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Abstract: In the last decade, smart spaces and automatic systems have gained significant popularity
and importance. Moreover, as the COVID-19 pandemic continues, the world is seeking remote
intervention applications with autonomous and intelligent capabilities. Context-aware computing
(CAC) is a key paradigm that can satisfy this need. A CAC-enabled system recognizes humans’
status and situation and provides proper services without requiring manual participation or extra
control by humans. However, CAC is insufficient to achieve full automaticity since it needs manual
modeling and configuration of context. To achieve full automation, a method is needed to automate
the modeling and reasoning of contexts in smart spaces. In this paper, we propose a method that
consists of two phases: the first is to instantiate and generate a context model based on data that
were previously observed in the smart space, and the second is to discern a present context and
predict the next context based on dynamic changes (e.g., user behavior and interaction with the
smart space). In our previous work, we defined “context” as a meaningful and descriptive state of
a smart space, in which relevant activities and movements of human residents are consecutively
performed. The methods proposed in this paper, which is based on stochastic analysis, utilize the
same definition, and enable us to infer context from sensor datasets collected from a smart space.
By utilizing three statistical techniques, including a conditional probability table (CPT), K-means
clustering, and principal component analysis (PCA), we are able to automatically infer the sequence
of context transitions that matches the space–state changes (the dynamic changes) in the smart
space. Once the contexts are obtained, they are used as references when the present context needs to
discover the next context. This will provide the piece missing in traditional CAC, which will enable
the creation of fully automated smart-space applications. To this end, we developed a method to
reason the current state space by applying Euclidean distance and cosine similarity. In this paper, we
first reconsolidate our context models, and then we introduce the proposed modeling and reasoning
methods. Through experimental validation in a real-world smart space, we show how consistently
the approach can correctly reason contexts.

Keywords: context awareness computing/reasoning; context model; context graph; smart spaces;
sensor data; stochastic analysis; principal component analysis

1. Introduction

For the last decade, we have been experiencing speedy and dramatic changes in our
lives due to smart technology. Every year, new devices and systems have been released with
the prefix “smart”, for instance, smart door, smart TV, and smart kitchen. One of the aims of
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this smartening is to enable a transformation from the manual and static world of humans
to an automatic and dynamic world. In a smart space, such smart things are integrated,
and hence needed, and convenient services are automatically provided. These days, it is no
longer a dream for a house to adjust the indoor atmosphere, such as temperature, humidity,
and brightness, and to help the residents to cook or clean [1]. Smart space technology
has been utilized in other areas, such as educational institutes [2,3], medical/healthcare
centers [4], and industrial facilities [5]. One of the biggest benefits for smart spaces and
their automation of services is to enable untouchable applications. Since smart spaces are
operated by sensing devices and intelligent systems, human assistance, in which services
are physically contacted, is no longer needed. This is surely appropriate and useful during
the COVID-19 pandemic, which requires people to maintain social distancing and avoid
direct contact. As this worldwide pandemic continues without signs of ending, the need
for such smart spaces is increasing, which will accelerate the development of advanced
intelligent systems for smart spaces [6–10].

The performance of smart spaces depends on intelligent systems, which are internally
installed. The intelligent systems discern users’ current state and determine services that
they might need or desire. The initial step in such systems is to accurately understand
the context(s) of the space and its users. Thus, a context-aware design is one of the keys
to developing intelligent systems for smart spaces. There has been research defining
contexts in different ways, but formal definitions were proposed by Dey and Yau. In [11],
Dey et al. defined “context” as “any information that can be used to characterize the
situation of an entity; an entity is a person, place, or object that is considered relevant to
the interaction between a user and applications themselves”. Yau et al. [12] had a similar
definition, that is, “any detectable attribute of a device, its interaction with external devices,
and/or its surrounding environment”. Even though the structures for context are organized
differently, they agreed that particular entities should be digitalized in smart-space systems,
so that context can be systematically and algorithmically captured. Context, which was
defined in our prior work [13], is also described by the status of various entities located in a
space. This context design enables the construction of an abstract space state and facilitates
a more systematic process for recognizing contexts.

The status of entities used in defining a context can be obtained and digitalized by
using the status of sensors attached to (or in range of) the corresponding entities, which are
located in a smart space [14]. As Internet-of-Things (IoT) technology evolves, the traditional
paradigm of entity–sensor has also evolved and changed, in which entities are allowed to
access alternative devices to obtain status data using handy APIs provided by the device
manufactures [15]. Such entities are more obtainable and supportive of modeling contexts.
In smart spaces, once context models are fed the status data of entities, the present context is
reasoned by analyzing the obtained status data. This is the basic flow of context-awareness
computing (CAC) and works as the core of smart spaces. One advantage of a CAC-enabled
system is that no human needs to be involved or interact with others once CAC is installed
in a system.

However, the automaticity of the CAC approach is limited by a structural drawback,
as the current CAC mechanism requires the manual configuration of context models. To
install a CAC in a smart-space system, users must define possible contexts and configure
them in advance. There is a burden on human efforts and a risk of errors or mistakes
when manually designing contexts. There is a further issue regarding the unity of contexts
when manually defined. Since individuals have their own perception of the contexts that
occur in a space, context models may vary from user to user. Similarly, they recognize
contexts differently. As a result, a CAC-enabled system with manually modeled contexts
may recognize contexts differently, and thus cannot serve humans consistently. Thus, it is
important to create capabilities to algorithmically (automatically) build realistic context
models, which can perform uniformly. Such capabilities will enable practically powerful
automations, which do not require non-scalable and limiting manual steps.
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This paper proposes methods for modeling and reasoning contexts that can achieve
full automation. In our definition, contexts are modeled by the sensors, which are attached
to the entities, including objects, humans, and other built-environment artifacts. Based on
the context models, the recognition process proceeds to reason a context by analyzing the
given sensor data. Since both modeling and reasoning processes need to manage sensory
data, it is critical to build a context in an efficiently organizable and easily manipulable
structure. In our approach, we developed a method in which a well-organized context
model is built by analyzing sensory data that describe the status of contextual entities.
To model this context structure, we considered two key ideas. The first idea comes from
the observation that most sensors triggered in the same context are somehow interrelated.
The second idea comes from the observation that there are sensors that are significant
and conducive to specific contexts. This observation raises the possibility of logically
dividing a whole sensor dataset into groups, each of which contains data from inter-related
sensors. Since each of the divided groups is likely an own-context, by virtue of the two
aforementioned observations, it is important to logically divide a given dataset accurately,
which, in turn, requires that we properly find interrelated sensors and their data. We
address dividing and searching methods for building context models in more detail in the
rest of this paper.

