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Abstract: The Australian Bureau of Statistics (ABS) regularly releases statistical information, for the
whole of Australia, for public access. Building- and construction-related statistics are important to
reflect the status of this pillar industry of Australia and help researchers, practitioners, and investors
with decision-making. Due to complex retrieval hierarchy of ABS’s website and irregular update
frequency, it is usually time-consuming to find relevant information. Moreover, browsing the raw
data from ABS’s webpages could not provide the insights to the future. In this work, we applied
techniques from computer science to help users in the building and construction domain to better
explore the ABS statistics and forecast the future trends. Specifically, we built an integrated Web
application that could help collect, sort, and visualize the ABS statistics in a user-friendly and
customized way. Our Web application is publicly accessible. We further injected our insights into
the Web application, based on the existing data by providing online forecasting on user’s interested
information. To achieve this, we identified a series of related economic factors as features and adjusted
a multi-variant, LSTM-based time series forecasting model by considering the most informative
factors. We also compared our approach with the most widely used SARIMA-based forecasting
model to show the effectiveness of the deep learning-based models. The forecast values are depicted
at the end of the time series plots, selected by the users.

Keywords: Australian Bureau of Statistics; building and construction; time series data analysis

1. Introduction

The Australian Bureau of Statistics (ABS) regularly releases statistical information,
for the whole of Australia, for public access (https://www.abs.gov.au/, accessed on 14
February 2022). The information includes statistics from, generally, six aspects: economy,
labor, industry, people, health, and environment. Due to complex retrieval hierarchy, it is
usually very time-consuming for researchers, practitioners, and investors to find relevant
information to aid in their decision making. Though users may find a lot of information
online, they are not necessarily informative, per their needs, or efficient. The ABS website
does not provide a user-friendly navigation. We particularly examined the data structure
and content for construction related statistics on ABS website. We find only very recent
statistics (usually within the latest 6 months) for limited statistics provide a line chart to
show the recent trend. Moreover, if users need to explore more data, they have to download
the spreadsheets that contain data with longer periods. The naming of the downloaded
spreadsheets’ are complex—they are named with numbers that are not informative to help
identify requested data. Users need to open it and decide whether the data are useful for
them. Since the data on the ABS website is mostly updated quarterly, this process needs to
be done accordingly. This motivates us to build an integrated Web application that could
help collect, sort, and visualize the ABS statistics in a user-friendly and customized way.
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The application will be helpful for people who are frequently viewing the ABS website.
Businessman, investors, builders, and renters can all be benefited from this application.
Property investors can get an overview of the price trend from the past to present, as well
as the hot zones in Australia, in order to decide which place may be a potential investment
location. For builders, they can compare the building and construction cost in each area to
plan their budget wisely. A business person could learn the latest information about the
construction and housing market.

In addition to allowing users explore the current data from ABS easily and efficiently,
we believe forecasting the future will be an essential function to help the decision making.
This is formed as a time series forecasting problem. Uni-variant models predict the future,
based only on historical values in the time series. The seasonal auto-regressive integrated
moving average (SARIMA) [1–3] model is one example that has been used to date, thanks to
its good performance and ability to handle non-stationery time series. The SARIMA model
is an extension of the ARIMA model, which has both non-seasonal and seasonal parts.
The non-seasonal is the same as the ARIMA model. In recent years, deep learning-based
models [4] have been seen to excel at most of the learning tasks. Long short-term memory
(LSTM) [5] is a recurrent neural network model. It has strong ability to handle sequence
data. Therefore, it is the most commonly adopted deep learning model for time series
forecasting. Most of the existing works [5–10] feed the LSTM-based models with historical
time series, that is, using historical time series as features to forecast the future values over
the time or choose highly correlated feature for learning. In our work, we aim to explore
building- and construction-related economic factors as features in our forecasting task to
inject more relevant information into the learning process.

In this work, we address the aforementioned two main tasks, i.e., Web-based appli-
cation, plus time series forecasting. Our Web application is built upon the building and
construction section of ABS (https://www.abs.gov.au/statistics/industry/building-and-
construction, accessed on 14 February 2022). For the building and construction industry,
ABS provides statistics from five categories, namely building activity, building approvals,
engineering construction, construction work done, and construction activity. The Web appli-
cation has three main functionalities: data visualization, data exploration, and value forecasting.
The data visualization function retrieves the latest data from the ABS website and depicts
the values as line charts over time. The data exploration function enables users to select the
charts they want to see and save favorite ones. When exploring the saved charts, different
components in the data can also be customized. Value forecasting provides the forecast
values by the LSTM-based model and depicts the new values to the end of the current
charts as future trends. Our Web application is accessible via https://www.absstat.com,
accessed on 14 February 2022.

Since the data sheets are updated quarterly, the backend of our Web application runs a
scheduled auto-crawling script to regularly retrieve data from ABS. For additional features
to help the learning model, we investigate different statistics from the economy section of
ABS and identified the ones related to building and construction. Later, we fed the features
into our LSTM-based, multi-variant, time series forecasting model. Our main contributions
include:

• We develop a Web application that collects, sorts, and visualizes building- and
construction-related statistics from the website of Australian Bureau of Statistics. The
application allows users to explore both the latest and historical data in an efficient
and customized way.

• We provide future value forecasting, based on deep learning-based models, and
visualize the forecast value.

• We adopt the building- and construction-related economic factors as features in our
multi-variant time series prediction.

