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Abstract: Ionic liquids (ILs) have great potential for application in energy storage and conversion
devices. They have been identified as promising electrolytes candidates in various battery systems.
However, the practical application of many ionic liquids remains limited due to the unfavorable melt-
ing points (Tm) which constrain the operating temperatures of the batteries and exhibit unfavorable
transport property. To fine tune the Tm of ILs, a systematic study and accurate prediction of Tm of ILs
is highly desirable. However, the Tm of an IL can change considerably depending on the molecular
structures of the anion and cation and their combination. Thus, a fine control in Tm of ILs can be
challenging. In this study, we employed a deep-learning model to predict the Tm of various ILs that
consist of different cation and anion classes. Based on this model, a prediction of the melting point of
ILs can be made with a reasonably high accuracy, achieving an R2 score of 0.90 with RMSE of ~32 K,
and the Tm of ILs are mostly dictated by some important molecular descriptors, which can be used as
a set of useful design rules to fine tune the Tm of ILs.

Keywords: ionic liquids; deep-learning; chemoinformatics; melting points

1. Introduction

With various valuable physicochemical properties (e.g., hydrophobic/hydrophilic,
ionic conductivity, thermal stability, etc.), ionic liquids (ILs) have attracted a lot of attention
within the scientific community in various applications, such as energy storage, CO2
capture, catalysis, lubricant additives, pharmaceuticals, and foods and bioproducts [1–8].
The main advantage of these novel compounds is that ILs are molten salts which consists
of cations and anions with a wide variation of possible combination. Thus, the novel
properties of the ILs are therefore determined by the unique molecular structures and
interactions between ions. Based on the purpose of applications, the composition of ILs
and their properties can be selected and fine-tuned from a large diversity of candidates of
inorganic or organic cations and anions [8–11]. ILs are usually known as “magic solvents”
due to their high flexibilities in designed synthesis and wide tunable molecular structures
and properties.

ILs present great potential for energy storage applications, e.g., lithium-ion batteries,
lithium-oxygen (Li-O2), lithium-sulfur (Li-S) batteries and redox flow batteries (RFBs) [1,12–15]
as promising supporting electrolyte materials. The solvent viscosity and melting point
are critical factors to determine the device’s efficiency. However, the practical application
of many ionic liquids remains restricted which is attributed to the unfavorable transport
property due to the high melting points [1,15–17]. To tune the melting point of ILs, a funda-
mental understanding at the molecular level and a systematic in-depth study of structural
properties is needed. For any given chemical compound, the melting point is a determinant
character in solid-to-liquid transition, dictated by several important factors, e.g., molecu-
lar structures, the configurations of atoms, ions and molecules in a crystalline structures
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(e.g., symmetry, crystal packing, molecular conformation flexibility), and the important
interplay of various interactions (e.g., intra-molecular bonds, electrostatics, van der Waals,
hydrogen bonding) among the molecular constituents. Thus, an accurate prediction of the
melting point of ILs is highly anticipated and is challenging as well.

According to the study of Katritzky et al. [18], there exist approximately 1018 com-
binations of ions that could lead to useful ionic liquids. However, the wide diversity of
IL compounds with various complex structures and physicochemical properties makes a
systematic in-depth study on IL compounds extremely challenging. Therefore, there is a
need to pursue predictive computational tools to aid the experimental design and synthesis
of ILs with desirable properties, such as practically low melting points (Tm). To explore and
predict melting points of a wide range of ILs, a comprehensive study adopting a rigorous
thermodynamic approach that provides an accurate quantitative prediction with high
computational cost [19–22] in all systems using atomistic or molecular simulation, might
not be feasible in practices. To overcome this challenge, a systematic high-throughput
screening and in-depth systematic analysis on a vast amount of reported ILs dataset with
a specific focus on their physicochemical properties is an important baseline study. An
affordable solution, in terms of the present state-of-the-art methodology, is to develop
predictive modeling to estimate and predict some important physicochemical properties,
such as melting point, viscosity, ionic conductivity of the ILs and their mixtures by uti-
lizing advanced statistical learning methods over sufficiently large datasets available in
studies using quantitative structure–property relationships, QSPR; or quantitative structure–
activity relationships, QSAR [23,24]. Together with the continued exponential growth in
available datasets from the published literature, the utilization of statistical machine learn-
ing models for the prediction of various physicochemical properties of ILs is definitely a
timely approach.