The proposed approach proceeds in two phases: First, context models are built, and
then a present context is determined from the context models. In the first phase, the
context models are inferred from a collection of obtained sensor datasets under supervised
learning. For the inference process, we utilize three machine learning methods along
with statistical analysis: K-means clustering, a conditional probability table (CPT), and
principal components analysis (PCA). The second phase begins after the context models
are successfully established. In this phase, we compare the current state space to all the
context models and choose the context that is most similar to the current state space.
The similarity is calculated by two distance methods: Euclidean distances and cosine
similarity. To systematically and algorithmically facilitate the two phases of our approach,
we introduce and utilize a high-level contextual structure, called a context graph, to be
utilized in developing and using (reasoning) the context models.

The modeling and reasoning process may lead to privacy and security issues for
smart-space systems and their users. In smart spaces, the most used and very efficient
sensing devices are cameras, which can capture the data of any user and/or objects seen
in the camera range. The data may contain more information than that which must be
obtained; there may be someone who does not wish to be sensed or private objects that
must not be digitalized. At-home settings, which are more private and secured, require
further caution when cameras are used [16]. For these reasons, and out of an abundance of
caution, only data obtained by means other than cameras are used in this paper.

We organize this paper as follows. In Section 2, we describe existing work related
to context-awareness computing, context modeling, and reasoning methods. Section 3
introduces the design of the proposed context model and context graph, which provide
a fundamental formalism to our approach. The principles of the proposed approach for
modeling and reasoning contexts from a real-world situation are presented in Section 4.
Experimental validation and case studies follow in Section 5. Discussions and conclusions
for this research are presented in Section 6.

2. Related Work

As shown in [17,18], research on modeling and reasoning context has a long history,
and various approaches have been proposed in different areas, such as human–computer
interaction (HCI) [19,20], smart home simulation [13,21,22], context-awareness comput-
ing [23,24], and activity recognition learning [25–30]. We categorize prior work into three
categories: The first category focuses on syntactic and systematic approaches based on
humans’ natural perspectives in understanding contextual situations. Approaches in the
second category have developed applicable and algorithmic methods to define contexts.
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The third category contains domain-specific approaches, each of which proposes context
models in a particular area, specific to its own reasoning procedures.

2.1. Syntactic and Systematic Approaches

The purpose of these approaches is to organize context models based on a syntactic
analysis of contexts using humans’ natural perspectives. Ontology-based analysis has
traditionally been applied in modeling and reasoning contexts [31–33]. In this research,
context is designed in an ontology-oriented model, which facilitates a reasoning process
by comparing predefined context models and the current situation. Based on an RDF
triple database consisting of subject, predicate, and object, the context model is built with
additional contextual information, such as time and location. All the descriptive resources
are organized in an ontology-oriented model and abridged in an XML syntax. By applying
well-organized syntactic structures, the necessary information for describing contexts is
instantiated. The syntactic context models systematically facilitate reasoning process and
are easily translated into humans’ natural language to achieve more human-centric, smart-
space systems. However, an ontology-oriented modeling approach still needs the efforts of
human users to configure each context model, which remains burdensome and ambiguous,
especially when defining context models. Our idea does not approach syntactic models
for contexts. Instead, it aims to ensure a faster process, to be aware of the current context,
and to provide a proper and convenient service without any syntactic analysis of contexts.
In our prior study [13], we proposed a context model which works in the simulation of
smart spaces. In this paper, we focus on the automation of defining contexts by analyzing
sensor data collected from smart spaces. Our proposal aims to build context models from
the sequence of space states observed through human senses or electronic sensors attached
to objects or humans.

2.2. Applicable and Algorithmic Approaches

Even though the syntactic analysis of contexts in the first category is an advantage in
the described contexts, it does provide entities which are needed to reason a context in a
given situation. In the second category, modeling contexts is primarily dependent on the
reasoning context. In other words, entities in a context model are determined through the
reasoning context process. Thus, it is critical to appropriately build rules to catch contextual
space states and determine contexts. These approaches are mostly found in the research
for context-awareness computing or activity recognition learning. The context-driven
simulation approach [13] is an example. Contexts defined in this approach were defined
by related context entities, such as sensors and their statuses. Once context models are
manually defined, the causality in between contexts also needs to be configured so that they
can describe an entire daily living scenario. Another example, the context-aware simulation
system for smart home (CASS) [22] adapts the mechanism of a rule-based system, in which
the system detects the conflicts of certain rules to control a preconfigured character to move
it. The rules need to be defined to describe certain conditions of entities, causing burdens
in modeling contexts.