The rest of the article is organized as: Section 2 presents the most related works to our
project; Section 3 explains the methodology used for data processing, forecasting model
implementation, and Web application; Section 4 reports the settings of the experiments,

https://www.abs.gov.au/statistics/industry/building-and-construction
https://www.abs.gov.au/statistics/industry/building-and-construction
https://www.absstat.com
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illustrates the results of both of the two approaches, and discusses about the results obtained;
Section 5 concludes our work.

2. Related Works

We visit some of the most relevant works, in terms of two aspects: interactive dash-
board and time series forecasting.

2.1. Interactive Dashboard

An interactive dashboard is a data management tool that tracks, analyzes, monitors,
and visually displays key business metrics, while allowing users to interact with data,
enabling them to make well-informed and data-drive business decisions. A good interactive
dashboard must be easy to use, i.e., users should be able to filter out needed information
quickly, using the dashboard, without any training. Microsoft Power BI (https://powerbi.
microsoft.com/en-au/, accessed on 14 February 2022) is an effective online data analysis
and manipulating tool. It provides users with the ability to add their own data and visualize
the data in no time. It also allows the users to interact with the data and manipulate tiles.
The tiles allow users to drag and drop to reorder and make arrangements to different tiles.
Each tile is a single dataset. If the dataset is properly designed, the tile can also show the
categories of each data in the tile. BI also provides meaningful insights on the data to help
users with data visualisations, built-in AI capabilities, and custom data connectors.

In our Web application, the dataset is stored on the cloud database, so it can be accessed
from anywhere. Besides, our application has already categorized the data for the users,
and it also provides search function with auto-complete feature, which makes it easier for
user to check or find a chart in the database. Besides, the data in the database are displayed
as charts on our application, so that users can visualise, and easily play with, the data.
Therefore, the application is an automatic interactive dashboard, which does not require
manually adding data sets. Furthermore, our application also provides forecasting, based
on the trained model, instead of just displaying the data in the charts.

2.2. Time Series Forecasting

Time series forecasting or prediction [4,11] is an active research branch that lasts for
long time due to the fact that in reality many data are obtained over time. Statistical methods
have been proposed and used since 1970s. The Box–Jenkins-based methodologies [12]
were the most popular ones at that time. Decomposition-based methods have the longest
history and are still in use [1,2]. A time series data are composed of up to four components:
trend (T), seasonally (S), cyclical (C), and noise (N) components. Decomposing the time
series helps for analysing and understanding historical time series, but it is also proved
useful when attempting a forecasting analysis. To decompose the time series data, the
moving average (MA) will remove the seasonal effects from the time series. MA is a
type of filter that takes a cycle of data and gets the average value of the numbers. MA
includes two kinds: simple moving average (SMA) and weighted moving average (WMA).
SMA puts equal weights on each number, while WMA puts different weights at different
timestamps, determining different periods to make the trend more accurate. The length
of a cycle needs to be decided manually. The size of a cycle can be either one month,
two months, six months, etc. The longer the cycle is, the smoother the trend will be. The
autoregressive integrated moving average (ARIMA) model only supports non-seasonal
data by proposing an integrated MA. ARIMA shows good performance because of the small
number of parameters required to build the model. However, the ARIMA model has the
assumption of stationarity, which makes the method inflexible to use. The SARIMA model
is an extension of the ARIMA model, which has both non-seasonal and seasonal parts. The
non-seasonal is the same as the ARIMA model. The SARIMA model will be introduced in
more detail in Section 4. The vector autoregressive moving average (VARMA) model is
a generalization of ARIMA that can be applied on multivariate time series. However, it
requires a stationary time series, so it could not be used for a seasonal time series.

https://powerbi.microsoft.com/en-au/
https://powerbi.microsoft.com/en-au/
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With the development of machine learning methods, time series forecasting is formed
as a regression task and many supervised learning models could be adjusted to forecast
time series. Support vector machine (SVM), and its variants, were the popular models
adopted [8]. In recent years, deep learning methods achieved superior results, and models
that were designed for dealing with sequence data were adopted to time series forecasting.
Long short-term memory (LSTM) is a type of recurrent neural network (RNN) that can
memorize short-term values. It is well-adopted in the time series community [5,9–11,13,14].
In our work, we will follow this direction and apply LSTM on the time series forecasting
with multiple variables.

3. Methodology

In this section, we first introduce how we process the ABS data in Section 3.1. Then,
we describe our forecasting methods in Section 3.2. Finally, we introduce the functionalities
of our Web application in Section 3.3.

3.1. Data Processing

In order to use the data from ABS’s website, our data processing includes two steps:
(i) data collection and (ii) data preprocessing.

3.1.1. Data Collection

The building- and construction-related data, collected from the website of ABS, are in
five categories, namely building activity, building approvals, engineering construction, con-
struction work done, and construction activity. On the page of each category, downloadable
data sheets that contain the whole historical data in the given category are provided. We
develop Python scripts to convert the crawled source HTML into XML data. By observing
the pattern of the HTML element descriptions, links can be extracted from the XML data.
For example, the links on the building and construction page all have the class name called
“field-group-link card”. The script extracts all elements with this class name, and then all
the links are obtained. After obtaining the links, the script finds all the common class for
the downloadable links and downloads the files into the Web server.

