section 3.2. The 12 features are listed in the
last column of Table 2 as the finally retained features. The MLP is constructed with one
hidden layer which contains 12 neurons. The output layer has only one neuron which
receives the values from the last hidden layer and transforms them to the final output as
the PM2.5 forecasting.

3.4. Short-Term Learning

We contemplate the short-term trends of PM2.5 concentration emerge via two pathways.
One is formed by emerging pollution sources, such as dust-storms, burning of agricultural
wastes, incense burning in a religious ceremony, or barbecue activities in festivals. The
other one is incurred by particular weather patterns, such as stagnant wind or upper-level
anticyclone, which cause the pollutants hard to dissipate. Both trends are temporary, usually
disappear within one week. Hence, we use the data observed in the immediate past week
as the training set for our short-term predictors. Two predictors are proposed for revealing
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each type of the short-term trends. First, Fourier series is employed to approximate the
short-term pollution trend because Fourier series is a non-parametric descriptor which only
focuses on the response variable (i.e., PM2.5 concentration). Second, the MLP is adopted
to learn the short-term relationship between the changes of meteorological patterns and
the variations of PM2.5 concentration. We articulate the two short-term predictors in
the following.

3.4.1. Fourier Series Descriptor

Fourier series can be used to represent a given function, say f (t), in the form of the
Fourier polynomial as follows.

f (t) =
1
2

a0 + a1 cos t + b1 sin t + a2 cos 2t + b2 sin 2t + . . . + an cos nt + bn sin nt + . . . (1)

Since the principal information of f (t) is reserved in lower degree terms, we can
approximate f (t) by the Fourier polynomial of degree n when n is sufficiently large. The
value of coefficients ai and bi leading to the optimal approximation can be determined by
finding the orthogonal projection of f (t) onto the space spanned by the Fourier polynomial
of degree n,

projFourier f (t) =
(

f (t), 1√
2π

)
1√
2π

+
(

f (t), 1√
π

cos t
)

1√
π

cos t +
(

f (t), 1√
π

sin t
)

1√
π

sin t
+ . . .
+

(
f (t), 1√

π
cos nt

)
1√
π

cos nt +
(

f (t), 1√
π

sin nt
)

1√
π

sin nt

(2)

To describe the short-term pollution trend, the hourly PM2.5 data, g(t), acquired in
the immediate past week are converted into the target function in the domain [−π, π]
as follows.

f (t) = g
(

t + π

2π
× 7× 24

)
, t ∈ [−π, π], (3)

To Illustrate, Figure 6 shows the PM2.5 series (during 13 October to 19 October 2019)
approximation by using the Fourier polynomial of degree n equivalent to 50, 60, and 70,
respectively. It can be observed that the Fourier polynomials with n = 50 and 60 give a
better approximation than that with n = 70. To determine the best value of n, we have
explored several values for the Fourier polynomial degree and found that n = 60 provides
the best result as will be shown by the experiments in Section 4.2.

Appl. Sci. 2022, 12, x FOR PEER REVIEW 14 of 22 
 

 

Figure 6. Illustration of PM2.5 series approximation by using the Fourier polynomial of degree n 

equivalent to 50, 60, and 70, respectively. 

3.4.2. Multilayer Perceptron 

As noted, MLP has been deployed in our long-term learning scheme. Again, we 

adopt MLP in our short-term learning scheme. In contrast to the long-term MLP, which 

learns the main relationship between variables with the consensus over nine years, the 

short-term MLP aims to learn the recent emerging weather patterns that make the PM2.5 

variations unusual in long-term history. Hence, the short-term MLP is trained with the 

feature dataset for the immediate past week of the test day. 

3.5. Multi-Model Integration Strategies 

So far, we have proposed four models for PM2.5 forecasting. Let the forecasts made 
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3.4.2. Multilayer Perceptron

As noted, MLP has been deployed in our long-term learning scheme. Again, we adopt
MLP in our short-term learning scheme. In contrast to the long-term MLP, which learns the
main relationship between variables with the consensus over nine years, the short-term
MLP aims to learn the recent emerging weather patterns that make the PM2.5 variations
unusual in long-term history. Hence, the short-term MLP is trained with the feature dataset
for the immediate past week of the test day.

3.5. Multi-Model Integration Strategies

So far, we have proposed four models for PM2.5 forecasting. Let the forecasts made by
the four models be denoted by ẑ1, ẑ2, ẑ3, and ẑ4, respectively. To combine their forecasts to
produce an improved one, five multi-model integration strategies and a lower bound are
presented as follows.