To reduce the burden and increase automaticity, research into activity recognition has
derived high-level information, which is meaningful for activity, from low-level informa-
tion, which generally consists of sensory data. The research assumed that the collected
sensor datasets triggered by human activities could be divided into multiple clusters, each
of which contains highly relevant sensors. For instance, in cluster-based classification for
activity recognition systems (CBARS) [26], supervised learning models were first built by
clustering training datasets, and then unsupervised learning was applied with new testing
data to recognize an activity. The challenge was that a supervised learning model was
needed for the recognition process. This was addressed in activity recognition using active
learning in the overlapped activities (AALO) [27]. It proposed an active and dynamic
recognition system, which enables an accurate classification of specific activities accord-
ing to locations and times, without training data. With cluster-based classifier ensemble
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(CBCE) [28], an approach was proposed that combines multiple classifiers including Naïve
Bayesian (NB) models, hidden Markov models (HMMs), and conditional random fields
(CRFs). Even though this ensemble of classifiers enabled an unsupervised method to
recognize an “activity”, it is hard to define abstract information for a “context”, which
represents other state spaces in a given cluster, due to lack of contextual entities.

As context-aware computing is increasingly integrated into end-user service appli-
cations, the development of more applicable and practical methods has been the subject
of relevant research. In mobile cloud services [34] and recommender systems [35,36], for
instance, historic computational methods such as cosine similarity were applied for the
context recognition process. However, it is not their main purpose to find a present context.
The primary goal of the approaches is to suggest proper service(s) for the present context
found by the recognition process and, thus, an extra process for finding proper services
should be developed. As a result, the computational complexity of their proposed methods
will greatly increase.

2.3. Domain-Specific Approaches

The approaches in the second category proposed context models for smart homes. For
generic context models, studies in the third category have proposed methods for modeling
activities and contexts from sensory data in specific domains. They observed that there
were different contextual conditions per domain, and thus developed domain-specific
methods for modeling and reasoning. Since some domains have environments that are
difficult to access, their approaches propose performing a simulation in a virtualized space.
The authors of [21] assumed that elements such as fact and belief are an integral part of
a model for human astronauts’ activities in outer space. The activity recognition process
was simulated based on real data collected from space experiments in a NASA project. The
authors of [37] presented a simulation tool used to model common behaviors of human
subjects in outdoor environments. The goal of the tool was to study how best to route ad hoc
traffic based on human mobility. The authors of [38] focused more on the activities of nurses
caring for patients in a hospital setting, with the goal of maximizing scheduling efficiency
and minimizing downtime for patients. In such simulations, computation was intensive,
and classification-based reduction techniques were used to improve simulation scalability.
Although these approaches are useful for dangerous and dynamic situations, they may
impose unnecessary complexity and require excessive computation when simulating simple
activities of daily life.

3. Design of Context Model

In our definition, context represents a meaningful state space, which is described by
the status of entities such as objects and residents in a space. To decide that a state space is
a context, changes in the status of the entities should be persistently tracked and evaluated.
Before we introduce the main process for recognizing contexts, we define the necessary
models, which are state space, context, and context graph. The principles of the reasoning
algorithm will be explained in the following section.

3.1. Context Model
3.1.1. State Space

In order to model a context, we must first define a state space, since a context is
considered a representative state space. In a smart space, sensors attached to objects or
worn by human residents provide the status of the space—state space, for short. In our
state space model, all the sensors’ statuses are collected in an ordered set, as shown in
Equation (1). Thus, a state space, denoted by S, in whichω sensors are attached, is defined
as follows:

S = {s1, s2, . . . , si, . . . , sω}, (1)

where si contains a status (usually indicated by a single value in any type, such as numbers)
of sensor si. During a daily living scenario in the real world, the status of sensors is affected
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as human residents perform activities or objects move in a space. In other words, state
space S continuously changes, and a multitude of different state spaces will be defined, as
illustrated in Figure 1. The universal set of state spaces is a collection of all S and denoted
by Equation (2):

Ŝ =
{

S1, S2, . . . , Sc, . . . , Sζ

}
. (2)
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representative states out of Ŝ.

In Equation (2), the total number of state spaces obtained is ζ and the current state
space is noted by Sc. In a given daily living scenario in Figure 1, S starts from S1, and then
changes to any other state in Ŝ as time passes. Note that Ŝ is recursively generated, and S
may return to S1 when the daily living scenario ends.

3.1.2. Context

Context is a meaningful state space, which is representative enough to describe what
is happening in the space [13]. In a context model, it is important to determine which
sensors are related, and which sensor status is required. Suppose that we are reasoning a
context, “making breakfast”, in a kitchen in which an electric stove, microwave, refrigerator,
spoons, knives, ceiling light, and windows are placed. The sensors attached to the objects
will change their status when the corresponding objects are used. Recall that any change in
sensor status triggers the state space and generates a different one. In the kitchen, many
state spaces may be generated; however, some of them will not be related to the context.
For instance, the ceiling light and windows are not needed to make breakfast; thus, state
spaces triggered by sensors attached to them are not meaningful for that context. It can
be recognized that the context only begins, or is in progress, if state spaces are triggered
by the sensors attached to cooking tools, such as an electric stove, microwave, refrigerator,
spoons, and knives. To reason a context, however, a sufficient number of relevant sensors
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are triggered. In the example, it is hard to reason the context if one touch sensor attached to
a refrigerator is triggered since the refrigerator can be touched only for drinking water. The
state space generated by this sensor event is not representative; hence, it will be ignored.
As shown in Figure 1, brown-colored state spaces with enough information are considered
contexts, while others remain normal state spaces. Thus, it is critical to locate all sensors
that contribute to modeling and reasoning a context. Once a context is chosen, the state
spaces after it belong to the context since the context lasts until a new context begins.

Context has a fundamentally identical structure to state space S since it is a selected S,
which is a collection of sensor statuses, as follows:

C = {s1, s2, . . . , si, . . . , sω} (3)

Note that sensors that are not relevant to any context will be ignored. These sensors
have a null state value, so they will not be considered in the reasoning process.