3.1.2. Data Preprocessing

ABS provides both state- and city-level statistics. For most of the city-level statistics,
it only has capital city’s data and does not have data for the rest of the state. We consider
this as incomplete data, as it only represents very limited cities. Instead, our project
considers state-level data that either represents the statistics of the whole state or the whole
of Australia. Identifying the data sheets we want can be done by parsing the title of the data
sheets, which follows a naming convention that contains three parts: chart title, data type,
and region. For example, a data sheet is named “Value of Building Work Done, By Sector,
Original, Australia”, for which the chart title is “Value of Building Work Done By Sector”,
the data type is “Original” and region is “Australia”, indicating it is Australia-wide data.

Each of the kept data sheets contains three types of data, i.e., original, seasonal,
and trend time series. The original time series is raw time series data that has not been
modified with any of the data analysis techniques. In our application, we only consider
this unchanged type of data. The seasonal time series is the original data, with seasonal
effects removed. We do not consider this type of data in our application. The trend time
series shows general trends of the statistics. It is the data calculated by the data analysts
from ABS. As it is significantly incomplete, we ignore this type of data.

The first nine rows of each data sheet describe the attributes of the columns. Among
them are three rows, i.e, unit, series type, and frequency, which contain important informa-
tion for our preprocessing. Unit is used to check whether the data are in the same unit,
so that different data can be put on the chart after changing the unit. The unit is denoted
with a “$” sign, trailed by “000”, which means the data are recorded in the thousands.
Series Type is used for filtering out only the original data, and only the original data are
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kept in our application, as aforementioned. The series type is recorded as a string, so we
only look for the string “original” to identify original time series data. Frequency ensures
the time interval between each data point is identical. In our application, we need to
make sure that the frequency is four, so that the data entries are recorded quarterly. Due
to the data availability, some data sheets contain data that are dated back to 1983, while
other data sheets provide more recent data only. Therefore, the number of data available
for each section, under each category, varies. The longest time coverage is provided by
total number of dwelling units of New South Wales data, which contains 457 row entries. Ad-
ditionally, the shortest time coverage is provided by residential property price indexes data,
which contains 78 row entries. We keep the full length for visualization, but keep consistent
length when the statistics are considered features (i.e., the economic time series).

3.2. Time Series Forecasting

The data obtained from the ABS website are a set of time series data. In addition
to visualizing them in the interactive tool (Section 3.3), we performed forecasting, based
on the historical time series records from the processed ABS statistics. We explored both
traditional non-deep learning-based method and deep learning method. Specifically, we
model the problem as an multivariate time series forecasting problem that, given historical
time series values and related features, we use to forecast the values of the future. Consider
n time series variables {y1t, . . . , ynt}. A multivariate time series is the (n× 1) vector time
series {Yt}, where the i-th row of {Yt} is {yit}. That is, for any time, t, {Yt} = (y1t, . . . , ynt).
Our task is to predict a specific {yit} (i.e., the interested statistic value) for t+1, t+2,..., by
given {Yt}.

The long short-term memory (LSTM) is a deep learning model that is commonly
adopted in time series forecasting, due to its power of modelling sequence data, and time
series is a typical type of time series data. LSTM is an artificial recurrent neural network
(RNN) architecture used in the field of deep learning. Most of the current LSTM time series
forecasting methods make forecasting based on only the time series itself, that is, using the
historical values of the same time series to predict its next values. In our work, we tend to
involve more relevant and informative information to aid the prediction. Specifically, we
adopt the economic statistics from ABS and build a LSTM-based multivariate time series
forecasting model.

3.2.1. Economic Features

We obtain the building- and construction-related economic features from the ABS
website economy section (https://www.abs.gov.au/statistics#economy, accessed on 14
February 2022). The purpose is to integrate information from different aspects, in order to
guide the model to perform forecasting. We only keep state- and Australia-wide data, as
we did for the building and construction data, as discussed in Section 3.1.1. There are a few
more restrictions to help ensure the granularity of the economic data are identical with the
building and construction data:

• The data needs to be recorded quarterly, and the timestamp for each data point needs
to be identical;

• The data sheet must include original data without any processing;
• The data must be state- or Australia-wide data after any processing.

Besides that, we find many data sheets do not provide timestamps, so we could not
align them with the building and construction time series. We ignore these data sheets
directly. Similar to the building and construction data, the record’s history is not in the
same time range, and some data sheet only include very recent data. For example, the data
sheets that start from 2010 leave only 50 data points, which is insufficient for training our
forecasting model. So, we omit these data sheets.

After manually filtering the data sheets, the remaining features include:

• Residential property price indexes;
• Wage price indexes;

https://www.abs.gov.au/statistics#economy
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• State final demand;
• Selected living cost indexes;
• Producer price indexes.

The residential property price indexes show the housing price changes over time and
include the median price for different types of properties, so that each type of property
can be set as a single feature. This feature can be strongly correlated with the building and
construction data. The wage price index represents the residents’ income changes over
time. The other three features all show the change in the residents’ consumption level (of
all residents). These selected features are all in the form of a time series, so that they could
be used as variants in the multivariate time series forecasting.