To accommodate for the ever-increasing dataset from literatures, the deep-learning
model [25–28] is generally known to outperform traditional machine-learning models
because of its capacity to process a vast number of features to construct an effective data-
driven model. Thus, the development of robust modeling tools for the high-throughput
screening of a large amount of ILs data from the literature using the advanced data mining
and machine-learning techniques can be very helpful to identify and solve the important
material design problems related to the ILs in many applications. This novel approach will
help to significantly speed up the exploration of materials, molecular design, discovery
and the development process of ILs, complementary to more in-depth fundamental focus
studies based on other methods, such as industrial-process modeling, thermodynamic
process and atomistic simulation. For this reason, as a baseline study, we propose the
adoption of a chemoinformatic approach and deep-learning model [25–28] to model and
predict the melting points (Tm) of a wide range of ILs, based on the descriptors of the
molecular constituents, with the aim of providing new insights to complement the available
theory-driven models in the field [19–22,29,30].

2. Methods

The data used in this study were collected from the Ionic Liquids Database—ILThermo
(v2.0) (https://ilthermo.boulder.nist.gov/) (accessed on 25 October 2021) [31,32]. Accord-
ing to the latest updates of this database, it contains 2175 types of ILs that comprises about
4200 compounds compiled from nearly 3500 published references. For pure ionic liquids
alone, the database contains nearly 1800 IL systems. For the datapoints related to pure ILs,
there are nearly 120,000 datapoints available. These datapoints cover various aspects in
thermodynamic, thermochemical and transport properties. The melting points data we
collected, which contain 1253 reported ILs, covers a large variety of ILs families. For such a
large collection, predicting melting points accurately without using costly computational
resources is highly desirable.

Figure 1 provides a schematic overview of the workflow we adopted in this work to
predict the melting points (Tm) of ILs based on the published dataset in ILThermo database
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using a machine-learning (ML) model. As an initial step, we extracted the physical and
chemical properties in which we were interested, i.e., melting temperature (Tm), from the
ILThermo database by utilizing pyilt2 library [33] with our in-house code written in python.
For the conversion of IUPAC names of ILs to SMILES representations, the functionality
in the OPSIN library [34] was used. Based on the Dragon7 software [35], there were
5272 molecular descriptors based on a quantitative structure–activity relationship (QSPR)
calculated for each ionic liquid molecule in the dataset.
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Figure 1. The workflow of basic methodology that adopted in this work to predict melting point (Tm)
of various ionic liquids based on machine-learning (ML) model (i.e., deep-learning model).

These molecular descriptors were then subsequently analyzed using statistical and
machine-learning (ML) models based on the python libraries available in scikit-learn
(scikit-learn 1.0.2), TensorFlow (TensorFlow 2) and Keras (Keras 2.7) [36–38]. Prior to ML
modeling, all the low variance molecular descriptors columns and those containing missing
values or empty columns were excluded. To prevent overfitting, we further reduced the
dimensionality of the original descriptor matrix, and the Pearson correlation matrix was
used to identify a set of significant molecular descriptors that show a statistical significance
with high correlation in determining the melting points of ILs. By excluding the molecular
descriptors with low correlation (<0.20) and high correlation (>0.90), a set of important
molecular features which consists of 137 molecular descriptors were identified and were
used to fit the ML model. After the correlation features selection and normalization of
molecular descriptors, the dataset was randomly divided into training (80%) and testing or
validation (20%) data for the validation of the ML model’s prediction.