As a multitude of contexts can be selected from a collection of state spaces Ŝ, the
collection of the contexts is noted by Equation (4):

Ĉ =
{

C1, C2, . . . , Cρ, . . . , Cη
}

(4)

In Equation (4), the total number of contexts is η, and the present context is denoted by
Cρ. As contexts are selected from the collection of state spaces Ŝ, the collection of contexts
Ĉ is a subset of Ŝ (Ĉ ⊆ Ŝ), which infers that η ≤ ζ. The status of these sensors in a given
context is considered as a condition for being the context since it distinguishes itself from
non-context state spaces or other contexts. In other words, when the sensors in a given
state space have the same status for the corresponding sensors in a target context, it is said
that the state space represents a context.

3.2. Context Graph

The set of contexts Ĉ is used to find a current context during the reasoning process. To
improve reasoning methods, Ĉ needs to be structured into a context graph. We observed
that particular pairs of contexts were occurred by a certain causality or time order. Consider
two contexts: “sleeping at night” and “having breakfast”. The two contexts should happen
in a certain order, that is, “sleeping at night”, followed by “having breakfast”. However, the
opposite case, which is, “having breakfast”, followed by “sleeping at night”, cannot occur.
This infers that contexts may be implicitly described by the hidden property of time—night
and morning in this example. The time property can define an order between contexts.
However, there is an example in which it does not affect pairs of other contexts, for example,
the context “going to bathroom”. It is meaningless to consider the time property or find a
specific order because humans may go to the bathroom at any time while they are sleeping
or making breakfast. The two cases support an idea, which is that the time property is
not used to model an individual context but defines the relationships between contexts.
The context graph reflects the relations by using the features of a directed graph, as shown
in Figure 2.

Figure 2 indicates all transitions between contexts and illustrates how contexts are
driven. A causal relation can be either determinative or non-determinative. The contexts
under a determinative relation have a single possible transition from a predecessor context.
In Figure 2, for instance, C1 and C2 have a determinative relation since C1 is followed
by C2. In this case, C2 is only one successor context, which comes next. On the other
hand, transitions from C2 have three options, that is, C2 followed by C3, C2 followed by
C5, and C2 followed by C6. It is not determinative since the predecessor C2 can transition
to any possible successor: C3, C5, and C6. These successors are considered as the next
possible contexts, which are followed by C2. We generalize this and define the set of the
next possible contexts CN , which follow a given context Cj in Equation (5):

CN = {C1, C2, . . . , Cτ , . . . , Cχ}, (5)
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where CN ⊆ Ĉ. Note that every Cj has its own CN . For example, the CN of C1 is {C2}, and
the CN of C2 is {C3, C4, C5} in Figure 2. The CN of contexts under determinative relation is
a singleton set with one possible next context.
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… more contexts …

Figure 2. Context graph CG is created from Ŝ. Note that the dashed edges are transactions, which are
not illustrated in Figure 1; however, they might occur as the state space changes. For simplicity, we
assume that it returns to C1.

In daily living scenarios, context graph CG allows for a context sequence to be repeated
as a daily routine. Recall the two contexts, “making breakfast” and “sleeping at night”. The
context ”making breakfast” literally happens every morning, while the context “sleeping at
night” generally starts every night. The contexts can be repeated daily, as they are cycled.
However, the allowance of cycled contexts in CG causes an issue, that is, it is difficult to
designate a root context, which may be naturally and originally defined. Even though C1
looks like a root in Figure 2, it might be a next context, which follows a certain context in
the real world.

4. Principles of Context Reasoning

In context awareness computing, reasoning a context is functionally the same as
finding the next context in the present context. Thus, our approach aims to discover the
next context with respect to the present context, Cρ, and the current state space, Sc. The
main procedure for reasoning is that, in a given Cρ, Sc happens, and then it becomes a next
context, Cυ, which is found from the next possible context, CN, if Sc is sufficiently similar to
Cυ. Our approach follows this procedure, and all the methods in our approach are designed
to find the next context.

4.1. Overall Approach

The reasoning process is fundamentally event-driven since it proceeds whenever a
sensor event occurs. The sensor event is caused by resident activities or the movement of
objects in the space, and then changes a state space. Assuming that the current context
is Cρ, if the reasoning procedure qualifies the changed state space as the next context Cυ,
the transition into Cυ is indeed performed, as shown in Algorithm 1. Otherwise, if the
algorithm fails to find such Cυ, the current context remains, and the algorithm waits for
the next change in the state space. Algorithm 1 runs in two phases: (1) MODELING and
(2) REASONING.
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Algorithm 1. Context Reasoning Main

INPUT: a training set of state spaces Ŝ
OUTPUT: a next context Cρ

1. Context Graph CG ← Build a context graph with (Ŝ) by Algorithm 2
2. State Space Sc ← Initialize the current state space
3. Context Cρ ← Initialize the present context with (Sc, CG)
4. Context Cν ← NULL //selected next context
5. while Sc changes by any events
6. Cν ← Reason context with (Sc, Cρ, CG) by Algorithm 3
7. if Cν! = NULL
8. Cρ ←Cν //transition to Cν

9. //output Cρ as the new present context
10. end if
11. end while

4.1.1. MODELING

The initial step for reasoning contexts is to establish a context graph CG with a given
set of state spaces Ŝ which is formed from training datasets. CG is built by applying the
statistical analysis method of sensor datasets [4]. The statistical analysis method runs in
three main phases. First, the dataset is analyzed by a conditional probabilistic table (CPT)
based on Bayesian networks and estimates the number of contexts, that is, K. Then, the
dataset is clustered into K contexts by applying K-means clustering. Thirdly, conditions
for entering a context are discovered by utilizing principal components analysis (PCA).
PCA is a way of finding important components and reducing the dimensions of a given
dataset by projecting it into the lower dimension [39,40]. The use of PCA helps to find the
most important sensors for a given context and optimizes both the context modeling and
reasoning, which will be explained in detail in the reasoning step.