3.2.2. Feature Selection

Our Web application allows users to customize the visualization. When users select the
data they want to see, the forecast values will show with the historical values. We also allow
users to select multiple data (i.e., multiple time series). These require that our forecasting is
performed in real time. We could train the model periodically in advance to omit the real
time training. However, the model still be input with many features. In order to reduce the
size of the features, we explored two ways. One is to utilize the correlations between each
time series, in order to only keep one of the highly-correlated ones. Data correlation is a
way to determine how close two data traces are and whether one of them is dependent on
the other, or whether one is closely associated with the other. When we choose time series
as features (in our case, it is an economic time series) for the forecasting model, it is better
to choose the features that are not correlated with the forecast ones [15]. This is because if
the forecast or target time series has a strong positive or negative correlation with one or
more time series features, the values are linearly predicted, which does not show correct
forecast or prediction. There are a few ways to calculate the correlation between two time
series. Pearson correlation coefficient is a popular one and can be denoted as follows:

r = ∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2

where xi is one data point in the first data trace, and yi is the data point in another data
trace. i is the timestamp where the two data points are at the same timestamp [16]. The
Pearson correlation coefficient value r is between −1 to 1. If the coefficient is closer to 1
or −1, it indicates the two time series are strongly correlated. However, using correlation
to decide which time series to be pruned is time consuming, as we need to exhaustively
compare each pair of the time series features.

Another way is to use a dimension reduction algorithm, such as principle component
analysis (PCA) [17]. Without the need to eliminate features, PCA is used to extract the most
informative feature components, so it naturally eliminates the correlated and duplicate
information. The general idea for PCA is to rotate the data into new coordinates that
maximize the variance in the data. It keeps the information, as much as possible, in the first
few components—if the number of the components are exactly the same as the original
number of variables, then all the information is kept. Given p variables X1, X2, . . . , Xp, the
first principal component, denoted as Y1, is a linear combination of the variables Y1 = wT

1 X,
where w2

11 + w2
12 + . . . + w2

1p = 1. w1 maximizes the most variance. Similarly, the second
principal component is Y2 = wT

2 X, and w2 maximizes the second most variance. This
continues until the total of p principal components have been calculated, the transformation
of the original variables to the principal components is written as Y = XW, where W is cal-
culated through singular value decomposition. The rows of W are the eigenvectors, which
specify the coordinates of the principal components. As the most important information
is obtained in the first few components, keeping them will not cause much information
loss, so PCA is a commonly dimensional reduction algorithm. Additionally, it is more
computationally efficient than checking the pair-wise correlation coefficient. Therefore, we
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chose PCA in our work. There are a couple advantages of using PCA for this project. (i)
Our application requires us to have efficient real time forecasting, so we have a trade-off
between accuracy and efficiency. Introducing more features will usually help achieve
better accuracy. However, in our application, we want to keep as few features as possible,
in order to reduce the computation time. PCA could meet our requirement for efficient
computing, while keeping the most information for accurate forecasting. (ii) Since the ABS
dataset is relatively small, using complex representation methods for capturing the data
characteristics is not feasible in our project. PCA is a lightweight and efficient algorithm
that is suitable for small scale datasets, so it is a good fit for our project requirements.

In our implementation, we obtained around 50 time series features from the above
identified economic statistics. The features cover different fields, and they have various
meanings and units for the data. Besides, different economic factors focus on various
aspects, as they are not correlated with each other. PCA helps us to identify the most
important aspects, among all features, without losing too many details of the data. Given
the number of dimensions we want, PCA gives out the selected number of top features,
which helps the model learn the most vital features during training. We applied PCA and
aim to have less than five to be input as the features.

3.2.3. Prediction

LSTM-based forecasting is composed of four parts: (1) merging all features and target
data and dropping empty data rows with empty cells; (2) splitting target data and features
and reducing the feature dimension; (3) training the model; and (4) making forecasting.

The first step is to merge all the dataframe objects. A dataframe object is created
when loading a data sheet. Therefore, the program first sets the timestamp as the index
for each of the dataframe object, then the dataframe objects are joined, one-by-one, using
the timestamp index. The reason for dropping rows with empty cells is that the LSTM
model does not support missing data or none-type data. Besides, it is not possible to do
data imputation because all the missing data are at the head of the data sheet. The missing
data are simply not recorded at that time, some types of data only start being recorded after
2003. The current data imputation techniques, such as setting a constant number or using
previous or later value to replace missing data, cannot be applied to our case. The reason is
that these data are not recorded, any types of misleading information or make up data will
dramatically affect the trend of correlation between the features and target data. Therefore,
we drop all the rows/timestamps containing missing values.

Since the PCA is only applied to the features, after merging all the features and target
dataset, they need to be split up into target dataframe object and the features dataframe
object. Then PCA is applied to the feature dataframe object, and the wanted number of
dimensions are extracted from the features to be prepared for training. Then, the extracted
features are merged with the target data to drop out empty cells, as in the first step. After
dropping out the data entries, around 70 data entries remain in the end.