In this study, our primary structure-property predictive machine-learning model is
based on a deep learning (DL) model composed of recurrent and recursive neural networks,
RNNs [25,26,39], which are a family of neural networks specialized to process sequential
data. A deep learning model is a subset of machine-learning models [25–28,39] which
mimics how the human brain processes information and learns based on a set of algorithms
which ‘learns in layers’. It involves learning through layers which allows a computer
to develop a hierarchy of learning process by developing several layers of information
processing states in hierarchical structures to learn and infer. A typical DL model contains
multiple hidden layers including input and output layers represented by neural networks.
In terms of implementing and training the DL model, it relies on parallelized matrix and
tensor operations, as well as computing gradients and optimization [25–28,39]. Thus, to
construct this DL model, the libraries and utilities including pre-trained models available
in Keras and TensorFlow were used. The DL model based on the sequential model is
represented by multiple linear stack of input layers with each layer consisting of certain
number of neurons that provides training and inference features. Figure 2 shows a general
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structure of our DL model, which consists of one input layer, five hidden layers and one
output layer, and each layer has a different number of neurons (i.e., input layer: 137 neurons,
1st hidden layer: 512 neurons, 2nd hidden layer: 512 neurons, 3rd hidden layer: 512, 4th
hidden layer: 256 neurons, 5th hidden layer: 64 neurons, output layer: 1 neuron). To update
all the network weights or parameters iteratively in the model training, we used an adaptive
moment estimation (Adam) optimizer which is a stochastic gradient descent method used
to speed up the optimization process [40]. To fit the RNN on to training sets, we set the
number of iterations, i.e., epochs to be 15,000 and batch size as equal to 32 in each epoch.
All calculations were carried out based on a Linux workstation with Intel i7-8700 6-core
3.70 GHz CPU and 32 GB RAM. In this work, training a DL model takes longer, i.e., ~18 h,
based on the number of parameters we used (~744,000) in the DL algorithm. However, after
being trained once, the model can be used repetitively. Furthermore, testing is extremely
fast and takes only seconds to make the prediction.
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3. Results
3.1. Clustering and Melting Points Distribution

As mentioned in the previous section, 1253 different ILs have been considered in
this work. To help improve the accuracy of the subsequent ML prediction on the melting
points, the similarity among ILs molecules based on the filtered 137 molecular descriptors
were analyzed and grouped based on the clustering method. Thus, the entire dataset
was separated into several different clusters or groups based on their similarities using
k-means algorithm implemented in scikit-learn libraries [36]. With the Elbow method [41],
we found that the optimal number of clusters into which the dataset may be grouped
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or clustered is 5, and a condensed view of the distribution of these clusters/groups in
multidimensional descriptor space can be visualized through dimensionality reduction
using principal component analysis (PCA) (Figure 3a). As shown in Figure 3, the score
plot for the two principal components shows significant groupings that correspond to five
distinct clusters. Therefore, throughout this work, we separated our entire dataset into
five clusters or groups for the training and testing in the DL-model. Among these five
clusters or groups, the size of the dataset for each cluster varies and consist of 605, 186, 134,
297, and 31 different ILs separately, which consists of with various combination of cations
(e.g., ammonium, imidazolium, phosphonium, pyridinium, etc.) and anions (e.g., sulfonate,
phosphate, hexafluorophosphate, borate, acetate, dicyanamide, triazolide, etc.) families
(Figure 3b).
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5 clusters that representing 1253 ILs dataset. (b) The randomly selected representative ILs molecules
from cluster 1 to 5 dataset.

From Figure 4, a wide distribution of melting points (Tm) can be found for this large
diverse dataset of 1253 ILs, whose melting points vary from 30 K to 550 K. As shown, a
“bi-modal”-like distribution in melting points of the entire dataset is found, which could
be assigned to two apparently distinct ranges, i.e., low melting points (i.e., Tm < 273 K)
and high melting points, i.e., Tm > 273 K (Figure 4a). Meanwhile, the distribution of the
melting points among these five clusters (i.e., cluster 1–5) is different, and only cluster 1 has
a similar Tm distribution to the entire dataset which consists of both low and high Tm ILs
candidates (Figure 4a,b). In cluster 1, a wide variation of Tm for ILs can be found (i.e., from
30 K to 550 K) with a median Tm~228 K. For cluster 2–5, the distribution of the melting
points mostly consists of high Tm ILs candidates, which generally yield a higher median
Tm, i.e., 317 K to 333 K (Figure 4).
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Figure 4. The distribution of melting points based on the (a) total 1253 ILs dataset, (b–f) cluster/group
1–5 ILs dataset that found from k-means clustering analysis. The orange dotted line highlights a
boundary with T = 273 K that distinguish the low melting (Tm < 273 K) and high melting point
(Tm > 273 K) ILs system. The median Tm from distribution of (a–f) is 279 K, 228 K, 322 K, 333 K, 317 K,
328 K.