• Averaged strategy. This strategy simply determines the final forecast as the mean of

the four individual forecasts as calculated by ẑ = 1
4

4
∑

i=1
ẑi.

• Weighted strategy. The strategy considers the final forecast as the sum of weighted
forecasts made by individual models. Let the prediction RMSE error estimated for the
ith model during its training phase be ei. The normalized reciprocal error is adopted

as the weight for the model, i.e., wi = e−1
i /

4
∑

j=1
e−1

j . The final forecast is then calculated

by ẑ =
4
∑

i=1
wi ẑi.

The rest of the strategies work with the classified value range of PM2.5. We use the long-
term training set to produce the distributions of PM2.5 concentrations. The 10-percentile
and the 90-percentile are used to separate the PM2.5 concentrations into low, middle, and
high ranges. A random forest classifier is trained with the long-term dataset with the
labeled ranges. During the test process, the random forest classifier receives the inputs
and estimates the most probable value range of the PM2.5. Let the estimate made by the
random forest classifier be denoted as Crfc, which is L, M, or H, if the classification result
is labeled as low, middle, or high PM2.5 range. We propose three advanced multi-model
integration strategies as follows.

• Max_Avg_Min strategy. This strategy determines the final forecast according to the
classified value range of the PM2.5. If the test instance is classified as in the high/low
range, the maximal/minimal forecast value made by individual models is output
as the final forecast. If it is classified in the middle range, the strategy outputs the
same forecast value as that made by the Averaged strategy. In other words, the final
prediction determined by the Max_Avg_Min strategy can be calculated as follows.

ẑ =


max(ẑ1, ẑ2, ẑ3, ẑ4) if Crfc =

′H′
4
∑

i=1
ẑi/4 if Crfc =

′M′

min(ẑ1, ẑ2, ẑ3, ẑ4) if Crfc =
′L′

(4)

• Max_Wgt_Min strategy. This strategy resembles the Max_Avg_Min strategy by assign-
ing the maximal or minimal forecast value made by individual models as the final
forecast if the classified range is high or low. However, if the test instance is classified
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as in the middle range, the strategy outputs the same forecast value as that made by
the weighted strategy, i.e.,

ẑ =


max(ẑ1, ẑ2, ẑ3, ẑ4) if Crfc =

′H′
4
∑

i=1
wi ẑi if Crfc =

′M′

min(ẑ1, ẑ2, ẑ3, ẑ4) if Crfc =
′L′

(5)

• Adpt_Wgt strategy. This strategy adopts the adaptive weighting scheme to produce
the final forecast. In precise terms, the set of the individual forecast which falls in the
classified PM2.5 range is identified. The final forecast is determined by calculating
the sum of the weighted forecasts which are contained in the identified set. So the
Adpt_Wgt strategy will adapt to the models which are validated by the random forest.
The Adpt_Wgt strategy can be realized by the following formula.

ẑ =

 ∑ wi ẑi/∑ wi if Crfc =
′H′ and ∀ẑi ∈ H

∑ wi ẑi/∑ wi if Crfc =
′M′ and ∀ẑi ∈ M

∑ wi ẑi/∑ wi if Crfc =
′L′ and ∀ẑi ∈ L

(6)

• Lower bound. To realize how well our multi-model strategies work for combining
multiple forecasts, a lower bound for the forecasting error is calculated for comparison.
The lower bound is the best forecasting root mean square error (RMSE) or mean
average error (MAE) that could be possibly obtained by selecting a model for each
prediction. That is, for each instance in the test set, the best of the four model forecasts
which is nearest to the actual PM2.5 is manually selected. After the best forecasts for all
test instances have been selected, their RMSE and MAE are calculated and designated
as the lower bounds. It is noted that here the lower bound is only referring to the
optimal performance by model selection. It is not intended to indicate the global lower
bound for any forms of multi-model hybridization.