The next step is to train the model using the data. Before putting data into the model,
normalization is used to bring both the feature and target data in the same footing, without
any upfront importance, so that it can reduce the effect that a feature with a higher value
range may dominate, when calculating distances between data points. For example, the
target data may have a big difference with the reduced dimension feature on numeric
value. If one of them is greatly larger than the other one, then the whole model will be
dominated by the one with the larger value. Therefore, normalization is a way that can
reduce such effects, but keep the completeness of the data. We scale and translate each
feature individually, such that it is in the given range on the training set, and the range
is between zero and one. After scaling the data, it can be put into the LSTM model. A
cell, input gate, output gate, and forget gate make up a typical LSTM unit. The three gates
control the flow of information, into and out of the cell, and the cell remembers values
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across arbitrary time intervals. The following equations represent the components in the
LSTM model:

it = σi(Wixt + Uict−1 + bi)

ft = σf (W f xt + U f ct−1 + b f )

ot = σo(Woxt + Uoct−1 + bo)

ct = ft ∗ Ct−1 + it ∗ σc(Wcxt + bc)

ht = Ot ∗ σh(Ct)

where t refers to the time, and xt is the input vector at time t, while ht is the output vector
at time t, and ct stores the state of union. it is the vector of input gate, ft is the vector of
forgotten gate, and ot is the vector of output gate. Wi, W f , Wo, Wc, Ui, U f , Uo are weights
for xt and ct−1, respectively, and bi, b f , bo, bc are the shift vectors. All of these weights and
biases are learned through the training process. σi, σf , σo, σc, σh are activation functions.

The last step is to make forecasting. The forecasting uses a fixed-length time windows
for the forecasting, which means that it will learn from window size number of previous
data points to output another window size number of forecasting data points. For example,
the model can learn from the past five data points, in order to make prediction on the future
one data point. The training process is basically shifting the time window from start to
end, each with a step size of one. The window moves one data point at a time and keeps
learning, until the past data point windows reaches the end of the data. Instead of training
on all previous data points, only a limited number of inputs are trained each time. After
the model training is completed, the transformed data that are brought back use the scalar
again, and the forecasting data are returned with the correct format and unit.

3.3. Web Application

We developed a Web application for users to explore the ABS building and construction
statistics with ease. The Web application also includes our forecasting, based on the
techniques described in previous section. The main framework of the application is shown
in Figure 1. The main navigation is on the left of the page, and it directs the users to different
pages of the Web application. The Web application has three pages, the homepage, which
is a dashboard showing the latest news of each section on the building and construction
page of ABS. The chart page displays the data stored in the database. Lastly, the saved
chart page shows the saved charts of the user’s own preference.

Figure 1. Framework of the Web application.
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3.3.1. Functionalities

As shown in Figure 1, the first feature of the Web application is to extract the latest
information of on the ABS website, similar to the crawling of the data sheet files. The server
requests the webpage of the ABS website, and the ABS website will return the HTML of the
webpage. Then, the Web application also converts it into XML and retrieves the relevant
information. Since sending the request and receiving the HTML takes milliseconds, the
Web application retrieves the information every time a user directs to the dashboard.

The second tab, which is the most important feature, it is the data displaying of charts
in the database, as well as the time series prediction. The chart display page is classified
into five categories, matching up with the sections on the ABS website. After the user clicks
on one of the categories, the Web application will first load a default chart, which is the
first chart in the database. Then, the user can choose different charts using two different
ways. The first approach is through the three-level navigation above the chart, as shown in
Figure 2. The navigation falls into two main categories, which are “Number of” and “Value
of”. Then the second level is the Australia-wide level, which shows all data chart types of
the Australia region. The third level is the state level; this level shows the summary of each
state or territory, and it also has the detailed charts for each state or territory, if there exists
one on the ABS website. After the user chooses any one of them, the chart will show up on
the webpage.

Figure 2. Three-level navigation.

The second approach is using the auto-complete function, as shown in Figure 3. Users
can enter the keyword in the search bar at the top of the webpage. After the user enters
in the keyword of a chart, the chart title, containing the keyword, will show up under the
search input. Apart from that, in case there are too many relevant charts in the database,
only ten of them will be shown. Then, if the user clicks on any of the popup chart titles, the
chart will be shown on the page.

Figure 3. Auto-complete function.

The workflow of the chart display is when users selects any of the charts, the chart
name will be passed to the backend server, which is the Flask server. Then, the server uses
the chart name in the search query and executes the query to search for the chart in the
MongoDB database. Then, the MongoDB database will return a result JSON object contains
the data of the chart. However, due to the rule of the MongoDB, each record will have a
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field called “_id”, which is automatically generated (Section 3.3.2). The returned result
needs to be processed; then, it can be used by the frontend. Therefore, after getting the
result, the result is also loaded into a dataframe object. First of all, the “_id” column is
removed. Since this is the time series data, the order is important, so the backend first sets
the date, as the index and sorts the date in ascending order. After processing the result, it
will be sent to the frontend. However, one more process needs to be performed, which is to
convert the millisecond format date into readable timestamp on the frontend. Then, the
data are passed into the Plotly.js API, and it can be displayed on the frontend.

The chart also provides some interactive features for the user to visualize the data. The
screenshot of the chart display page is shown in Figure 4. Firstly, the legend for each line in
the chart is shown above the chart, and users can select which lines to display on the chart.
The time range picker allows users to select a different time window, so that user can zoom
in to check the data. Besides, users can also shift the time window to see different data in
this specific time range. When the user hover on the chart, the name of each attribute, and
its corresponding value at the timestamp, will pop up on the chart, which makes it easier
for users to compare. When the user double clicks on one of the legend titles, the prediction
will show up after a few seconds. The Web application uses the LSTM-based prediction,
and it generates a new model every time to display the prediction results. The prediction
has been introduced in Section 3.2.

The last feature is the saved chart function, as shown in Figure 5. There is an heart
icon on top of the chart; when user clicks on it, the chart will be stored in the browser’s
local storage [18]. The local storage is on user’s own device, stored in the browser, so that
users do not need to login or have an account to store their preferences. However, one
drawback of this approach is that users will not be able to synchronize the saved chart on
different devices. The saved charts will show up in the saved chart page, with the selected
attributes stored.