3.2. Deep-Learning (DL) Model Performance

To quantify the accuracy of the prediction from the deep-learning (DL) model we
described in Sect. 2, the model performance was assessed based on two metrics such as
the square coefficient of correlation (R2), and the root mean square error (RMSE), which
estimates statistical accuracies in the predictions. A summary of the model’s performance
is presented in Table 1. The performance metrics (e.g., R2, RMSE) for the test sets among
different clusters/groups or the total dataset were found to be sensitive to the size of the
individual dataset (Table S1). As shown in Table S1, the DL-model is not suitable for small
datasets since the R2 score is only ~0.60. This suggests that a sample size that is too small in
terms of training data will result in poor performance. Compared to the individual small
clusters, the R2 score of the entire dataset is significantly better (i.e., R2~0.90) and might be
attributed to the larger size in the training dataset (i.e., with sample size, N = 1253), which
contains a wide varieties of ILs system. Interestingly, the similarity in the distribution of Tm
among cluster 1 and the entire dataset (Figure 4) guarantees a similar good performance in
the high R2 score among these datasets (i.e., R2~0.90–0.94), despite a smaller sample size,
i.e., N = 605 (Table S1). To highlight the good predictive capability of our DL model to the
entire dataset (N = 1253) in terms of high R2 (i.e., R2~0.90 in Table 1), Figure S1 depicts
the small deviation between the predicted values of melting points and experimentally
measured values obtained from the literature.

Compared to recent works in the literatures [42–46], the test R2 score and RMSE
reported in this work are outstanding. The previous works in the literature have reported
comparable (~25–33 K) or higher (~39–45 K) RMSE values for the melting point prediction
(Table 1). Despite being based on different methodologies and datasets, the R2 score
reported in the literature [42–46] (~0.54–0.82) are relatively low or less accurate compared
to this work (i.e., R2~0.90), as shown in Table 1. One of the best performing models in
the literatures is based on the kernel ridge regression (KRR) model [46] which uses a
significantly lower number of features yet achieves comparable accuracy (i.e., R2~0.76,
RMSE~39 K) to the rest of the studies. As reported by Low et al. [46], the KRR method only
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depends on four molecular features or descriptors (e.g., Coulomb matrix, molecular orbital
energies) which can, unfortunately, using the ab initio or first-principles calculation data, be
computationally costly if a much larger IL dataset and larger IL molecules are considered.
For the QSPR model [44], the low R2 (i.e., R2~0.72) might possibly be attributed to the
commonly known sign change problem of descriptors in QSPR when the contributions
of a set of selected descriptors or features are analyzed using a multivariate regression
model [47].

Table 1. The performance metrics for predictions of the ILs melting temperature obtained in this
work compared with that of the literature. N refers to the size of the entire dataset, which is the
total number of ILs. GC refers to group contribution; ANN is artificial neural network; QSPR is
quantitative structure-property relationship; RF is random forest; KRR is kernel ridge regression. For
the RMSE, the unit is in Kelvin (K).

Reference N Features Model RMSE R2

[42] 799 80 GC 24.86 0.82
[43] 799 40 ANN 33.33 0.54
[44] 808 12 QSPR 26.85 0.72
[45] 2212 226 RF 45.00 0.66
[46] 2212 5 KRR 38.54 0.76

This work 1253 137 DL 32.88 0.90

For the model based on the group contribution (GC) method reported by Gharagheizi
et al. [42], the RMSE is the smallest, i.e., ~25 K, with a high R2 score~0.82 compared to the rest
(Table 1). For this method, the contributions of cation or anion functional groups are used
to predict the targeted physicochemical property (e.g., Tm). In the literature [29,42,48–50],
the implementation of the GC model varies, and the reported accuracies differ (i.e., R2~0.5–0.8)
which substantially depends on certain groups of ILs in the datasets, and the work reported
by Gharagheizi et al. [42] (Table 1) is probably the most accurate among the reported GC
methods. However, in order to make predictions on new ILs dataset that have new chemical
substructures or functional groups outside of the original dataset, the group contribution
(GC) scheme would need to be re-devised and most probably could be time-consuming.
Thus, by comparison to RMSE, the R2 score and sample size of the ILs dataset, our current
DL-model falls comfortably in between these two best predictive models, i.e., KRR and GC
(Table 1). In particular, the advantage of the DL model in terms of sample size is discernable.
As shown in Table 1, the DL model out-performed other ML techniques (i.e., KRR and RF
in Table 1) with significantly higher accuracy (i.e., R2~0.90, N = 1253) relative to RF (i.e.,
R2~0.66, N = 2212) [45] and KRR (i.e., R2~0.76, N = 2212) [46] despite the smaller size of the
dataset, N (Table 1). Specifically, the DL model is generally considered to be very suitable
to process large datasets [25–28,39], thus, we expect the accuracy of the DL model will
improve significantly if a larger dataset is employed.