Once CG is established, the current state space Sc and the present context Cρ are
initialized. Sc is simply configured by the current status of sensors. Initialization of Cρ is
performed by the Algorithm 2. The purpose of the algorithm is to find an initial present
context Cν which has the highest similarity with Sc.

Algorithm 2. Initializing Context

INPUT: current state space Sc; context graph CG
OUTPUT: the highest similarity scored contexts Cν

1. Next context Cν ← NULL
2. for each context Cτ in CG
3. if similarity (Sc, Cτ) > similarity (Sc, Cν)
4. then Cν ← Cτ //replace Cτ as a next context
5. end if
6. end for

4.1.2. REASONING

When the current state space Sc changes due to a sensor event, an attempt is made
to reason a context that is most similar to Sc, as shown in Algorithm 3. If a proper context
model is found, it becomes the new present context Cρ. As in Algorithm 2, the similarity
between Sc and each target context Cτ is calculated. The proposed algorithm can reduce
the number of target contexts when calculating the score due to CG. By the definition of
CG, since Cρ is followed by CN of Cρ, only contexts in CN are considered in the reasoning
process. If the reasoning process is unable to find any context model, that is, Cυ is empty
(line 7 in Algorithm 1), it does not transition to the next context, and the current context
Cρ continues.
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Algorithm 3. Reasoning Context

INPUT: current state space Sc; present context Cρ; context graph CG
OUTPUT: the highest similarity scored contexts Cν

1. Next Contexts CN ← find all next contexts of Cρ in CG
2. Set of Candidates Contexts ĈN ← NULL
3. for each context Cτ in CN
4. if similarity condition between Sc and Cτ is matched
5. then ĈN ← ĈN ∪ Cτ //add Cτ to ĈN as a candidate
6. end if
7. end for
8. Cν ← the highest similar scored Cτ in ĈN .

Differing from Algorithm 2, which selects any context and declares it as Cρ, more
consideration is needed to discover the possible next contexts CN. If a context is too different
from Sc, it must not have a chance to become Cρ. In some cases, contexts in CN have too
low a similarity and should not be any context. To address the cases, a context requires
filtering by a threshold θ, which stands for a particular similarity grade. We will introduce
the reasoning methods and define θ in the next section.

4.2. Context Graph Building Steps

The approach proceeds in three steps, each of which utilizes a statistical method.
First, the number of contexts is decided by a conditional probability table (CPT), and then
meaningful and representative state spaces are defined as contexts by K-means clustering.
Lastly, important sensors, which are related to each context, are discovered by using
principal component analysis.

4.2.1. Deciding the Number of Contexts

To find the number of contexts, we first capture the probability of the consecutive
occurrence of each pair of different sensors in the datasets. The idea is that sensors in one
context are related and, thus, the occurrence probability is fairly high [41]. In other words,
if the occurrence probability of a pair of sensors is low, the sensors are not in a context. This
probability can be accurately calculated from the frequency of occurrence of consecutive
sensor events. These conditional probabilities are arranged as a ζ × ζ table (ζ being the
number of sensors), which is called the conditional probability table (CPT). Figure 3 shows
how to decide on a pair of consecutive sensor events and how to build a CPT.
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CPT is used as the probabilistic fingerprint of the entire dataset. A pair of sensor
events with high conditional probability usually contains sensor events that are related
and associated with each other. They could belong to the same context and, therefore,
are highly likely to occur together in this order. On the other hand, if the pair has low
conditional probability, its sensor events are considered to be unrelated and would rarely
occur together. A pair of sensor events with low probability indicates the end of one context
and the start of another. Therefore, we divide the dataset between sensor events ei and
ei+1 if the conditional probability of ei and ei+1 satisfies the condition P(ei+1) ≤ θ× P(ei),
where θ is a parameter that represents the extent to which ei+1 relates to ei. We set θ to
0.5 in the experiments. Using this method, we divide the dataset into k groups, which are
considered the number of contexts.

4.2.2. Defining Contexts

We observe that a meaningful state space is sufficiently distant from other meaningful
state spaces but could be close to other relevant, yet non-meaningful, state spaces. To find
out which state spaces are meaningful, all spaces are partitioned into k clusters, in which
each state space belongs to the cluster with the nearest mean. Therefore, the universal set of
state spaces SU =

{
S1, . . . , Si, . . . , Sζ

}
is divided into {Ŝ1, . . . , Ŝi, . . . , Ŝζ}, where Si is a

state space and Ŝi is a cluster of state spaces. Each cluster Ŝi minimizes the sum of distances
between the within-state space and the mean, according to the following formula:

argmin
SU

∑k
i=1 ∑St ∈ Ŝi

‖St − µi‖2, (6)

where Si means a state space in cluster Ŝi. After SU is classified into k clusters, cluster
centroids are considered meaningful state spaces and are candidates for contexts. Note the
number of contexts obtained from the previous step. Figure 4 illustrates an example of how
contexts are clustered and chosen from a set of state spaces.
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4.2.3. Discovering Context Conditions

The centroid in context is representative and meaningful but has insufficient informa-
tion to define the context. We observed that multiple sensors usually contribute to beginning
a context. Principal components analysis (PCA) can discover these important sensors. Once
we find the relevant sensors via the stochastic analysis of the sensors’ high-dimensional
data, the original dataset can be projected onto lower-dimensional data. The process is
repeated for each cluster, and the remaining data are used to build context conditions.