Figure 4. Screenshot of data visualisation page.
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Figure 5. Main navigation and saved icon.

3.3.2. Implementation

We developed the Web application using the Flask framework [19]. Flask is a Web de-
velopment framework that is compatible with Python. The data storage uses the MongoDB
(https://www.mongodb.com/, accessed on 14 February 2022), which uses the NoSQL
schema. The reason for picking the MongoDB database is that it is a cloud database, which
could help the data be accessed by anyone who visits our Web application. Furthermore,
MongoDB uses NoSQL schema. The NoSQL schema is more flexible on data storage [20],
as it is not required to fit in the pre-built data schema; instead, it only stores json objects.
Since the dataframe object we use to store the data are also JSON-like and can be converted
into JSON object, the NoSQL schema is suitable for this situation. After the data sheet
is processed, the dataframe object is then converted into a JSON object and inserted into
the MongoDB database. Data on the ABS website has a wide range of varieties, so that a
flexible schema can loosen the restrictions on the data. Each dataframe object is stored as a
collection in the database. The collection name is the normalised chart title, and each row
in the dataframe object is stored as a single document in the collection. When a document
is inserted into a collection, a field called “_id” is automatically generated. This field is a
unique identifier that is used to identify different documents. Besides, the data are stored
in milliseconds format, which is the data type in the MongoDB convention. After inserting
all the charts, the Web application can access the data from anywhere through internet.

4. Experiments

We performed some evaluations on our forecasting function. We evaluated different
settings of the model and our data. We also compared the LSTM-based methods with the
traditional SARIMA-based forecasting [21–23]. In this section, we report our results.

4.1. Model Settings

Since the SARIMA model is one of the most widely used model for time series fore-
casting among all the models, we choose it as the baseline model. It is formed by adding
seasonal terms in the ARIMA models and is written as

SARIMA(p, d, q)(P, D, Q, m)

where (p, d, q) and (P, D, Q, m) are the non-seasonal and seasonal part of the model, re-
spectively. The parameter m is the number of periods per season. To evaluate the SARIMA
model, Akaike information criterion (AIC) is used:

AIC(p) = nln(RSS/n) + 2K

Where n is the number of data points and RSS is the residual sums of squares, K is the
number of estimated parameters in the model. AIC is an estimator of out-of-sample
prediction error, and a lower AIC score indicates a more predictive model. A lower AIC
score means that the prediction data points have a lower distance with the ground truth
data, compared with other parameter combination. Each parameter for both the non-
seasonal and seasonal parts can be either zero or one. Therefore, there are in total 32
combinations; they are all tested out, and only the one with the lowest AIC score will be

https://www.mongodb.com/
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kept as the setup for the SARIMA model. The model with such a parameter setup will be
used for the result comparison later. In our dataset, SARIMA(1, 1, 1)(0, 1, 1, 4) shows the
lowest AIC value 7022.6870.

The LSTM model is also well-adopted in the time series community. We used Keras
implementation for the LSTM-based model. To keep track of the model quality during
training, we used the MAE (mean absolute error) as the loss function. MAE is calculated
as the average of the absolute difference between the actual and predicted values. The
optimizer is an Adam optimizer, which adjusts the individual learning weights for each
parameter. For both models, the dataset is split for training and test; 90% of the dataset is
used for training and 10% of it is used for testing. There are also variable settings for the
LSTM model, which will be talked about in Section 4.2.

4.2. Lstm Model Performance

There are a few parameters that affect the performance of the LSTM model. In our evalua-
tion, we examined the following ones for their change on the overall prediction performance:

• The number of iterations, denoted as nEpoch;
• PCA output dimension, denoted as dimPCA;
• The length of input data points, denoted as nIn;
• The length of output data points, denoted as nOut.

These parameters are associated with the performance of the LSTM model, so different
combinations of these parameters will be tested in the following sections. The first one
is the number of epoch that the model will be trained with. There is no need to test the
epoch for every number of nIn, nOut, or dimPCA because the loss value will not be greatly
affected by these numbers. Therefore, the number of epoch will be determined by a single
test. For the other three parameters, they will be set in the range from one to five and tested
separately. The test plan is to first find the best pair for nIn and nOut; then, this pair is used
in the following tests, which are the experiments of dimPCA. The experiments of dimPCA
will test all the dimension numbers, from one to five, to find the best one. The test results
will be shown in the following sections.

4.2.1. Varying nEpoch

Before training the model, we wanted to find the best number of epochs that the model
should go through. This step is to ensure that the model can end up with the best model
after the training. To find the best epoch number for training the model, we first set the
maximum number of epoch to be 100 and let the model train for one hundred epochs. Then,
we took the average training loss and validation loss of 10 experiments and found the point
where both loss values are relatively low and the values of two points are close to each
other. A low loss value on the validation ensures that the model has a good performance
on the prediction. However, the distance between the training and validation loss should
not be too far; otherwise, it may cause the overfitting or underfitting problem. In this
case, when the number of epochs goes up, the training loss keeps going down, while the
validation loss continues increasing. As the number of epoch goes up, the model gets into
the overfitting problem because it fits the training data too well, but it perform bad on the
validation data. Therefore, I look for the intersection point of the two loss value lines. As
shown in Figure 6, the intersection point is at 20. At this point, the two lines are the closest
to each other, and they both have a relatively low loss value, so that this point is the best
setting for the number of epoch. Therefore, 20 is set as the number of epochs for the model
training for all other experiments. Apart from the number of epoch, the number of neurons
does not affect the model too much because the model does not have a large number of
inputs, so the number of neurons is set to 30.
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Figure 6. Loss value during training.