4. Proposed Experimental Results and Comparative Performance
4.1. Dataset Description and Forecast Performance Measures

Our studied field is Puli Township located in Central Taiwan as shown in Figure 7a.
There is a metropolitan (Taichung City) and several power plants and petrochemistry
complexes to the west of Puli. Puli is a mountain basin with river outlets to the west part.
To make our research practical and verifiable to the public, we chose the dataset of real
PM2.5 concentration and meteorological data values to perform comparative analysis of the
predictive models, According to the PM2.5 dataset maintained by Taiwan Environmental
Protection Administration (EPA), Puli is notorious for its high air pollution rank in the
list of all EPA supersites [35]. Therefore, we chose the hourly PM2.5 dataset available
at Puli supersite (https://airtw.epa.gov.tw/CHT/Query/His_Data.aspx, accessed on 16
December 2021). Figure 7b shows the basin geography of Puli Township and the location
of the EPA supersite. The supersite is located in the central Puli downtown which is the
most populated area with many shops, restaurants, and temples nearby. In addition to
local sources, the air pollution from the western metropolitan drifts through the river
valley into Puli basin. The EPA supersite applies the beta attenuation monitoring (BAM)
technique for PM2.5 measurement. The BAM employs the energy absorption of beta
radiation by suspended particles extracted from the air flow. The attenuation caused
by suspended particles is exponentially dependent on the particle mass in the sample.
For the features to be used as the explanatory variables in our parametric models, we
obtained the hourly meteorological dataset from the Taiwan Central Weather Bureau
(http://e-service.cwb.gov.tw/HistoryDataQuery/, accessed on 16 December 2021), which
tallies all the raw features we need, namely, temperature, relative humidity, wind speed and
direction, and precipitation. The time span of the PM2.5 and the meteorological datasets
is between 2008 and 2019. The data for the early nine years (from 1 January 2008 to 31

https://airtw.epa.gov.tw/CHT/Query/His_Data.aspx
http://e-service.cwb.gov.tw/HistoryDataQuery/
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December 2016) are designated as the long-term training set. The remaining three years
(from 1 January 2017 to 31 December 2019) are used as the test set for evaluating the
performance of competing models. The seven days prior to each test day are used as the
short-term training set for the corresponding test.
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To evaluate the forecast accuracy, we adopt three performance measures, namely, the
root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute
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percentage error (MAPE), which have been broadly used in the literature and they are
defined as follows.

RMSE =

(
1
T

T

∑
t=1

(ŷt − yt)
2

) 1
2

, (7)

MAE =
1
T

T

∑
t=1
|ŷt − yt|, (8)

MAPE =
1
T

T

∑
t=1
|ŷt − yt|/yt, (9)

where yt and ŷt are the observed PM2.5 value at time t and the corresponding predicted
value, and T is the number of observed PM2.5 records in the evaluation period.

The computation platform for our experiments is a personal computer with a 3.6 GHz
CPU and 32 GB RAM, the programs were codified using Python 3.6.8 and the Scikit-
learn package.

4.2. Performance of Single Models

Before we evaluate the proposed multi-model ensemble framework, the parameters of
the individual models, cluster linear regression (CLR), long-term multilayer perceptron
(LMLP), Fourier series descriptor (FSD), and short-term multilayer perceptron (SMLP),
are tuned in advance to serve as a baseline for comparison. As previously described in
Section 3.3.1, the CLR has been well constructed by a decision tree partition. The main
parameters of the MLP are the number of hidden layers and the number of neurons in
each hidden layer. We first constructed various one-hidden-layer MLPs with the number of
neurons equivalent to 8, 10, 12, denoted by MLP(8), MLP(10), and MLP(12), respectively.
The 3-year (2017–2019) test set forecasting performance is listed in Table 3 where the best
result is shown in boldface. It is seen that MLP(12) outperforms the other counterparts. To
test if the MLP performance improves with the number of hidden layers, the three-hidden-
layer MLP with 12 neurons in each hidden layer, denoted by MLP(12, 12, 12), is constructed
for comparison. We observe that increasing the number of hidden layers in MLP does not
show the performance improvement in forecasting. This observation is consistent with
the results from the literature [36], which has shown that an MLP with only one hidden
layer can be satisfactorily used in different fields of engineering. In this paper, both the
long-term and short-term MLPs are implemented with one-hidden-layer with 12 neurons.
For the FSD, we have to determine the best degree n of the Fourier polynomial. The 3-year
test set forecasting performance of the FSD, with n equivalent to 30, 40, 50, 60, 70, 80, and
90, is shown in Table 4. We see that there is no clear trend about the optimal value of n.
Consider the tradeoff between the forecasting performance and computational efficiency,
we chose n = 60 in our FSD setting. Finally, Table 5 tabulates the RMSE, MAE, and MAPE
test performance obtained by each individual model for all days in the three-year test set.
It is seen that the LMLP is the best among the four models for the three-year test set, CLR
ranks at the second place, followed by FSD and SMLP.

Table 3. Three-year forecasting performance obtained by various MLPs.

RMSE MAE MAPE

MLP(8) 8.63 6.36 0.42
MLP(10) 7.84 5.74 0.40
MLP(12) 7.82 5.71 0.38

MLP(12, 12, 12) 8.14 5.84 0.40
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Table 4. Three-year forecasting performance obtained by various FSDs.