3.3. The Important Molecular Descriptors

To further examine which variables or molecular features influence the model’s per-
formance, the top ranking molecular features for the DL- model were computed based on
the permutation importance as implemented in the ELI5 (ELI5 0.11.0) library [51]. Here, it
is important to note that although the influence and correlation of the different molecular
descriptors or features on the melting points of ILs is not directly obvious, their contributive
effects are nonetheless comprehensible by conducting a feature importance analysis. Based
on the DL-model (Table 1) and features filtering and ranking scores (Figure S2), important
molecular descriptors that have a significant impact on the target property (i.e., Tm) can
be obtained. Table 2 shows the top 10 most important molecular features or descriptors
that have large impacts on the melting points of ILs obtained from three complementary
correlation models, i.e., Pearson, Spearman and Kendall. The top 20 most influential molec-
ular descriptors based on these correlation models can be found in Figure S2 and Table S2.
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As shown in Table 2 and Table S2, a consistent finding regarding the topmost influential
molecular descriptors can be found using three different correlation methods. To highlight
the complementary molecular features, the molecular descriptors listed are colored based
on descriptor types or models defined in the literature [23,24,35].

Table 2. The top 10 most important molecular descriptors obtained from DL-model based on
3 different correlation methods, i.e., Pearson, Spearman and Kendall. Color code: red (P-VSA);
blue (constitutional); green (topological indices); purple (molecular properties); black (atom-type
E-state indices).

Pearson Spearman Kendall

P_VSA_logP_1 DELS P_VSA_ppp_hal
P_VSA_ppp_N MW P_VSA_m_4

DELS P_VSA_logP_1 P_VSA_ppp_N
P_VSA_m_4 P_VSA_ppp_N P_VSA_e_4

P_VSA_ppp_hal MAXDP DELS
P_VSA_e_3 P_VSA_m_4 P_VSA_e_3
P_VSA_m3 TPSA(Tot) MW
P_VSA_i_1 P_VSA_ppp_hal TIE

P_VSA_m_5 P_VSA_m_3 S2K
S1K SsF P_VSA_m_5

From these top 10 descriptors (Table 2), the important contributions from both cations
and anions in ILs are captured and found to be closely related to geometrical structures,
shapes, the size of the IL molecules, partial charges of IL cations or anions and the hydrogen
bonds that influences intermolecular interactions. As shown in Table 2, the key molecular
features found in the wide varieties of IL families in the datasets are the molecular descrip-
tors related to the geometrical structures, branching and shapes or topological characters
described by topological indices (e.g., DELS, MAXDP, S1K, S2K, etc.) and constitutional
molecular weights and size (e.g., MW). For instance, the DELS is the topological indices
is a representation of the measure of molecular electrotopological variation [52], which is
related to the sum of overall atoms of the intrinsic state differences and could be interpreted
as a measure of total charge transfer in ILs molecules. The S1K and S2K are the shape in-
dices [53] which are a measure of the relative cyclicity of IL molecules, and are particularly
relevant to cyclic compounds commonly found in IL cationic scaffolds (e.g., imidazolium,
pyridinium, etc.). As another leading molecular descriptors, the P-VSA based molecular
descriptors in Table 2 and Table S2 is based on atomic contributions to the van der Waals
surface area, octanol-water partition coefficient (logP), molar refractivity and atomic partial
charge-based [54] descriptors which encode the factors that could possibly influence the
melting points of ILs, with a strong correlation to intermolecular hydrogen bonds and the
hydrophobic and hydrophilic, polarizability, and electrostatic interaction of the ILs.