Principal components are sensors that show definite variance patterns that explicitly
express a change of states. To discover these sensors, we should understand the pattern in
which the dataset is scattered. For this, a matrix of covariances (cov) is calculated first. In a
ζ-dimensional dataset, covariance cov is calculated by Equation (7):

cov (ŝi, ŝj) =
∑ω

k=1 (ŝ
i
k − µi)(ŝ

j
k − µj)

(ζ − 1)
, (7)

where ŝi and ŝj stand for the set of sensor values in ith state space and jth state space, respec-
tively. ith state space and jth state space belong to the same context. Since the maximum
number of state spaces in a context is ζ, the total covariances establish a ζ × ζ covaraince
matrix R, shown in the Equation (8):

R(Ŝ) =

 cov (ŝ1, ŝ1) . . . cov (ŝ1, ŝζ)
...

. . .
...

cov (ŝζ , ŝ1) . . . cov (ŝζ , ŝζ)

 (8)

From the covariance matrix R, we calculate the eigenvectors, which characterize the
square matrix as linear equations, each of which can transform the matrix onto a new
axis. Eigenvalues then measure how well the sensor data are scattered. Eigenvectors
and eigenvalues are calculated by the following condition: Rν = λν, where ν is the
eigenvectors and λ is the eigenvalues. As R is a ζ × ζ matrix, ν is also a ζ × ζ matrix, that
is ζ eigenvectors exist. Each eigenvector has its own eigenvalue; therefore, there are ζ
eigenvalues in λ:

ν =
[ →

elg1 . . .
→

elgl . . .
→

elgζ

]
, (9)

where
→

elgl is an eignevetor with ζ components.
Next, we choose the eigenvectors with high eigenvalues as principal components.

The challenge is in determining the threshold for which eigenvalues are high enough to
be acceptable. We propose the threshold θe for the average of eigenvalues of selected
eigenvectors. In our approach, the eigenvectors are sorted by eigenvalues in descending
order; then, eigenvectors with values that exceed θe are chosen. Eigenvectors satisfying
this condition establish a feature matrix F:

F =
[ →

elg1 . . .
→

elgκ

]
, (10)

where κ ≤ ζ, ∑κ
i=1 eivi ≤ θe, eivi is an eigenvalue of

→
elgl. With a feature matrix F, a given

dataset is transformed into lower-dimensional data with κ sensors. The conditions for a
context are a collection of sensor values in the lower-dimensional data.

4.3. Context Reasoning Methods

To reason a context, the similarity between Sc and each possible next context Cτ (∈ CN)
is considered by calculating sim(Sc, Cτ). Since the state space and context conditions are
vectorized by the status of sensors, sim(Sc, Cτ) can be computed by two methods, as
shown below.
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4.3.1. Similarity Based on Euclidean Distance

When the distance is within a fuzzy threshold, θCτ
d , which specfies a range for the

condition of Cτ , signifies no difference between Sc and Cτ ; hence, Cτ becomes the next
context. Note that θCτ

d is context-specific; thus, each context has its own value. This is
obtained by averaging the distances from each state space to context during the initialization
step [4]. Some conditions may be defined with a range of values, instead of one value. In
this case, to apply Euclidean distance, the range is represented by a median of the range.
For instance, if the range of sensor’s values is from 0 to 5 in an integer, its median, which
is 3, is used to compute the Euclidean distance. The Euclidean distance is calculated by the
following Equation (11):

dist(Sc, Cτ) = ‖Sc − Cτ‖ =
√

∑ω

i=1(s
Sc
i − sCτ

i )
2

(11)

In Equation (12), sSc
i stands for the status of sensor si in the current state space Sc, and

sCτ
i stands for the status of sensor si in the possible next context, Cτ .

If the distance is below θCτ
d , the Cτ is considered to possibly be the next context. On the

other hand, when the distance is greater than θCτ
d , there is no chance for Sc to become Cτ .

The similarity is calculated and compared for all Cτ which satisfy the distance condition,
that is, dist(Sc, Cτ) ≤ θCτ

d :

simdist(Sc, Cτ) = 1− dist(Sc, Cτ)

‖Sc‖
= 1− dist(Sc, Cτ)√

∑ω
i=1 (s

Sc
i )

2
(12)

If none of Cτ verifies the condition, the current state space cannot not be any of the
contexts, therefore no change in context occurs.

4.3.2. Similarity Based on Cosine Similarity

Dissimilar to the Euclidean distance, which values the distance between the end points
of two vectors, cosine similarity verifies the appropriateness of the angle between two
vectors. The simcos(Sc, Cτ) is calculated as follows:

simcos(Sc, Cτ) =
Sc·Cτ

‖Sc‖·‖Cτ‖
=

∑ω
i=1 sSc

i ·s
Cτ
i√

∑ω
i=1 (s

Sc
i )

2·
√

∑ω
i=1 (s

Cτ
i )

2
(13)

As the cosine of two vectors increases to 1, the vectors are considered more similar.
All of Cτ in simcos(Sc, Cτ) must be within the threshold θCτ

a for the condition of Cτ to be
considered the possible next context. Failure to find such Cτ delays the transition to any
possible next context.

simdist(Sc, Cτ) fits when finding the similarity of state spaces with Boolean-stated
sensors, such as sensors generating two statuses of 0/1 or On/Off. In other words, when
the change in sensor status is monotonous and, thus, the magnitude of vectors Sc and Cτ

is stable, the Euclidean distance can be applied. However, this is not applicable when
the status in the sensors is non-Boolean and generates values within certain ranges since
the magnitude of vectors can significantly change. For the state spaces containing those
sensors, simcos(Sc, Cτ) is used.