RMSE MAE MAPE

FSD(30) 10.19 7.69 0.61
FSD(40) 11.89 9.23 0.73
FSD(50) 10.14 7.74 0.62
FSD(60) 9.59 7.35 0.60
FSD(70) 12.95 9.66 0.75
FSD(80) 9.59 7.36 0.59
FSD(90) 12.65 9.50 0.73

Table 5. Three-year forecasting performance obtained by various single models.

RMSE MAE MAPE

CLR 8.94 6.29 0.43
LMLP 7.82 5.71 0.38
FSD 9.59 7.35 0.60

SMLP 10.73 8.04 0.60

Mean 9.27 6.85 0.50

4.3. Performance of Short-Term and Long-Term Learning Ensembles

This section compares the performance of short-term and long-term learning en-
sembles. The short-term ensemble is reduced from our multi-model framework by only
activating the short-term models, namely, FSD and SMLP. The final forecast made by the
short-term ensemble is calculated by applying the weighted strategy. Similarly, the long-
term ensemble received the forecasts from CLR and LMLP only and combined them by the
weighted strategy. The RMSE, MAE, and MAPE performance of short-term and long-term
learning ensembles are shown in Table 6. It is seen that the forecasting performance ob-
tained by the long-term ensemble is around the mean performance, which is achievable by
the two embedded models (i.e., CLR and LMLP), and so is the performance of short-term
ensemble achievable by FSD and SMLP. The implications are that the ensemble combining
the forecasting results by two long-term learning models cannot create additional merits in
performance improvement. Similar situation applies for the short-term ensemble. However,
the short-term models have the potential to promote the performance of the long-term
models although the short-term models are outperformed by the long-term models. This
observation is validated by the superior performance of various multi-model strategies as
shown in Table 7. The multi-model strategies enable the short-term models to compensate
the test cases at which the long-term models performs worse. It is also worthy to note
that the forecasting capability of the long-term ensemble may stay effective for some years.
In our study, it remains effective in the three test years. However, the maximal number
of straight years the long-term ensemble is applicable after a training process still needs
further verification.

Table 6. Three-year forecasting performance obtained by short-term and long-term learning ensembles.

RMSE MAE MAPE

Long-term ensemble 7.86 5.67 0.38
Short-term ensemble 10.42 7.83 0.58
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Table 7. Three-year forecasting performance obtained by various multi-model strategies and deep-
learning models.

Models RMSE MAE MAPE R2

Averaged 8.02 5.92 0.44 0.54
Weighted 7.70 5.64 0.41 0.57

Max_Avg_Min 8.01 5.91 0.44 0.54
Max_Wgt_Min 7.69 5.63 0.41 0.57

Adpt_Wgt 8.31 6.20 0.51 0.50
Mean 7.95 5.86 0.44 0.54

Lower Bound 4.73 2.92 0.21 0.84

LSTM 8.09 5.50 0.40 0.59
CNN 9.20 6.97 0.58 0.39

4.4. Performance of Various Multi-Model Strategies

This section presents the comparative performances of our multi-model strategies.
The state-of-the-art deep learning techniques, in particular, a convolutional neural network
(CNN) and a long short-term memory (LSTM) network are constructed for a comparison
with our multi-model strategies. The input layer of the CNN contained the same features
used in our ensemble models. Five kernels are used to generate the feature maps, which
were fed into a fully connected network to learn the next day 24-h PM2.5 forecasts. The
LSTM learns the autoregression relations in the original PM2.5 time series. We applied
the additive decomposition method to decompose the PM2.5 time series into the trend
series, cycle series, seasonal series, and residue series. The LSTM takes the trend, cycle, and
seasonal series as model input, and uses the residue series for adjusting the model.

Table 7 shows the RMSE, MAE, MAPE, and R2 of the forecast for all days in the three
test years by applying various multi-model strategies and deep-learning models. We ob-
serve the following implications. (1) The excellent performance of the lower bound implies
that the four individual models do have complementary features, which are essential to
build an effective multi-model framework. (2) For our proposed multi-model strategies, the
Max_Wgt_Min is the best strategy among all. The weighted strategy ranks at the second
place, followed by Max_Avg_Min, Averaged, and Adpt_Wgt. (3) Both Max_Wgt_Min and
weighted strategies are able to further improve the performance of the best individual
model, namely, the LMLP as shown in Table 5. The remaining strategies Max_Avg_Min,
Averaged, and Adpt_Wgt are inferior to LMLP, but are significantly better than CLR, FSD,
and SMLP. The mean performance of all multi-model strategies overcomes the mean per-
formance of all individual models, indicating the benefit offered by the ensemble. (4) As
for the deep-learning models, LSTM significantly outperforms CNN. However, LSTM is
better than Adpt_Wgt only out of our five ensemble strategies. CNN is the worst among
all compared models. It is well known that CNN prevails in learning spatial information
of multiple PM2.5 sensors as revealed in [24,25]. However, this study does not consider
spatial information and only uses one PM2.5 supersite station as the forecasting reference.
(5) Although our multi-model strategies can improve the performance obtained by a single
model, there is still a gap to the optimal lower bound obtained by manual model selection.
It is a promising direction for future research to develop a more intelligent collaborative
learning strategy (e.g., deep reinforcement learning) to meet the high prediction accuracy
that is currently only attainable by manual model selection.