In our opinion, the high accuracy (high R2 score) of the current DL-model, as shown
in Table 1, might be attributed to the better utilization of all important molecular features
in the prediction of melting points of ILs. To further understand the underlying interaction
or correlation between these important molecular features/descriptors which are implicitly
incorporated in the DL-model, an analysis of the distribution of the melting points of
ILs using the best combination of two molecular descriptors from the topmost important
descriptors (Tables 2 and S2) may lead us to some insights to control the physicochemical
properties, such as melting point, Tm of ILs. In Figures 5 and S3, the important interplay
dictated by the structural properties of the cations and anions of ILs that determine the
distribution of Tm can be seen. As shown in Figure S3, the high Tm of ILs tends to favor
the regime of small values in S2K and S3K which are the shape indices [53] that measure
the relative cyclicity of IL molecules relevant to cyclic compounds commonly found in ILs
cationic counterparts (e.g., imidazolium, pyridinium, phosphonium, etc.). To maximize the
electrostatic interaction in high Tm ILs, the cationic scaffolds tend to favor smaller molecular
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weights/mass (i.e., smaller values in P_VSA_m_4) and more potential pharmacophore
points in their positive charge distribution (i.e., larger values in P_VSA_ppp_P), as shown
in Figure S3.
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By considering the effects on the anions from the entire dataset (1253 ILs system), it
was found that the high melting point ILs generally accumulate at the regime which has a
high Chi_Dz(e) value (Figure 5a), with a high autocorrelation of Sanderson electronega-
tivity (e.g., presence F, O, N, Cl, etc.) which might be attributed to the presence of anionic
counterparts, e.g., halides (e.g., chlorides, bromide, or iodide anions), borates, and perfluo-
rinated anionic species (e.g., [BF4]−, [PF6]−, [CF3SO3]−, [N-(SO2CF3)2]−). Complementary
to Figure 5a, most of the high melting point IL candidates are also found at the regime of
high TPSA(Tot) and P_VSA_ppp_A values (Figure 5b). From the descriptors’ model [23,35],
it can be seen that the high TPSA(Tot) is related to a topological polar surface area based
on polar constituents (e.g., N, O, S, and P) contributions, and more polarized molecules or
constituents typically yield larger TPSA(Tot) values. The P_VSA_ppp_A is attributed to
the P-VSA based molecular descriptors which relate to potential pharmacophore points of
hydrogen-bond acceptors in ILs that account for hydrogen bonding ability. Thus, based
on the trend observed in Figure 5b, one can find that by incorporating appropriate an-
ionic species with a more localized negative charge, and a stronger hydrogen bonding in
intermolecular interaction, the melting point for ILs will increase.

4. Discussion

A stated in the reported literature [8–11], it is known that the ILs with low melting
points normally tend to have low viscosities which might be beneficial to the transport
properties in battery application. It is also known that the melting points of ILs are primarily
dictated by the structural properties of the scaffolds of cations, anions and the mutual
interaction between them, and these interesting features can be seen from our findings
based on the topmost important molecular descriptors analysis (Section 3.3). With these
analyses, some useful design principles to fine tune the Tm of ILs can be obtained. To reduce
the melting point of ILs, one can reduce the Coulombic interaction between the anions
and cations (e.g., increasing the interionic separation, through the charge delocalization or
shielding), lower the symmetry among the configuration of ions, increase the volume of
the ions and reduce the efficient packing among the anions and cations by utilizing the ions
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with high conformational flexibility [55,56]. Thus, to fine tune the melting temperatures of
ILs, one can incorporate a variety of counterions with different molecular shapes (e.g., linear,
spherical, etc.), structures (e.g., single chain, multiple chains, linear or branched), charge
coordination through the functional groups design and engineering during the synthesis
process of ILs.

In this perspective, finding a set of useful design-principles that can guide the functional-
group design with an optimal selection of anion-cation combinations is critical to attain
new useful ILs with desirable physicochemical properties (e.g., melting points, ionic con-
ductivity, thermal stability, etc.). Thus, we believe the predictive models based on a set of
dominant molecular descriptors [42–46] included in this work can be helpful and will pro-
vide some useful insights in IL design. However, due to a vast selection and combination of
cations and anions, the construction of a large and sustainable ILs database (e.g., ILThermo
v2.0) [31,32] is deemed important. To advance the design and development of ILs, finding
an optimal predictive model that can simultaneously predict several target physicochemical
properties (e.g., melting point, viscosity, solubility, electrical and thermal conductivity) of
various ILs accurately, using a minimal set of a few important descriptors remains a chal-
lenge, and will be an active research focus in the future. Specifically, to further improve the
accuracy of the predictive models [29,30,42–46], the current state-of-the-art deep learning
(DL) model [25–28] which is robust in processing vast amounts of features and datasets
and supports highly parallelized and distributed algorithms that utilize graphic processing
unit (GPU) machines, could be a promising method to achieve these goals.