4.2.2. Varying nIn and nOut

After deciding the number of epoch, the experiments took with the number of epoch
set to 20. In this experiment, PCA dimension dimPCA is set to one, which means that the
features will be reduced to one dimension; only the most important common feature will
be extracted and used in this experiment. nIn and nOut are set in the range of one to five.
The reason for setting the range is that the model will lose accuracy quickly if the nOut is
set to be too large, compared to the total number of data points; so, the upper range is set
to be five. For example, if we let the model predict the next twenty years of data, with only
70 data points provided, which is meaningless, it is not possible to make precious forecasts.
As for the nOut, we also set the upper range of it to five because we used the window size
approach. To make to window size identical for both nIn and nOut, we set the range to be
five for nIn, as well.

Both nIn and nOut are in the range of one to five, so that there are, in total, 25
possibilities for the combination. We set the nIn as the outer loop and nOut as the inner
loop to go through all the combinations. To evaluate the results, the root mean square
error (RMSE) value and time for computing the model were recorded. RMSE is used for
assessing the accuracy of the model, which is the distance between the prediction and
actual data points. Time is to visualize the trade-off between accuracy and performance,
and it also checks if the model is practical to be put onto the Web application. If it takes a
lot of time, without too much improvement on the accuracy, it may not be a good decision
to pursue the highest accuracy. However, if the accuracy dramatically increases as the time
goes up, it needs to be considered which one to pick to fit in the Web application, without
losing too much accuracy.

Figure 7 illustrates the results. In Figure 7, there are two rows on the X axis. The
upper row is the nOut value, and the lower one is the nOut value. The X axis shows
all the combinations from one to five. From Figure 7, it can be seen that, when nIn is
one and nOut is two, this model gets the lowest RMSE, and it also manages to achieve a
reasonable computing time. Besides, when nIn is one, with an increase of nOut, the RMSE
value surprising drops down, and the average RMSE value of the model is also the lowest,
compared with the others. The drop down change is huge, as compared with the rest four
value of nIn.



Appl. Sci. 2022, 12, 2420 14 of 18

Figure 7. LSTM model performance with different nIn and nOut parameters.

For nIn from two to five, the RMSE value goes up greatly when the nOut increases,
especially when nOut is five, and the RMSE value gets to its highest value. Additionally, it
can be found that the gradient goes up quickly when nOut gets larger, which means that
the model will lose accuracy rapidly when the number of future predicting points increases.
From the RMSE+1 line, it can be found that it has the lowest average RMSE value, and it
has several points that are far lower than the others. However, when nIn is one, the more
future points it predicts, the lower RMSE it achieves at the end. Overall, the computing
time increases with the increase of nOut, but the time does not vary too much; time for all
models drops in a reasonable and acceptable range.

Overall, the computation time for all the models are close, due to the reason that the
dimPCA is set to one; the biggest difference is less than three seconds. Therefore, we could
chose the model with the highest accuracy, without sacrificing much time.

4.2.3. Varying dimPCAs

We also computed time and RMSE values with different dimPCA. In this experiment,
we fixed the value of nIn and nOut to be the most time-saving ones, so that they will not
affect the computing time with various dimPCA. Among the most time-saving ones, we
chose the best performed nIn and nOut combination from the last experiment. Therefore,
both nIn and nOut are fixed at one. The dimPCA is set in the range of one to the number
of features to test performance for different dimPCA values. In this experiment, we used
the state-wide features, which are seven features in total.

As shown in Figure 8, with the increase of dimensions, the RMSE first slightly drops
down and then goes up again. The reason for this may be that the model loses the most
important feature when the total number of features increases, and the model may be
dominated by a least importance. Then, if the model gets on the wrong direction, the
accuracy of model will definitely drop; therefore, the RMSE value gets higher. Though
the RMSE value goes up at the end, it is still lower than the one with only one dimension
provided. A model with more features can be better than only one feature provided.
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Figure 8. LSTM model performance with different PCA dimensions.

However, what is unexpected is that, when the number of dimensions increases, the
overall trend of time for training the model shows a slight decrease. As seen with the grey
line, shown in Figure 8, when the total number of dimensions goes up, the computing time
tends to go down. There may be a threshold for the lower bound of the computing time,
which requires a larger number of dimPCA to find the lower bound. The largest difference
between the highest and lowest RMSE is around 200, and the largest time difference is less
than two seconds. In general, the dimPCA affects the accuracy more than its effects on the
computation time, and the difference between the RMSE and time is not much. The effect
of the dimPCA is not as big as the nIn and nOut pairs provided.

4.3. Sarima and LSTM Model Results Comparison

In this part, the prediction performance of the SARIMA and LSTM models are com-
pared. A specific data column is chosen to compare their performance. The data column
is “Total number of dwelling units; New South Wales” in the data sheet “Total Number of
Dwelling Units Approved; States and Territories”. The reason for choosing this column
is that it has one of the highest number of data points among all charts. This is because a
column with more data can greatly improve the performance of the SARIMA model, which
makes it fair for the comparison. The LSTM-based prediction uses the state features that
have been used in the previous experiments, so that the performance can be guaranteed.
This setup ensures both of the model gets its best performance.