In the reasoning methods above, each vectorized element is individually calculated.
As the given space is extended and the state space is scaled with more sensors, the computa-
tional complexity greatly increases and affects the performance in reasoning contexts. Since
the number of sensors matters, it is critical to reduce the size of the sensors. To achieve this
goal, we utilize PCA and reduce the dimension of the dataset for faster computation when
calculating similarity. Note that the PCA is applied regardless of the similarity method.
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5. Experimental Validation

Automation reduces time and effort for modeling the structures of a process and
avoids potential errors when manually configuring a process. However, an automated
process might downgrade performance due to the lack of an ability to catch and handle
unexpected exceptions. The validation point for an automation-enabled approach is to
consistently show results that are as good as those produced by non-automated approaches
in various cases. Therefore, we performed experimental validation with case studies to
show whether these contexts are reasoned by our approach without violation. In the
experiment, we conducted a reasoning process for a day-long scenario and evaluated
whether a set of appropriate contexts was sequentially recognized. The contexts located
within the set are considered as a contextual schedule, notated by CS(⊆ CG). Thus, the
validation aimed to analyze the CS and decide whether this is reasonable and feasible.
For our validation, we defined two measurements: Fidelity and Feasibility. Fidelity is used
to measure the degree of reasonability of a CS, and Feasibility is used to terminologically
describe whether the CS is at all possible by Fidelity. In short, Fidelity generates numeric
measurements, and Feasibility divides the range of Fidelity to particular categories. The
categories of Fidelity will be introduced after explaining how to calculate Fidelity. If a CS
has a high Fidelity, it could be said to happen with high probability and be categorized as
“good” Fidelity. We verbally describe it as being feasible or possibly feasible.

Our approach was validated by showing how many CS are feasible. For this goal, we
conducted the following steps:

1. Preparing datasets: we built context models and context graph CG by analyzing sensor
datasets. In this step, we obtained datasets from real-world scenarios, which are used
as training sensor datasets for forming CG. Note that each sensor dataset is formed
in a collection of state spaces, Ŝ. Then, we prepared more datasets as testing sensor
datasets, which were used in the Evaluation step. Each testing sensor dataset also
follows a form of Ŝ.

2. Testing an approach: we reasoned the testing sensor datasets and obtained context
schedule CS. Note that we had to test each dataset; thus, there were multiple CS,
which were used to calculate fidelity.

3. Evaluating context schedules: we evaluated whether each context schedule CS ob-
tained in the testing step was feasible. In the evaluation, we analyzed that a CS could
be found along with context graph CG built in the preparing step. If the CS could be
located, we could validate that the reasoning process was flawless. If we failed to
find it, we considered two reasons. First, the CS was not feasible, and this meant the
reasoning process had flaws. Second, the CG was not accurately established, which
inferred that the modeling process was errored. Next, we will explain the conditions
for evaluation algorithms.

First, the training sensor datasets were collected for 11 days in the Gator Tech Smart
House (GTSH) [42]. The datasets captured the status of 19 sensors, which were deployed on
18 objects, while 8 activities were performed by 2 volunteer testers. The floor plan describes
where the objects and sensors were placed, as shown in Figure 5. A daily living scenario in
which 8 activities were performed was proposed in [43].
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Figure 5. In our experiment, there were 19 sensors (indexed by Q#) deployed in the Gator Tech Smart
house (GTSH). These sensors were attached to 18 objects (indexed by O#).

Next, we used the Persim 3D simulator [43], which generates the testing sensor
datasets. Persim 3D simulates pre-defined context models and a context graph CG based on
a context-driven approach, and then synthesizes different datasets. We obtained 11 testing
sensor datasets and generated 11 context schedules CS using our reasoning process. We
then evaluated the 11 CS and proved that they could be discovered in CG. For a more
accurate evaluation, we proposed the following conditions and proved that they all were
met in order:

Condition 1. |CS| ≥ 2, where |CS| stands f or the number o f elements (that is contexts)
in the set CS.

Condition 1 allows us to filter out cases of single contexts in which there is no transition
of contexts; thus, the reasoning approach fails to find another context. In this case, a
daily living scenario starts and ends in the same context without any transitions. This is
considering the fact that the reasoning approach does not work properly. In our experiment,
there was no testing sensor dataset that could not pass this condition. However, this does
not guarantee that CS is feasible, even though it consists of more than two contexts, and
thus passes this condition. This condition is not enough to catch exceptionally occurring
contexts, which may be accidentally sensed by sensor errors. For this reason, CS needs to
satisfy the next condition:

Condition 2. PCS(CS) ≥ OPT, where PCS(CS) stands f or the occurrence probability o f
a given context schedule CS, and OPT is threshold o f the occurrence probabilities.

Condition 2 restricts to accept only the most likely occurring context schedules CS.
This proceeds with context graph CG, which was made in the preparation step. Recall
that CG is built in a directed graph, which describes all transitions between contexts. This
means that CG can reveal various context paths, each of which is considered a CS. Each
Cs is evaluated by its probability of occurrence, denoted by PCS(CS). Note that the low
probability of occurrence of an event means that it rarely or never occurs. Thus, we can
infer that a CS with a low probability rarely occurs and, hence, it should rarely be reasoned.

The Fidelity and the Feasibility of CS is measured based on the probability. For this
goal, statistic models were defined as follows: First, we calculated the join probability
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distribution of CS based on use of the Bayesian network (BN) and conditional probability
table for contexts. BN-based probability PBN of CS is computed by Equation (9):

PBN(CS) = ∏Ci,Cj∈CS
P(Ci, Cj) (14)

In Equation (9), P(Ci, Cj) calculates the conditional probability of two distinct contexts,
Ci followed by Cj. PBN(CS) presents the probability for occurrence of a given CS; however,
it is not enough to measure the Fidelity and the Feasibility. Even if a CS has a high occurrence
probability but it rarely occurs, it could be considered as an exception or an error, and thus
should have a low Fidelity. To resolve this, Odds for CS is calculated by Equation (10). P(CS)
stands for the probability of a CS, and denotes how often the CS occurs. In this experiment,
it can be computed by the frequency of occurrence of a CS over 11, the number of total
training (or testing) cases.