4.5. Comparative Performances on Delhi Dataset

To test the applicability of our ensemble framework on the dataset acquired in other
countries, we chose the dataset used in [32] which applies time series analysis and regres-
sion to forecast the hourly PM2.5 concentration in the R.K. Puram area in Delhi, India. The
time span of the dataset is from 1 January 2018 to 30 November 2019, and it is separated
to a training set and a test set by respectively using 80% and 20% of the entire dataset.
The features contained in the dataset include solar radiance, air pressure, temperature,
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wind speed, wind direction and PM2.5 time series. Kumar et al. [32] conducted a compre-
hensive comparison on several state-of-the-art machine learning techniques. We use the
same experimental settings and apply our ensemble framework on Delhi dataset. Table 8
shows the comparative performances of various methods on Delhi dataset. We can see
that all of the single models used in our framework, if they are executed as a stand-alone
predictor, are inferior to all the compared models in Kumar et al. [32]. Our long-term
or short-term ensemble can improve their elementary models, but still cannot be fairly
comparable to the leading group. With our multi-model ensemble strategies, the forecasting
performance obtained by using weighted, Max_Wgt_Min, and Adpt_Wgt is comparable
to the leading methods in Kumar et al. [32]. The best ensemble, weighted strategy, can
surpass all but one method, the ET + AdaBoost, in Kumar et al. [32]. This result indicates
that our ensembles adapt very well to the Delhi dataset. It is worthy to note that the
formation and transportation of PM2.5 concentration are dependent on the geographical
terrains and local anthropogenic activities, so the set of effective meteorological variables
for forecasting PM2.5 could vary with the studied location, as revealed by many previous
researchers [7,15,16,20,29]. The features used in our ensemble models for Puli dataset are
different to those used in [32]. Consider this situation, it is a promising result to note that
our ensemble framework can achieve the best performance of almost all compared models
for Delhi dataset.

Table 8. Comparative performances of various methods on Delhi dataset.

Sources Models RMSE MAE MAPE

Single models CLR 28.23 19.73 0.41
LMLP 29.43 21.45 0.41
FSD 40.51 25.38 0.48

SMLP 29.32 19.12 0.40

Ensembles Long-term ensemble 27.16 19.17 0.38
Short-term ensemble 27.13 18.82 0.38

Averaged 26.75 17.81 0.34
Weighted 25.26 16.93 0.32

Max_Avg_Min 26.95 18.17 0.35
Max_Wgt_Min 25.52 17.34 0.33

Adpt_Wgt 25.36 17.38 0.34
Lower Bound 16.58 9.30 0.16

Kumar et al. Decision trees (DT) 38.13 22.18 −
(2020) Random forest (RF) 25.83 15.21 −

Extra trees (ET) 25.37 15.04 −
DT + AdaBoost 25.40 14.46 −
RF + AdaBoost 25.30 14.99 −
ET + AdaBoost 25.11 14.79 −

LSTM 28.97 16.66 −

5. Conclusions

In this paper, we proposed a multi-model framework for PM2.5 forecasting. The
framework combines four diverse learning models, namely, cluster linear regression (CLR),
long-term multi-layer perceptron (LMLP), Fourier series descriptor (FSD), and the short-
term multi-layer perceptron (SMLP). The feature set fed into the multi-model framework
is selected by a spiral validation process which evaluates the risk for eliminating every
feature. We explore the collaborations between parametric and non-parametric learning,
short-term and long-term learning. Our experiments with Puli dataset spanning 1 January
2008 to 31 December 2019, show that the proposed multi-model framework can synergize
the advantages of the embedded models and can obtain an improved forecasting result. We
also show that the performance obtained by a mixture of short-term and long-term learning
can surpass that obtained by applying just a single type of learning. A promising direction
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for future research is the application of evolutionary instance selection [37] to appropriately
train the forecasting system under the environmental scenarios of current testing.
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