5. Conclusions

Ionic liquids (ILs) have great potential for application in energy storage and conversion
devices, and they have been identified as promising electrolyte candidates in various
batteries systems. However, the practical application of many ionic liquids remains limited
due to the unfavorable melting points that constrain the operating temperatures and exhibit
unfavorable transport property in batteries. With this as our motivation, we carried out
a baseline study to investigate the trend of melting points (Tm) of a wide variety of ILs,
with the aim to search for insights that will lead us to fine tune the Tm of ILs using high-
throughput screenings of large a ILs dataset and machine-learning model. Based on the
dataset (1253 ILs) obtained from an established ILs database, i.e., ILThermo (v2.0) [31,32],
we managed to construct a predictive model to predict the melting points (Tm) of ILs with a
reasonably high accuracy, achieving an R2 score of 0.90 with an RMSE of ~32 K by utilizing a
set of important quantitative structure–property relationship (QSPR) molecular features or
descriptors based on the deep-learning (DL) model (Section 3.2). Despite a wide variation
in the distribution of melting points and a wide variety of anion–cation combination in the
ILs dataset (Section 3.1), we found the melting points Tm of various ILs can be determined
based on a limited set of molecular descriptors. These molecular descriptors consist of
137 descriptors that highlight several important molecular features that have significant
influence in determining the melting points of ILs, e.g., the presence of electronegative
constituents, geometrical structures, branching and shapes, hydrogen-bonding ability,
polarizabilities, etc. (Section 3.3).

Based on the DL model, the important interplay dictated by the structural properties of
the cations and anions of ILs that determine the distribution of Tm can be seen (Section 3.3).
For example, the high Tm of ILs tends to favor small values of shape indices which measure
the relative cyclicity of ILs molecules that could relate to cyclic compounds commonly
found in ILs cationic counterparts (e.g., imidazolium, pyridinium, phosphonium, etc.).
We elucidated the effects of anionic counterparts by incorporating appropriate anionic
species with a more localized negative charge, and stronger hydrogen bonding in inter-
molecular interaction, which can lead to an increasing melting point for ILs (Section 3.3).
Thus, with a fine selection of anion–cation combination in ILs, we believe that the design
and engineering of functional groups is the key to fine tune the melting points, and further
studies in the development of predictive models that are able to accurately predict other
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physicochemical properties (e.g., viscosity, hydrophilicity/hydrophobicity, conductivity)
relevant to battery application will be conducted.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app12052408/s1, Table S1: The performance metrics of DL-model
that applied to different testing sets which based on 137 molecular features/descriptors. N is the
sample size of the dataset. For RMSE, the unit is in Kelvin (K); Figure S1: DL model predicted melting
point (i.e., Tm (Prediction)/K) values (in blue color) of the entire ILs dataset versus the experimental
measured melting point (i.e., Tm (Exp)/K) (in red color) obtained from the literatures (i.e., ILThermo
database); Figure S2: A correlation matrix comparing the melting point (Tm) with top 20 important
molecular descriptors based on the Pearson correlation method. The numbers found in the correlation
matrix is the feature correlation coefficients or ranking scores computed based on Pearson correlation
method; Table S2: The top 20 most important molecular descriptors obtained from DL-model based
on 3 different correlation methods, i.e., Pearson, Spearman and Kendall; Figure S3: The distribution
of the ILs melting points plot using the best combination of two molecular descriptors that mostly
focus on the cations contribution: (a) S2K vs. P_VSA_ppp_hal; (b) S3K vs. P_VSA_m; (c) S2K vs.
P_VSA_m_4; (d) P_VSA_ppp_P vs. P_VSA_m_4. The color of data points indicates the low melting
point (i.e., Tm < 273 K) (in blue color) and high melting point (i.e., Tm > 273 K) (in brown color) of the
corresponding ILs. The yellow region highlights the high melting point regime.
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