OBN(CS) =
1− P(CS)

P(CS)
(15)

The PBN(CS) and the OBN(CS) are used for computing occurrence probability, PCS(CS).
PCS(CS) is used for determining OPT. OPT is obtained by calculating an arithmetic average
of PCS(CS) for all given CS. In our experiment, OPT was 0.301 for the training datasets.

PCS(CS) = PBN(CS) ∗OBN(CS) (16)

In the evaluation step, we repeated the entire process with testing datasets, which
are generated by Persim 3D, and we obtained PBN(CS), OBN(CS), and PCS(CS). Then, we
conducted the validation process by computing Fidelity and deciding Feasibility. Fidelity
is measured by the ratio of the PCS(CS) of the testing sensor datasets over OPT. If the
PCS(CS) is below OPT, it means that the CS is unreasonable and irrational to occur. The
maximum Fidelity is 100%, which implies that the CS of the testing dataset occurred in the
same probability.

However, even though the Fidelity of a CS is not 100%, it is hard to decide whether it is
not yet reasonable. Since PCS(CS) and OPT were calculated by statistical analysis based on
probability distribution, this may be adjusted as more training datasets are collected and
used. Therefore, we categorized the Fidelity into three states, which increased the flexibility
of evaluation. We defined the Feasibility states as falling into the three Fidelity categories,
as shown in Table 1. A CS with 100% Fidelity is classified into the category Feasible. If
the Fidelity of a CS is below 100%, yet considerably low, we assume that the CS may be
feasible in certain conditions, and thus accept it even though it is not guaranteed to occur.
In our experiment, we analyzed the training datasets to determine the proper range for the
category Possible by using Equation (17) and obtained 64%:

Fratio =

∣∣{CSi

∣∣ PCS(CSi) ≥ OPT
}∣∣∣∣{CSi

}∣∣ (17)

Table 1. Three categories for Fidelity by Feasibility states.

Category Range Perception about a Given CSi

Feasible 100% Feasible and solid
Possible ≥64%, and <100% Probably feasible and acceptable
Infeasible <64% Not feasible

In Equation (17), CSi stands for the context schedule obtained from an ith dataset, and
Fratio is a ratio representing how many context schedules are beyond the average. This is
calculated by the number of CSi whose occurrent probability is above OPT, over the total
number of CSi .
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The OPT of the 11 testing sensor datasets is shown in Table 2. The Fidelity score of
six datasets shows 100%, which means that they are Feasible, and those of the other three
datasets are categorized in the Possible state ≥64%, and <100%), which means they might
be acceptable. Hence, we consider that nine datasets are feasible. On the other hand,
the Fidelity score of two datasets (no. 4 and 9) are not in the feasible or possible range,
showing that they are below the minimum possible score, which is 64%. This means that
the contextual schedules CS of the datasets have very low conditional probability and
thus very rarely occur. In summary, the proposed approach’s overall success in reasoning
contexts is 81%.

Table 2. Decision table by Fidelity and Feasibility based on occurrence probability. When Feasibility
is between 64% and 100%, we declare that it is possible according to the three categories defined
in Table 1.

Dataset No PBN(CS) PCS(CS) Fidelity Feasibility

1 0.048 0.214 71.11% Possible
2 0.154 0.412 100% Feasible
3 0.206 0.360 100% Feasible
4 0.005 0.051 16.91% Infeasible
5 0.048 0.214 71.11% Possible
6 0.048 0.214 71.11% Possible
7 0.154 0.412 100% Feasible
8 0.206 0.360 100% Feasible
9 0.015 0.153 50.72% Infeasible
10 0.206 0.360 100% Feasible
11 0.206 0.360 100% Feasible

6. Discussion

In this paper, we proposed an approach for the automation of modeling and reasoning
of contexts in smart spaces by stochastically analyzing the sensor data. Traditionally, and
still in many applications, contexts are semantically and manually defined and configured
using ontology-based modeling methods. Those methods enable well-organized structures
for contexts and can be applied in human-centered machine and human-oriented smart
spaces since they are readable and associable for human users. However, manual configu-
ration requires human efforts and cannot be an optimal solution in this pandemic, which
demands fewer physical contacts or assistance. The main contribution of our approach is to
reduce humans’ efforts in defining contexts and recognizing a current context and enables
automation of the process. To achieve this goal, we employed a mathematical and statistical
analysis of the data collected from sensors attached in smart spaces. First, we utilized
a conditional probability-based analysis, K-means clustering, and PCA to build context
models. In the processing used to determine a present context, we applied Euclidean dis-
tance, cosine similarity, and PCA. In all processes, when defining and recognizing a context,
PCA was used to filter out sensors that had no contribution or minimal contributions and,
eventually, to reduce the computational complexity.

As shown by experiments with positive performance results, our approach was shown
to be validated and applicable. In the future, we plan to enhance the approach, which can
dynamically adjust context models, which were already built while running a reasoning
process. The current approach is generally based on the supervised learning method, and
thus establishes a static model, which will be used to reason a present context. It is possible
to fail to determine any context if the current state is very new or unexpectedly occurs
due to forces external to the smart space, such as a natural disaster or the occurrence of
unknown diseases. To address this issue, our future research will examine unsupervised
and more dynamic learning methods and assesses their success in recognizing present
contexts without training, and then modify the context models. The enhancement will
include research to discover unknown contexts in the reasoning process, define them, and
update the context graph. A related approach, which is equally important, is avoiding
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“impermissible contexts”, which are known a priori but are not permitted to occur [44].
We will also develop methods to optimally map the present context to the most relevant
services for the human residents in the space. This would improve real-world applications
so that they work without training steps.
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