Figure 9 shows the process of the model training. In the LSTM-based model exper-
iment, we set nIn to one and five and nOu to five so that we could compare more data
points with the original data. The reason for setting nIn to one and five is that we wanted to
compare the performance of learning different numbers of past data points. The previous
LSTM experiments did not compare the SARIMA model; so, this time, we used two edges
of the LSTM-based prediction to compare with the SARIMA model.

(a) nIn=1 (b) nIn=5

Figure 9. LSTM-based prediction with different nIn.
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In Figure 9, the blue line is the original time series data, and the red lines show the
training process. Each red line includes six points; the first one is the current data point,
and the next five points are the future prediction points. Each red line shows a single
window move. The window keeps shifting one data point at a time to learn from the past
and output the future prediction points.

The two LSTM models take different values for the parameter nIn. There is a big
difference between the different nIn values. As shown in Figure 9a, there are a few spikes
in the figure. Around each spike, there are always ups and downs, which fits the trend of
the spikes. Therefore, the model learns from the recent changes in the original time series
data trend and applies it to the prediction. When it comes to learning five data points from
the past, the changes around the spikes are not as obvious as the last does, as shown in
Figure 9b. The red line tends to be more flat and linear. It tends to become a line with the
overall trend, instead of learning from the close data points.

Therefore, when the model only learns from the closest past data point, the model is
able to quickly adapt to the recent changes, as shown in Figure 9a. On the other hand, when
the model learns more data points from the past, it is more likely to predict the overall
trend of the data, as shown in Figure 9b.

Lastly, it comes to the SARIMA model. The prediction result of this model is used
as the baseline, in order to compare with the LSTM-based prediction. In Figure 10, there
are also two lines. The blue line is also the original time series data, and the red line is the
prediction result. In order to present the results better, we only showed the last six data
points of the chart in this part. The prediction here applies the parameters we discussed in
Section 4.1. The forecasting method we used here is a one-step ahead forest. The one-step
ahead forest means that it uses all the previous data points from the current one to make
prediction for the next data point. The SARIMA model learns all the data points from the
past. The result of the prediction is similar to the LSTM model with larger inputs. The
SARIMA model also predicts the overall trend of time series data, instead of rapid changes
in recent time.

Figure 10. SARIMA-based prediction results.

4.4. Discussion

Overall, the performance of the LSTM-based prediction greatly depends on the nIn
parameter, as mentioned in Section 4.2.2. The effect of the prediction varies when the
model learns different number of past data points. When the LSTM-based model learns
more data points (i.e., in our implementation is five), the prediction tends to have a similar
performance to the SARIMA-based prediction. The LSTM-based model predicts more
accurate on the overall trend. Instead of predicting all seasonal changes and spikes in
the time series data, it gives out a smooth trend line, without many twists on the line.
The SARIMA model makes predictions on the seasonal and non-seasonal parts, and then
integrates them together, while the LSTM-based prediction only learns from the past five
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data point, in order to learn the pattern that includes both the non-seasonal and seasonal
parts. Therefore, they both end up with a prediction line that tends to become linear
and smooth. There are not many spikes on the prediction line for both the SARIMA and
LSTM-based models, with nIn = 5. They both achieve a good performance on the recent
data prediction.

On the other hand, when the LSTM-based model learns less data points from the
past, it is obvious that there are ups and downs around the spikes, which means that the
LSTM-based model has learned from the recent changes. However, the difference between
highest and lowest values is not as big as the original line. The reason for this may be that
it is affected by other economic factors. The economic factors converge the changes of the
prediction. Compared with the SARIMA model, both of LSTM-based predictions provide
good results, and they both are slightly better than the SARIMA model by comparing the
RMSE value, even though they predict the results in two different directions.

However, there are a few improvements can be made on this approach. The first thing
is to gain more data, due the fact that some of the data on the ABS website starts recording
in recent years, and this cause a big lack of data in training. Besides, since the missing data
are all at the beginning, it is not possible to put dummy data in or just put zeros instead;
these methods may dramatically affect the accuracy of the model, so there is no way to fill
up these missing values. Since the LSTM model cannot take empty data records, the data
range is limited by the feature that has the least among all features. If a better dataset can
be found, and the other economic factors are recorded completely, the model will have a
better performance.

In later implementations, more features can be added, and only the features with large
number of data entries remain for training. Currently, the method uses the fix window
size to train the model. Another approach that may improve the model is to train it on all
the past data points; this may be helpful to learn both the history data trend and recent
changes in the time series data.

5. Conclusions

In this work, we applied techniques from computer science to help users in the building
and construction domain to better explore the ABS statistics and forecast the future trends.
The Web application is publicly accessible, and the backend data are periodically updated.
Users no longer have to explore all the data sheets from ABS to find their interested
information. Moreover, we selected some economic time series, which are potentially
related to the building and construction statistics, as features to forecast the future values
of the user-selected statistics. We applied LSTM as the forecasting model and compared its
performances with the traditional SARIMA-based model. The results show the effectiveness
of the deep learning-based models. Our techniques could also be applied to other time
series forecasting. Our future work is to extend the work into other domains and further
improve the forecasting model.
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